九九热最新网址,777奇米四色米奇影院在线播放,国产精品18久久久久久久久久,中文有码视频,亚洲一区在线免费观看,国产91精品在线,婷婷丁香六月天

高中數(shù)學 知能基礎(chǔ)測試 新人教B版選修2-2

上傳人:xt****7 文檔編號:105525711 上傳時間:2022-06-12 格式:DOC 頁數(shù):8 大?。?08.02KB
收藏 版權(quán)申訴 舉報 下載
高中數(shù)學 知能基礎(chǔ)測試 新人教B版選修2-2_第1頁
第1頁 / 共8頁
高中數(shù)學 知能基礎(chǔ)測試 新人教B版選修2-2_第2頁
第2頁 / 共8頁
高中數(shù)學 知能基礎(chǔ)測試 新人教B版選修2-2_第3頁
第3頁 / 共8頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《高中數(shù)學 知能基礎(chǔ)測試 新人教B版選修2-2》由會員分享,可在線閱讀,更多相關(guān)《高中數(shù)學 知能基礎(chǔ)測試 新人教B版選修2-2(8頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、高中數(shù)學 知能基礎(chǔ)測試 新人教B版選修2-2 一、選擇題(本大題共12個小題,每小題5分,共60分.在每小題給出的四個選項中,只有一項是符合題目要求的.) 1.曲線y=x2-2x在點 處的切線的傾斜角為(  ) A.-1    B.45°    C.-45°    D.135° [答案] D [解析] y′=x-2,所以斜率k=1-2=-1,因此傾斜角為135°.故選D. 2.下列求導運算正確的是(  ) A.′=1+ B.(log2x)′= C.(3x)′=3x·log3e D.(x2cosx)′=-2xsinx [答案] B [解析] ′=1-,所以A不正確;

2、(3x)′=3xln3,所以C不正確;(x2cosx)′=2xcosx+x2·(-sinx),所以D不正確;(log2x)′=,所以B對.故選B. 3.如圖,一個正五角星薄片(其對稱軸與水面垂直)勻速地升出水面,記t時刻五角星露出水面部分的圖形面積為S(t)(S(0)=0),則導函數(shù)y=S′(t)的圖像大致為(  ) [答案] A [解析] 由圖象知,五角星露出水面的面積的變化率是增→減→增→減,其中恰露出一個角時變化不連續(xù),故選A. 4.已知f(x)=x3+ax2+(a+6)x+1有極大值和極小值,則a的取值范圍為(  ) A.-1

3、或a>2 D.a(chǎn)<-3或a>6 [答案] D [解析] f′(x)=3x2+2ax+a+6.因為f(x)既有極大值又有極小值,所以Δ>0,即4a2-4×3×(a+6)>0,即a2-3a-18>0,解得a>6或a<-3.故選D. 5.(xx·山東理,6)直線y=4x與曲線y=x3在第一象限內(nèi)圍成的封閉圖形的面積為(  ) A.2 B.4 C.2 D.4 [答案] D [解析] 如圖所示 由解得或 ∴第一象限的交點坐標為(2,8) 由定積分的幾何意義得S=(4x-x3)dx=(2x2-)|=8-4=4. 6.(xx·黃山模擬)已知f(x)=xlnx,若f′(x0)=2

4、,則x0=(  ) A.e2 B.e C. D.ln2 [答案] B [解析] f(x)的定義域為(0,+∞),f′(x)=lnx+1, 由f′(x0)=2,得lnx0+1=2,解得x0=e. 7.(xx·北師大附中高二期中)函數(shù)y=的導數(shù)為(  ) A.y′= B.y′= C.y′=- D.y′= [答案] D [解析] y′==. 8.函數(shù)f(x)=x3-2x+3的圖象在x=1處的切線與圓x2+y2=8的位置關(guān)系是(  ) A.相切 B.相交且過圓心 C.相交但不過圓心 D.相離 [答案] C [解析] 切線方程為y-2=x-1,即x-y+1=0.圓心到直線的

5、距離為=<2,所以直線與圓相交但不過圓心.故選C. 9.f′(x)是f(x)的導函數(shù),f′(x)的圖象如圖所示,則f(x)的圖象可能是(  ) [答案] D [解析] 由圖可知,當b>x>a時,f′(x)>0,故在[a,b]上,f(x)為增函數(shù).且又由圖知f′(x)在區(qū)間[a,b]上先增大后減小,即曲線上每一點處切線的斜率先增大再減小,故選D. 10.曲線y=ex在點(4,e2)處的切線與坐標軸所圍三角形的面積為(  ) A.e2 B.4e2 C.2e2 D.e2 [答案] D [解析] ∵y′=e, ∴在點(4,e2)處的切線方程為y=e2x-e2, 令x=0得y

6、=-e2,令y=0得x=2, ∴圍成三角形的面積為e2.故選D. 11.(xx·天門市調(diào)研)已知函數(shù)f(x)的導函數(shù)f ′(x)=a(x-b)2+c的圖象如圖所示,則函數(shù)f(x)的圖象可能是(  )        [答案] D [解析] 由導函數(shù)圖象可知,當x<0時,函數(shù)f(x)遞減,排除A,B;當00,函數(shù)f(x)遞增.因此,當x=0時,f(x)取得極小值,故選D. 12.(xx·泰安一中高二段測)已知函數(shù)f(x)的導函數(shù)的圖象如圖所示,若△ABC為銳角三角形,則一定成立的是(  ) A.f(sinA)>f(cosB) B.f(sinA

7、)f(sinB) D.f(cosA)0時,f ′(x)>0,即f(x)單調(diào)遞增,又△ABC為銳角三角形,則A+B>,即>A>-B>0,故sinA>sin(-B)>0,即sinA>cosB>0,故f(sinA)>f(cosB),選A. 二、填空題(本大題共4個小題,每小題4分,共16分.將正確答案填在題中橫線上) 13.經(jīng)過點(2,0)且與曲線y=相切的直線方程為______________. [答案] x+y-2=0 [解析] 設(shè)切點為,則=-,解得x0=1,所以切點為(1,1

8、),斜率為-1,直線方程為x+y-2=0. 14.若函數(shù)f(x)=在(0,+∞)上為增函數(shù),則實數(shù)a的取值范圍是________. [答案] a≥0 [解析] f′(x)=′=a+, 由題意得,a+≥0對x∈(0,+∞)恒成立, 即a≥-,x∈(0,+∞)恒成立.∴a≥0. 15.(xx·湖北重點中學高二期中聯(lián)考)已知函數(shù)f(x)=ax3+ax2-2ax+2a+1的圖象經(jīng)過四個象限,則實數(shù)a的取值范圍是________. [答案] (-,-) [解析] f ′(x)=ax2+ax-2a=a(x-1)(x+2), 由f(x)的圖象經(jīng)過四個象限知,若a>0,則 此時無解;若a<

9、0,則 ∴-1時,此函數(shù)單調(diào)遞減,當x0=0時,m=-3,當x0=1時,m=

10、-2,∴當-30). (1)當a=1時,求f(x)的單調(diào)區(qū)間; (2)若f(x)在(0,1]上 的最大值為,求a的值. [解析] 函數(shù)f(x)的定義域為(0,2), f ′(x)=-+a, (1)當a=1時,f ′(x)=,∴當x∈(0,)時,f ′(x)>0,

11、當x∈(,2)時,f ′(x)<0,所以f(x)的單調(diào)遞增區(qū)間為(0,),單調(diào)遞減區(qū)間為(,2); (2)當x∈(0,1]時,f ′(x)=+a>0, 即f(x)在(0,1]上單調(diào)遞增,故f(x)在(0,1]上的最大值為f(1)=a,因此a=. 18.(本題滿分12分)(xx·韶關(guān)市曲江一中月考)已知函數(shù)f(x)=ax3+cx+d(a≠0)是R上的奇函數(shù),當x=1時,f(x)取得極值-2. (1)求函數(shù)f(x)的解析式; (2)求函數(shù)f(x)的單調(diào)區(qū)間和極大值; (3)證明:對任意x1、x2∈(-1,1),不等式|f(x1)-f(x2)|<4恒成立. [解析] (1)∵f(x)是

12、R上的奇函數(shù), ∴f(-x)=-f(x), 即-ax3-cx+d=-ax3-cx-d,∴d=-d, ∴d=0(或由f(0)=0得d=0). ∴f(x)=ax3+cx,f ′(x)=3ax2+c, 又當x=1時,f(x)取得極值-2, ∴即解得 ∴f(x)=x3-3x. (2)f ′(x)=3x2-3=3(x+1)(x-1),令f ′(x)=0,得x=±1, 當-11時,f ′(x)>0,函數(shù)f(x)單調(diào)遞增; ∴函數(shù)f(x)的遞增區(qū)間是(-∞,-1)和(1,+∞);遞減區(qū)間為(-1,1). 因此,f(

13、x)在x=-1處取得極大值,且極大值為f(-1)=2. (3)由(2)知,函數(shù)f(x)在區(qū)間[-1,1]上單調(diào)遞減,且f(x)在區(qū)間[-1,1]上的最大值為M=f(-1)=2.最小值為m=f(1)=-2.∴對任意x1、x2∈(-1,1), |f(x1)-f(x2)|

14、 20.(本題滿分12分)已知向量a=(x2,x+1),b=(1-x,t).若函數(shù)f(x)=a·b在區(qū)間(-1,1)上是增函數(shù),求t的取值范圍. [解析] 依定義f(x)=x2(1-x)+t(x+1)=-x3+x2+tx+t,∴f′(x)=-3x2+2x+t. 若f(x)在(-1,1)上是增函數(shù),則在(-1,1)上有f′(x)≥0.恒成立. ∵f′(x)≥0?t≥3x2-2x,由于g(x)=3x2-2x的圖象是對稱軸為x=,開口向上的拋物線,故要使t≥3x2-2x在區(qū)間(-1,1)上恒成立?t≥g(-1),即t≥5. 而當t≥5時,f′(x)在(-1,1)上滿足f′(x)>0, 即

15、f(x)在(-1,1)上是增函數(shù). 故t的取值范圍是t≥5. 21.(本題滿分12分)設(shè)函數(shù)f(x)=2x3-3(a+1)x2+6ax+8,其中a∈R. (1)若f(x)在x=3處取得極值,求常數(shù)a的值; (2)若f(x)在(-∞,0)上為增函數(shù),求a的取值范圍. [解析] (1)f′(x)=6x2-6(a+1)x+6a=6(x-a)(x-1). 因f(x)在x=3處取得極值, 所以f′(3)=6(3-a)(3-1)=0,解得a=3. 經(jīng)檢驗知當a=3時,x=3為f(x)的極值點. (2)令f′(x)=6(x-a)(x-1)=0得x1=a,x2=1. 當a<0時,若x∈(-

16、∞,a)∪(1,+∞),則f′(x)>0,所以f(x)在(-∞,a)和(1,+∞)上為增函數(shù). 當0≤a<1時,f(x)在(-∞,0)上為增函數(shù). 當a≥1時,若x∈(-∞,1)∪(a,+∞),則f′(x)>0, 所以f(x)在(-∞,1)和(a,+∞)上為增函數(shù),從而f(x)在(-∞,0)上為增函數(shù). 綜上可知,當a≥0時,f(x)在(-∞,0)上為增函數(shù). 22.(本題滿分14分)設(shè)函數(shù)f(x)=aex++b(a>0). (1)求f(x)在[0,+∞)內(nèi)的最小值; (2)設(shè)曲線y=f(x)在點(2,f(2))處的切線方程為y=x,求a,b的值. [解析] (1)f ′(x)

17、=aex-, 當f ′(x)>0,即x>-lna時,f(x)在(-lna,+∞)上遞增; 當f ′(x)<0,即x<-lna時,f(x)在(-∞,-lna)上遞減. ①當00,f(x)在(0,-lna)上遞減,在(-lna,+∞)上遞增,從而f(x)在[0,+∞)上的最小值為f(-lna)=2+b; ②當a≥1時,-lna≤0,f(x)在[0,+∞)上遞增,從而f(x)在[0,+∞)上的最小值為f(0)=a++b. (2)依題意f ′(2)=ae2-=, 解得ae2=2或ae2=-(舍去). 所以a=,代入原函數(shù)可得2++b=3, 即b=. 故a=,b=.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!