九九热最新网址,777奇米四色米奇影院在线播放,国产精品18久久久久久久久久,中文有码视频,亚洲一区在线免费观看,国产91精品在线,婷婷丁香六月天

2022年高考數(shù)學(xué)大二輪總復(fù)習(xí) 增分策略 專題四 數(shù)列 推理與證明 第4講 推理與證明試題

上傳人:xt****7 文檔編號(hào):105267584 上傳時(shí)間:2022-06-11 格式:DOC 頁數(shù):20 大?。?77.02KB
收藏 版權(quán)申訴 舉報(bào) 下載
2022年高考數(shù)學(xué)大二輪總復(fù)習(xí) 增分策略 專題四 數(shù)列 推理與證明 第4講 推理與證明試題_第1頁
第1頁 / 共20頁
2022年高考數(shù)學(xué)大二輪總復(fù)習(xí) 增分策略 專題四 數(shù)列 推理與證明 第4講 推理與證明試題_第2頁
第2頁 / 共20頁
2022年高考數(shù)學(xué)大二輪總復(fù)習(xí) 增分策略 專題四 數(shù)列 推理與證明 第4講 推理與證明試題_第3頁
第3頁 / 共20頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2022年高考數(shù)學(xué)大二輪總復(fù)習(xí) 增分策略 專題四 數(shù)列 推理與證明 第4講 推理與證明試題》由會(huì)員分享,可在線閱讀,更多相關(guān)《2022年高考數(shù)學(xué)大二輪總復(fù)習(xí) 增分策略 專題四 數(shù)列 推理與證明 第4講 推理與證明試題(20頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、2022年高考數(shù)學(xué)大二輪總復(fù)習(xí) 增分策略 專題四 數(shù)列 推理與證明 第4講 推理與證明試題 1.(xx·湖北)已知集合A={(x,y)|x2+y2≤1,x,y∈Z},B={(x,y)||x|≤2,|y|≤2,x,y∈Z},定義集合AB={(x1+x2,y1+y2)|(x1,y1)∈A,(x2,y2)∈B},則AB中元素的個(gè)數(shù)為(  ) A.77 B.49 C.45 D.30 2.(xx·北京)學(xué)生的語文、數(shù)學(xué)成績(jī)均被評(píng)定為三個(gè)等級(jí),依次為“優(yōu)秀”“合格”“不合格”.若學(xué)生甲的語文、數(shù)學(xué)成績(jī)都不低于學(xué)生乙,且其中至少有一門成績(jī)高于乙,則稱“學(xué)生甲比學(xué)生乙成績(jī)好”.如果一組學(xué)生中沒

2、有哪位學(xué)生比另一位學(xué)生成績(jī)好,并且不存在語文成績(jī)相同、數(shù)學(xué)成績(jī)也相同的兩位學(xué)生,那么這組學(xué)生最多有(  ) A.2人 B.3人 C.4人 D.5人 3.(xx·山東)觀察下列各式: C=40; C+C=41; C+C+C=42; C+C+C+C=43; …… 照此規(guī)律,當(dāng)n∈N*時(shí),C +C+ C+…+ C=________. 4.(xx·福建)一個(gè)二元碼是由0和1組成的數(shù)字串x1x2…xn(n∈N*),其中xk(k=1,2,…,n)稱為第k位碼元.二元碼是通信中常用的碼,但在通信過程中有時(shí)會(huì)發(fā)生碼元錯(cuò)誤(即碼元由0變?yōu)?,或者由1變?yōu)?). 已知某種二元碼x

3、1x2…x7的碼元滿足如下校驗(yàn)方程組: 其中運(yùn)算定義為00=0,01=1,10=1,11=0. 現(xiàn)已知一個(gè)這種二元碼在通信過程中僅在第k位發(fā)生碼元錯(cuò)誤后變成了1101101,那么利用上述校驗(yàn)方程組可判定k等于________. 1.以數(shù)表、數(shù)陣、圖形為背景與數(shù)列、周期性等知識(shí)相結(jié)合考查歸納推理和類比推理,多以小題形式出現(xiàn).2.直接證明和間接證明的考查主要作為證明和推理數(shù)學(xué)命題的方法,常與函數(shù)、數(shù)列及不等式等綜合命題. 熱點(diǎn)一 歸納推理 (1)歸納推理是由某類事物的部分對(duì)象具有某些特征,推出該類事物的全部對(duì)象都具有這些特征的推理,或者由個(gè)別事實(shí)概括出一般結(jié)論的推理

4、. (2)歸納推理的思維過程如下: →→ 例1 (1)古希臘畢達(dá)哥拉斯學(xué)派的數(shù)學(xué)家研究過各種多邊形數(shù),如三角形數(shù)1,3,6,10,…,第n個(gè)三角形數(shù)為=n2+n,記第n個(gè)k邊形數(shù)為N(n,k)(k≥3),以下列出了部分k邊形數(shù)中第n個(gè)數(shù)的表達(dá)式: 三角形數(shù)      N(n,3)=n2+n, 正方形數(shù) N(n,4)=n2, 五邊形數(shù) N(n,5)=n2-n, 六邊形數(shù) N(n,6)=2n2-n …… 可以推測(cè)N(n,k)的表達(dá)式,由此計(jì)算N(10,24)=____________. (2)已知f(n)=1+++…+(n∈N*),經(jīng)計(jì)算得f(4)>2,f(8)>,

5、f(16)>3,f(32)>,則有______________________. 思維升華 歸納遞推思想在解決問題時(shí),從特殊情況入手,通過觀察、分析、概括,猜想出一般性結(jié)論,然后予以證明,這一數(shù)學(xué)思想方法在解決探索性問題、存在性問題或與正整數(shù)有關(guān)的命題時(shí)有著廣泛的應(yīng)用.其思維模式是“觀察—?dú)w納—猜想—證明”,解題的關(guān)鍵在于正確的歸納猜想. 跟蹤演練1 (1)有菱形紋的正六邊形地面磚,按下圖的規(guī)律拼成若干個(gè)圖案,則第六個(gè)圖案中有菱形紋的正六邊形的個(gè)數(shù)是(  ) A.26 B.31 C.32 D.36 (2)兩旅客坐火車外出旅游,希望座位連在一起,且有一個(gè)靠窗,已知火車上的座位的排法

6、如圖所示,則下列座位號(hào)碼符合要求的應(yīng)當(dāng)是(  ) A.48,49 B.62,63 C.75,76 D.84,85 熱點(diǎn)二 類比推理 (1)類比推理是由兩類對(duì)象具有某些類似特征和其中一類對(duì)象的某些已知特征,推出另一類對(duì)象也具有這些特征的推理. (2)類比推理的思維過程如下: →→ 例2 (1)在平面幾何中有如下結(jié)論:若正三角形ABC的內(nèi)切圓面積為S1,外接圓面積為S2,則=.推廣到空間幾何可以得到類似結(jié)論:若正四面體ABCD的內(nèi)切球體積為V1,外接球體積為V2,則=________. (2)(xx·日照高三第一次模擬考試)已知雙曲正弦函數(shù)sh x=和雙曲余弦函數(shù)ch x=

7、與我們學(xué)過的正弦函數(shù)和余弦函數(shù)有許多類似的性質(zhì),請(qǐng)類比正弦函數(shù)和余弦函數(shù)的和角或差角公式,寫出雙曲正弦或雙曲余弦函數(shù)的一個(gè)類似的正確結(jié)論______________________. 思維升華 類比推理是合情推理中的一類重要推理,強(qiáng)調(diào)的是兩類事物之間的相似性,有共同要素是產(chǎn)生類比遷移的客觀因素,類比可以由概念性質(zhì)上的相似性引起,如等差數(shù)列與等比數(shù)列的類比,也可以由解題方法上的類似引起.當(dāng)然首先是在某些方面有一定的共性,才能有方法上的類比. 跟蹤演練2 (1)若數(shù)列{an}是等差數(shù)列,bn=,則數(shù)列{bn}也為等差數(shù)列.類比這一性質(zhì)可知,若正項(xiàng)數(shù)列{cn}是等比數(shù)列,且{dn}也是等比數(shù)列,

8、則dn的表達(dá)式應(yīng)為(  ) A.dn= B.dn= C.dn= D.dn= (2)若點(diǎn)P0(x0,y0)在橢圓+=1(a>b>0)外,過點(diǎn)P0作該橢圓的兩條切線,切點(diǎn)分別為P1,P2,則切點(diǎn)弦P1P2所在直線的方程為+=1.那么對(duì)于雙曲線-=1(a>0,b>0),類似地,可以得到切點(diǎn)弦所在直線的方程為____________________. 熱點(diǎn)三 直接證明和間接證明 直接證明的常用方法有綜合法和分析法,綜合法由因?qū)Ч?,而分析法則是執(zhí)果索因,反證法是反設(shè)結(jié)論導(dǎo)出矛盾的證明方法. 例3 已知數(shù)列{an}滿足:a1=,=,anan+1<0 (n≥1);數(shù)列{bn}滿足:bn=a

9、-a (n≥1). (1)求數(shù)列{an},{bn}的通項(xiàng)公式; (2)證明:數(shù)列{bn}中的任意三項(xiàng)不可能成等差數(shù)列.           思維升華 (1)有關(guān)否定性結(jié)論的證明常用反證法或舉出一個(gè)結(jié)論不成立的例子即可. (2)綜合法和分析法是直接證明常用的兩種方法,我們常用分析法尋找解決問題的突破口,然后用綜合法來寫出證明過程,有時(shí)候,分析法和綜合法交替使用. 跟蹤演練3 (1)已知△ABC的三個(gè)內(nèi)角A,B,C成等差數(shù)列,A,B,C的對(duì)邊分別為a,b,c. 求證:+=; (2)已知f(x)=ax+(a>1),證明:方程f(x)=0沒有負(fù)根.  

10、       熱點(diǎn)四 數(shù)學(xué)歸納法 數(shù)學(xué)歸納法證明的步驟 (1)證明當(dāng)n取第一個(gè)值n0(n0∈N*)時(shí)結(jié)論成立. (2)假設(shè)n=k(k∈N*,且k≥n0)時(shí)結(jié)論成立,證明n=k+1時(shí)結(jié)論也成立. 由(1)(2)可知,對(duì)任意n≥n0,且n∈N*時(shí),結(jié)論都成立. 例4 已知f(n)=1++++…+,g(n)=-,n∈N*. (1)當(dāng)n=1,2,3時(shí),試比較f(n)與g(n)的大小; (2)猜想f(n)與g(n)的大小關(guān)系,并給出證明.             思維升華 用數(shù)學(xué)歸納法證明與正整數(shù)有關(guān)的等式命題時(shí),關(guān)鍵在于弄清等

11、式兩邊的構(gòu)成規(guī)律,等式的兩邊各有多少項(xiàng),由n=k到n=k+1時(shí),等式的兩邊會(huì)增加多少項(xiàng),增加怎樣的項(xiàng).難點(diǎn)在于尋求等式在n=k和n=k+1時(shí)的聯(lián)系. 跟蹤演練4 設(shè)a>0,f(x)=,令a1=1,an+1=f(an),n∈N*. (1)寫出a2,a3,a4的值,并猜想數(shù)列{an}的通項(xiàng)公式; (2)用數(shù)學(xué)歸納法證明你的結(jié)論.         1.把正整數(shù)按一定的規(guī)則排成了如圖所示的三角形數(shù)表.設(shè)aij(i,j∈N*)是位于這個(gè)三角形數(shù)表中從上往下數(shù)第i行、從左往右數(shù)第j個(gè)數(shù),如a42=8.若aij=2 011,則i與j的和為________. 2.已知

12、下列不等式:x+≥2,x+≥3,x+≥4,…,則第n個(gè)不等式為________________. 3.設(shè)數(shù)列{an}是公比為q的等比數(shù)列,Sn是它的前n項(xiàng)和,證明:數(shù)列{Sn}不是等比數(shù)列.             提醒:完成作業(yè) 專題四 第4講 二輪專題強(qiáng)化練 專題四 第4講 推理與證明 A組 專題通關(guān) 1.觀察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,則a10+b10等于(  ) A.28 B.76 C.123 D.199 2.觀察下列事實(shí):|x|+|y|=1的不

13、同整數(shù)解(x,y)的個(gè)數(shù)為4,|x|+|y|=2的不同整數(shù)解(x,y)的個(gè)數(shù)為8,|x|+|y|=3的不同整數(shù)解(x,y)的個(gè)數(shù)為12,…,則|x|+|y|=20的不同整數(shù)解(x,y)的個(gè)數(shù)為(  ) A.76 B.80 C.86 D.92 3.(xx·合肥模擬)正弦函數(shù)是奇函數(shù),f(x)=sin(x2+1)是正弦函數(shù),因此f(x)=sin(x2+1)是奇函數(shù),以上推理(  ) A.結(jié)論正確 B.大前提不正確 C.小前提不正確 D.全不正確 4.下列推理是歸納推理的是(  ) A.A,B為定點(diǎn),動(dòng)點(diǎn)P滿足|PA|+|PB|=2a>|AB|,則P點(diǎn)的軌跡為橢圓 B.由

14、a1=1,an=3n-1,求出S1,S2,S3,猜想出數(shù)列的前n項(xiàng)和Sn的表達(dá)式 C.由圓x2+y2=r2的面積πr2,猜想出橢圓+=1的面積S=πab D.以上均不正確 5.已知函數(shù)f(x)是R上的單調(diào)增函數(shù)且為奇函數(shù),數(shù)列{an}是等差數(shù)列,a3>0,則f(a1)+f(a3)+f(a5)的值(  ) A.恒為正數(shù) B.恒為負(fù)數(shù) C.恒為0 D.可正可負(fù) 6.(xx·山東)定義運(yùn)算“?”:x?y=(x,y∈R,xy≠0),當(dāng)x>0,y>0時(shí),x?y+(2y)?x的最小值為________. 7.平面內(nèi)有n條直線,最多可將平面分成f(n)個(gè)區(qū)域,則f(n)的表達(dá)式為___

15、_____. 8.如果函數(shù)f(x)在區(qū)間D上是凸函數(shù),那么對(duì)于區(qū)間D內(nèi)的任意x1,x2,…,xn,都有≤f().若y=sin x在區(qū)間(0,π)上是凸函數(shù),那么在△ABC中,sin A+sin B+sin C的最大值是________. 9.某同學(xué)在一次研究性學(xué)習(xí)中發(fā)現(xiàn),以下五個(gè)式子的值都等于同一個(gè)常數(shù): ①sin213°+cos217°-sin 13°cos 17°; ②sin215°+cos215°-sin 15°cos 15°; ③sin218°+cos212°-sin 18°cos 12°; ④sin2(-18°)+cos248°-sin(-18°)cos 48°; ⑤s

16、in2(-25°)+cos255°-sin(-25°)cos 55°. (1)試從上述五個(gè)式子中選擇一個(gè),求出這個(gè)常數(shù); (2)根據(jù)(1)的計(jì)算結(jié)果,將該同學(xué)的發(fā)現(xiàn)推廣為三角恒等式,并證明你的結(jié)論. 10.已知a,b,m為非零實(shí)數(shù),且a2+b2+2-m=0,++1-2m=0. (1)求證:+≥; (2)求證:m≥. B組 能力提高 11.(xx·西安五校聯(lián)考)已知“整數(shù)對(duì)”按如下規(guī)律排成一列:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),…,則第60個(gè)“整數(shù)對(duì)”是( 

17、 ) A.(7,5) B.(5,7) C.(2,10) D.(10,1) 12.對(duì)大于1的自然數(shù)m的三次冪可用奇數(shù)進(jìn)行以下方式的“分裂”:23,33,43,….仿此,若m3的“分裂數(shù)”中有一個(gè)是59,則m的值為________. 13.在平面上,我們?nèi)绻靡粭l直線去截正方形的一個(gè)角,那么截下的一個(gè)直角三角形,按下圖所標(biāo)邊長(zhǎng),由勾股定理有:c2=a2+b2.設(shè)想正方形換成正方體,把截線換成如圖的截面,這時(shí)從正方體上截下三條側(cè)棱兩兩垂直的三棱錐O—LMN,如果用S1,S2,S3表示三個(gè)側(cè)面面積,S4表示截面面積,那么類比得到的結(jié)論是_________________________

18、______. 14.蜜蜂被認(rèn)為是自然界中最杰出的建筑師,單個(gè)蜂巢可以近似地看作是一個(gè)正六邊形,如圖為一組蜂巢的截面圖.其中第一個(gè)圖有1個(gè)蜂巢,第二個(gè)圖有7個(gè)蜂巢,第三個(gè)圖有19個(gè)蜂巢,按此規(guī)律,以f(n)表示第n個(gè)圖的蜂巢總數(shù). (1)試給出f(4),f(5)的值,并求f(n)的表達(dá)式(不要求證明); (2)證明:+++…+<. 學(xué)生用書答案精析 第4講 推理與證明 高考真題體驗(yàn) 1.C [如圖,集合A表示如圖所示的所有圓點(diǎn)“”,集合B表示如圖所示的所有圓點(diǎn)“”+所有圓點(diǎn)“”,集合AB顯然是集合{(x,y)||x|≤3,|y|≤3,x,y∈Z}中除去四個(gè)點(diǎn)

19、{(-3,-3),(-3,3),(3,-3),(3,3)}之外的所有整點(diǎn)(即橫坐標(biāo)與縱坐標(biāo)都為整數(shù)的點(diǎn)),即集合AB表示如圖所示的所有圓點(diǎn)“”+所有圓點(diǎn)“”+所有圓點(diǎn)“”,共45個(gè).故AB中元素的個(gè)數(shù)為45.故選C.] 2.B [假設(shè)滿足條件的學(xué)生有4位及4位以上,設(shè)其中4位同學(xué)分別為甲、乙、丙、丁,則4位同學(xué)中必有兩個(gè)人語文成績(jī)一樣,且這兩個(gè)人數(shù)學(xué)成績(jī)不一樣(或4位同學(xué)中必有兩個(gè)數(shù)學(xué)成績(jī)一樣,且這兩個(gè)人語文成績(jī)不一樣),那么這兩個(gè)人中一個(gè)人的成績(jī)比另一個(gè)人好,故滿足條件的學(xué)生不能超過3人.當(dāng)有3位學(xué)生時(shí),用A,B,C表示“優(yōu)秀”“合格”“不合格”,則滿足題意的有AC,CA,BB,所

20、以最多有3人.] 3.4n-1 解析 觀察每行等式的特點(diǎn),每行等式的右端都是冪的形式,底數(shù)均為4,指數(shù)與等式左端最后一個(gè)組合數(shù)的上標(biāo)相等,故有C+C+C+…+C=4n-1. 4.5 解析 (ⅰ)x4x5x6x7=1101=1,(ⅱ)x2x3x6x7=1001=0;(ⅲ)x1x3x5x7=1011=1.由(ⅰ)(ⅲ)知x5,x7有一個(gè)錯(cuò)誤,(ⅱ)中沒有錯(cuò)誤,∴x5錯(cuò)誤,故k等于5. 熱點(diǎn)分類突破 例1 (1)1 000 (2)f(2n)>(n≥2,n∈N*) 解析 (1)由N(n,4)=n2,N(n,6)=2n2-n,可以推測(cè):當(dāng)k為偶數(shù)時(shí),

21、N(n,k)=n2+n, ∴N(10,24)=×100+×10 =1 100-100=1 000. (2)由題意得f(22)>,f(23)>, f(24)>,f(25)>,所以當(dāng)n≥2時(shí),有f(2n)>. 故填f(2n)>(n≥2,n∈N*). 跟蹤演練1 (1)B (2)D 解析 (1)有菱形紋的正六邊形個(gè)數(shù)如下表: 圖案 1 2 3 … 個(gè)數(shù) 6 11 16 … 由表可以看出有菱形紋的正六邊形的個(gè)數(shù)依次組成一個(gè)以6為首項(xiàng),以5為公差的等差數(shù)列,所以第六個(gè)圖案中有菱形紋的正六邊形的個(gè)數(shù)是6+5×(6-1)=31. 故選B. (2)由已知圖形中座位的排列

22、順序,可得:被5除余1的數(shù)和能被5整除的座位號(hào)臨窗,由于兩旅客希望座位連在一起,且有一個(gè)靠窗,分析答案中的4組座位號(hào),只有D符合條件. 例2 (1) (2)ch(x-y)=ch xch y-sh xsh y 解析 (1)平面幾何中,圓的面積與圓的半徑的平方成正比,而在空間幾何中,球的體積與半徑的立方成正比,所以=. (2)ch xch y-sh xsh y=· -· =(ex+y+ex-y+e-x+y+e-x-y-ex+y+ex-y+e-x+y-e-x-y) =(2ex-y+2e-(x-y))==ch(x-y), 故知ch(x+y)=ch xch y+sh xsh y, 或s

23、h(x-y)=sh xch y-ch xsh y, 或sh(x+y)=sh xch y+ch xsh y. 跟蹤演練2 (1)D (2)-=1 解析 (1)由{an}為等差數(shù)列,設(shè)公差為d, 則bn==a1+d, 又正項(xiàng)數(shù)列{cn}為等比數(shù)列,設(shè)公比為q, 則dn===c1,故選D. (2)設(shè)P1(x1,y1),P2(x2,y2),P0(x0,y0),則過點(diǎn)P1,P2的切線的方程分別為-=1,-=1.因?yàn)镻0(x0,y0)在這兩條切線上,所以-=1,-=1,這說明P1(x1,y1),P2(x2,y2)都在直線-=1上,故切點(diǎn)弦P1P2所在直線的方程為-=1. 例3 (1)解 已

24、知=化為=, 而1-a=, 所以數(shù)列{1-a}是首項(xiàng)為,公比為的等比數(shù)列, 則1-a=×n-1,則a=1-×n-1, 由anan+1<0,知數(shù)列{an}的項(xiàng)正負(fù)相間出現(xiàn), 因此an=(-1)n+1, bn=a-a=-×n+×n-1=×n-1. (2)證明 假設(shè)存在某三項(xiàng)成等差數(shù)列,不妨設(shè)為bm、bn、bp,其中m、n、p是互不相等的正整數(shù),可設(shè)m

25、式為=1+p-m, 即=p-m,那么p-m=log,左邊為正整數(shù),右邊為無理數(shù),不可能相等. 所以假設(shè)不成立,那么數(shù)列{bn}中的任意三項(xiàng)不可能成等差數(shù)列. 跟蹤演練3 證明 (1)要證+=, 即證+=3, 也就是+=1, 只需證c(b+c)+a(a+b)=(a+b)(b+c), 需證c2+a2=ac+b2, 又△ABC三內(nèi)角A,B,C成等差數(shù)列, 故B=60°, 由余弦定理,得 b2=c2+a2-2accos 60°, 即b2=c2+a2-ac, 故c2+a2=ac+b2成立. 于是原等式成立. (2)假設(shè)x0是f(x)=0的負(fù)根, 則x0<0,且x0≠-1,

26、a=-, 所以0

27、, 所以f(k+1)<-=g(k+1). 由①②可知,對(duì)一切n∈N*, 都有f(n)≤g(n)成立. 跟蹤演練4 (1)解 ∵a1=1, ∴a2=f(a1)=f(1)=; a3=f(a2)=;a4=f(a3)=. 猜想an=(n∈N*). (2)證明?、僖字琻=1時(shí),猜想正確. ②假設(shè)n=k時(shí)猜想正確,即ak=, 則ak+1=f(ak)== ==. 這說明,n=k+1時(shí)猜想正確. 由①②知,對(duì)于任何n∈N*, 都有an=. 高考押題精練 1.108 解析 由三角形數(shù)表的排列規(guī)律知,aij=2 011,則i必為奇數(shù).設(shè)i=2m+1.在第i行上面,必有m行為奇數(shù)

28、行,m行為偶數(shù)行.在前2m行中,共有奇數(shù)m2個(gè).最大的奇數(shù)為1+(m2-1)×2=2m2-1,由2m2-1<2 011得m的最大值31. ∴i=63.最大的奇數(shù)為1 921,在第63行中,首項(xiàng)為1 923,即1 923+(j-1)×2=2 011,∴j=45,故i+j=108. 2.x+≥n+1 解析 已知所給不等式的左邊第一個(gè)式子都是x,不同之處在于第二個(gè)式子,當(dāng)n=1時(shí),為;當(dāng)n=2時(shí),為;當(dāng)n=3時(shí),為…… 顯然式子中的分子與分母是對(duì)應(yīng)的,分母為xn,分子是nn, 所以不等式左邊的式子為x+, 顯然不等式右邊的式子為n+1, 所以第n個(gè)不等式為x+≥n+1. 3.證明 假

29、設(shè){Sn}是等比數(shù)列,則S=S1S3,即a(1+q)2=a1·a1(1+q+q2). 因?yàn)閍1≠0,所以(1+q)2=1+q+q2,即q=0,這與q≠0矛盾,故{Sn}不是等比數(shù)列. 二輪專題強(qiáng)化練答案精析 第4講 推理與證明 1.C [觀察可得各式的值構(gòu)成數(shù)列1,3,4,7,11,…,其規(guī)律為從第三項(xiàng)起,每項(xiàng)等于其前相鄰兩項(xiàng)的和,所求值為數(shù)列中的第十項(xiàng). 繼續(xù)寫出此數(shù)列為1,3,4,7,11,18,29,47,76,123,…,第十項(xiàng)為123,即a10+b10=123.] 2.B [由|x|+|y|=1的不同整數(shù)解的個(gè)數(shù)為4,|x|+|y|=2的不同整數(shù)解的個(gè)數(shù)為8,|x|+|y

30、|=3的不同整數(shù)解的個(gè)數(shù)為12,歸納推理得|x|+|y|=n的不同整數(shù)解的個(gè)數(shù)為4n,故選B.(本題用列舉法也不難找出|x|+|y|=20的80個(gè)不同整數(shù)解)] 3.C [因?yàn)閒(x)=sin(x2+1)不是正弦函數(shù),所以小前提不正確.] 4.B [從S1,S2,S3猜想出數(shù)列的前n項(xiàng)和Sn,是從特殊到一般的推理,所以B是歸納推理.] 5.A [由已知得f(0)=0,a1+a5=2a3>0, 所以a1>-a5. 由于f(x)單調(diào)遞增且為奇函數(shù),所以f(a1)+f(a5)>f(-a5)+f(a5)=0, 又f(a3)>0,所以f(a1)+f(a3)+f(a5)>0.故選A.] 6.

31、 解析 由題意,得x?y+(2y)?x=+=≥=,當(dāng)且僅當(dāng)x=y(tǒng)時(shí)取等號(hào). 7.f(n)= 解析 1條直線將平面分成1+1個(gè)區(qū)域;2條直線最多可將平面分成1+(1+2)=4個(gè)區(qū)域;3條直線最多可將平面分成1+(1+2+3)=7個(gè)區(qū)域;……,n條直線最多可將平面分成1+(1+2+3+…+n)=1+=個(gè)區(qū)域. 8. 解析 由題意知,凸函數(shù)滿足≤f(), 又y=sin x在區(qū)間(0,π)上是凸函數(shù), 則sin A+sin B+sin C≤3sin=3sin=. 9.解 方法一 (1)選擇②式,計(jì)算如下: sin215°+cos215°-sin 15°cos 15° =1-sin

32、30°=1-=. (2)三角恒等式為 sin2α+cos2(30°-α)-sin αcos(30°-α)=. 證明如下: sin2α+cos2(30°-α)-sin αcos(30°-α) =sin2α+(cos 30°cos α+sin 30°sin α)2 -sin α(cos 30°cos α+sin 30°sin α) =sin2α+cos2α+sin αcos α+sin2α-sin αcos α-sin2α=sin2α+cos2α=. 方法二 (1)同方法一. (2)三角恒等式為sin2α+cos2(30°-α)-sin αcos(30°-α)=. 證明如下:

33、 sin2α+cos2(30°-α)-sin αcos(30°-α) =+-sin α(cos 30°cos α+sin 30°sin α) =-cos 2α++(cos 60°cos 2α+sin 60°sin 2α)-sin αcos α-sin2α =-cos 2α++cos 2α+sin 2α-sin 2α-(1-cos 2α) =1-cos 2α-+cos 2α=. 10.證明 (1)(分析法)要證+≥成立, 只需證(+)(a2+b2)≥9, 即證1+4++≥9, 即證+≥4. 根據(jù)基本不等式,有+≥2=4成立, 所以原不等式成立. (2)(綜合法)因?yàn)閍2+b

34、2=m-2,+=2m-1, 由(1),知(m-2)(2m-1)≥9,即2m2-5m-7≥0,解得m≤-1或m≥.又因?yàn)閍2+b2=m-2>0. 所以m>2,故m≤-1舍去,所以m≥. 11.B [依題意,就每組整數(shù)對(duì)的和相同的分為一組,不難得知每組整數(shù)對(duì)的和為n+1,且每組共有n個(gè)整數(shù)時(shí),這樣的前n組一共有個(gè)整數(shù),注意到<60<,因此第60個(gè)整數(shù)對(duì)處于第11組(每對(duì)整數(shù)對(duì)的和為12的組)的第5個(gè)位置,結(jié)合題意可知每對(duì)整數(shù)對(duì)的和為12的組中的各數(shù)對(duì)依次為(1,11),(2,10),(3,9),(4,8),(5,7),…, 因此第60個(gè)整數(shù)對(duì)是(5,7).] 12.8 解析 由已知可觀

35、察出m3可分裂為m個(gè)連續(xù)奇數(shù),最小的一個(gè)為(m-1)m+1.當(dāng)m=8時(shí),最小的數(shù)為57,第二個(gè)便是59.∴m=8. 13.S+S+S=S 解析 將側(cè)面面積類比為直角三角形的直角邊,截面面積類比為直角三角形的斜邊, 可得S+S+S=S. 14.(1)解 f(4)=37,f(5)=61. 由于f(2)-f(1)=7-1=6, f(3)-f(2)=19-7=2×6, f(4)-f(3)=37-19=3×6, f(5)-f(4)=61-37=4×6,…… 因此,當(dāng)n≥2時(shí),有f(n)-f(n-1)=6(n-1), 所以f(n)=[f(n)-f(n-1)]+[f(n-1)-f(n-2)]+…+[f(2)-f(1)]+f(1)=6[(n-1)+(n+2)+…+2+1]+1=3n2-3n+1. 又f(1)=1=3×12-3×1+1, 所以f(n)=3n2-3n+1. (2)證明 當(dāng)k≥2時(shí), =<=(-). 所以+++…+<1+[(1-)+(-)+…+(-)]=1+(1-)<1+=.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!