九九热最新网址,777奇米四色米奇影院在线播放,国产精品18久久久久久久久久,中文有码视频,亚洲一区在线免费观看,国产91精品在线,婷婷丁香六月天

2022年高三數(shù)學一輪復習 第三章 導數(shù)及其應(yīng)用第二節(jié) 導數(shù)的應(yīng)用練習

上傳人:xt****7 文檔編號:105035324 上傳時間:2022-06-11 格式:DOC 頁數(shù):6 大?。?2.02KB
收藏 版權(quán)申訴 舉報 下載
2022年高三數(shù)學一輪復習 第三章 導數(shù)及其應(yīng)用第二節(jié) 導數(shù)的應(yīng)用練習_第1頁
第1頁 / 共6頁
2022年高三數(shù)學一輪復習 第三章 導數(shù)及其應(yīng)用第二節(jié) 導數(shù)的應(yīng)用練習_第2頁
第2頁 / 共6頁
2022年高三數(shù)學一輪復習 第三章 導數(shù)及其應(yīng)用第二節(jié) 導數(shù)的應(yīng)用練習_第3頁
第3頁 / 共6頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2022年高三數(shù)學一輪復習 第三章 導數(shù)及其應(yīng)用第二節(jié) 導數(shù)的應(yīng)用練習》由會員分享,可在線閱讀,更多相關(guān)《2022年高三數(shù)學一輪復習 第三章 導數(shù)及其應(yīng)用第二節(jié) 導數(shù)的應(yīng)用練習(6頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、2022年高三數(shù)學一輪復習 第三章 導數(shù)及其應(yīng)用第二節(jié) 導數(shù)的應(yīng)用練習 一、選擇題(6×5分=30分) 1.(xx·聊城模擬)函數(shù)y=x3-2ax+a在(0,1)內(nèi)有極小值,則實數(shù)a的取值范圍是(  ) A.(0,3)         B.(0,) C.(0,+∞) D.(-∞,3) 解析:令y′=3x2-2a=0,得x=± (a>0,否則函數(shù)y為單調(diào)增函數(shù)).若函數(shù)y=x3-2ax+a在(0,1)內(nèi)有極小值,則 <1,∴0

2、) A.-37 B.-29 C.-5 D.以上都不對 解析:∵f′(x)=6x2-12x=6x(x-2), ∵f(x)在(-2,0)上為增函數(shù),在(0,2)上為減函數(shù), ∴當x=0時,f(x)=m最大. ∴m=3,從而f(-2)=-37,f(2)=-5. ∴最小值為-37. 答案:A 3. 圖1 如果函數(shù)y=f(x)的圖象如圖1所示,那么導函數(shù)y=f′(x)的圖象可能是圖2中的(  ) 圖2 解析:由y=f(x)的圖象可知其單調(diào)性從左向右依次為增減增減,所以其導數(shù)y=f′(x)的函數(shù)值依次為正負正負.由此可排除B、C、D. 答案:A 4.(xx·濰坊模擬

3、)函數(shù)f(x)=x3+ax2+bx+a2在x=1處有極值10,則(  ) A.a(chǎn)=-11,b=4 B.a(chǎn)=-4,b=11 C.a(chǎn)=11,b=-4 D.a(chǎn)=4,b=-11 解析:由f(x)=x3+ax2+bx+a2, 得f′(x)=3x2+2ax+b, 根據(jù)已知條件即 解得或(經(jīng)檢驗應(yīng)舍去). 答案:D 5.已知函數(shù)f(x)=ax3+bx+c,其導函數(shù)f′(x)的圖象如圖所示,則函數(shù)f(x)的極小值是(  ) A.a(chǎn)+b+c B.8a+4b+c C.3a+2b D.c 解析:由f′(x)的圖象知:x=0是f(x)的極小值點, ∴f(x)極小值=f(0)=c.

4、 答案:D 6.已知函數(shù)f(x)=x3+ax2+bx+c,x∈[-2,2]表示的曲線過原點,且在x=±1處的切線斜率均為-1,給出以下結(jié)論: ①f(x)的解析式為f(x)=x3-4x,x∈[-2,2]; ②f(x)的極值點有且僅有一個; ③f(x)的最大值與最小值之和等于0. 其中正確的結(jié)論有(  ) A.0個 B.1個 C.2個 D.3個 解析:∵f(0)=0,∴c=0, ∵f′(x)=3x2+2ax+b. ∴即 解得a=0,b=-4, ∴f(x)=x3-4x,∴f′(x)=3x2-4. 令f′(x)=0得x=±∈[-2,2], ∴極值點有兩個. ∵f(x)

5、為奇函數(shù), ∴f(x)max+f(x)min=0. ∴①③正確,故確C. 答案:C 二、填空題(3×5分=15分) 7.(xx·江蘇高考)函數(shù)f(x)=x3-15x2-33x+6的單調(diào)減區(qū)間為________. 解析:∵f′(x)=3x2-30x-33=3(x-11)(x+1), 令f′(x)<0得-1

6、0在區(qū)間(-1,1)上恒成立,則a≥3x2,x∈(-1,1)恒成立,故a≥3. 答案:a≥3 9.若直線y=m與y=3x-x3的圖象有三個不同的交點,則實數(shù)m的取值范圍為________. 解析:由已知得:m=3x-x3有三個不同實根, 亦即函數(shù)f(x)=x3-3x+m有3個不同的零點. ∵f′(x)=3x2-3=3(x+1)(x-1), 且當x<-1時,f′(x)>0, 當-11時,f′(x)>0. ∴當x=-1時,f(x)有極大值,當x=1時,f(x)有極小值,要使f(x)有3個不同的零點,如圖所示: 只需解得-2

7、案:(-2,2) 三、解答題(共37分) 10.(12分)(xx·廣州模擬)若存在過點(1,0)的直線與曲線y=x3和y=ax2+x-9都相切,求a的值. 解析:設(shè)過(1,0)的直線與y=x3相切于點(x0,x03), 所以切線方程為y-x03=3x02(x-x0), 即y=3x02x-2x03,又(1,0)在切線上, 則x0=0或x0=, 當x0=0時, 由y=0與y=ax2+x-9相切可得a=-, 當x0=時,由y=x-與y=ax2+x-9相切 可得a=-1, 所以a=-1或-. 11.(理)(12分)(xx·福建六校聯(lián)考)已知函數(shù)f(x)=x·lnx. (1)求

8、曲線y=f(x)在點(e,e)處的切線方程; (2)若k是正常數(shù),設(shè)g(x)=f(x)+f(k-x),求g(x)的最小值; (3)若關(guān)于x的不等式xlnx+(4-x)ln(4-x)≥ln(m2-6m)對一切x∈(0,4)恒成立,求實數(shù)m的取值范圍. 解析:(1)∵f′(x)=lnx+1, ∴f′(e)=lne+1=2. ∴所求的切線方程為: y-e=2(x-e)即2x-y-e=0. (2)∵g(x)=xlnx+(k-x)ln(k-x)的定義域為(0,k), ∴g′(x)=lnx+1-[ln(k-x)+1]=ln. 由g′(x)>0得

9、數(shù)g(x)在(0,)上單調(diào)遞減,在(,k)上單調(diào)遞增. ∴g(x)的最小值為g()=k·ln. (3)∵xlnx+(4-x)ln(4-x)=f(x)+f(4-x), 由(2)知: 當x∈(0,4)時,xlnx+(4-x)ln(4-x)的最小值為: 4ln2=ln16. 由已知得ln(m2-6m)≤ln16. 即解得m∈[-2,0)∪(6,8]. (文)(12分)已知a為實數(shù),f(x)=(x2-4)(x-a). (1)若f′(-1)=0,求f(x)在[-4,4]上的最大值和最小值; (2)若f(x)在(-∞,-2]和[2,+∞)上都是遞增的,求a的取值范圍. 解析:(1)f

10、′(x)=3x2-2ax-4,f′(-1)=2a-1=0, ∴a=,∴f′(x)=(3x-4)(x+1) x (-4,-1) -1 (-1,) (,4) f′(x) + 0 - 0 + f(x) 增 極大 減 極小 增 f極大(x)=f(-1)=,f極小(x)=f()=-, f(-4)=-54,f(4)=42, fmin(x)=f(-4)=-54,fmax(x)=f(4)=42. (2)f′(x)≥0對一切x∈(-∞,-2]及[2,+∞)均成立, 或Δ≤0,即-2≤a≤2. 12.(理)(13分)(xx·廣州質(zhì)檢)已知函數(shù)f(x)=x3-x2

11、+px-p(p是實常數(shù)). (1)若f(x)在(0,+∞)內(nèi)為單調(diào)函數(shù),求p的取值范圍; (2)當p≠0時,過點(1,0)作曲線y=f(x)的切線能作三條,求p的取值范圍. 解析:(1)f′(x)=px2-2x+p,x∈(0,+∞). ①p=0時,f′(x)=-2x<0,此時f(x)在(0,+∞)內(nèi)單調(diào)遞減. ∴p=0. ②p>0時,f′(x)的對稱軸為x=∈(0,+∞), ∴f′(x)min=f′()=≥0 ?p≤-1或p≥1.∴p≥1. ③p<0時,f′(x)的對稱軸為x=<0,此時f′(x)=px2-2x+p在(0,+∞)內(nèi)遞減,要使f(x)在(0,+∞)內(nèi)為單調(diào)函數(shù),

12、只需f′(0)≤0即可.∴p<0. 綜上所述:p≤0或p≥1即為所求. (2)f′(x)=px2-2x+p, 顯然p≠0,點(1,0)不在曲線y=f(x)上?p ≠3. 設(shè)過(1,0)作直線與曲線y=f(x)相切的切點為 (t,t3-t2+pt-p), 則pt2-2t+p= ?pt3-(p+1)t2+2t=0 ?t[pt2-(p+1)t+2]=0. ∴t=0或pt2-(p+1)t+2=0. ∵切線能作三條, ∴Δ=(p+1)2-p>0.∴p<或p>3且p≠0. (文)(xx·茂名模擬)設(shè)函數(shù)f(x)=x3-3ax+b(a≠0). (1)若曲線y=f(x)在點(2,f(

13、2))處與直線y=8相切,求a,b的值; (2)求函數(shù)f(x)的單調(diào)區(qū)間與極值點. 解析:(1)f′(x)=3x2-3a. 因為曲線y=f(x)在點(2,f(2))處與直線y=8相切, 所以即 解得a=4,b=24. (2)f′(x)=3(x2-a)(a≠0). 當a<0時,f′(x)>0,函數(shù)f(x)在(-∞,+∞)上單調(diào)遞增;此時函數(shù)f(x)沒有極值點. 當a>0時,由f′(x)=0得x=±. 當x∈(-∞,-)時,f′(x)>0,函數(shù)f(x)單調(diào)遞增; 當x∈(-,)時,f′(x)<0,函數(shù)f(x)單調(diào)遞減; 當x∈(,+∞)時,f′(x)>0,函數(shù)f(x)單調(diào)遞增. 此時x=-是f(x)的極大值點,x=是f(x)的極小值點.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!