九九热最新网址,777奇米四色米奇影院在线播放,国产精品18久久久久久久久久,中文有码视频,亚洲一区在线免费观看,国产91精品在线,婷婷丁香六月天

江蘇省2022高考數學二輪復習 專題二 立體幾何 2.2 大題考法—平行與垂直講義(含解析)

上傳人:xt****7 文檔編號:106070713 上傳時間:2022-06-13 格式:DOC 頁數:10 大?。?17KB
收藏 版權申訴 舉報 下載
江蘇省2022高考數學二輪復習 專題二 立體幾何 2.2 大題考法—平行與垂直講義(含解析)_第1頁
第1頁 / 共10頁
江蘇省2022高考數學二輪復習 專題二 立體幾何 2.2 大題考法—平行與垂直講義(含解析)_第2頁
第2頁 / 共10頁
江蘇省2022高考數學二輪復習 專題二 立體幾何 2.2 大題考法—平行與垂直講義(含解析)_第3頁
第3頁 / 共10頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《江蘇省2022高考數學二輪復習 專題二 立體幾何 2.2 大題考法—平行與垂直講義(含解析)》由會員分享,可在線閱讀,更多相關《江蘇省2022高考數學二輪復習 專題二 立體幾何 2.2 大題考法—平行與垂直講義(含解析)(10頁珍藏版)》請在裝配圖網上搜索。

1、江蘇省2022高考數學二輪復習 專題二 立體幾何 2.2 大題考法—平行與垂直講義(含解析) 題型(一) 線線、線面位置關系的證明    平行、垂直關系的證明是高考的必考內容,主要考查線面平行、垂直的判定定理及性質定理的應用,以及平行與垂直關系的轉化等. [證明] (1)在平面ABD內,因為AB⊥AD,EF⊥AD, 所以EF∥AB. 又因為EF?平面ABC,AB?平面ABC, 所以EF∥平面ABC. (2)因為平面ABD⊥平面BCD, 平面ABD∩平面BCD=BD, BC?平面BCD,BC⊥BD, 所以BC⊥平面ABD. 因為AD?平面ABD, 所以BC⊥AD

2、. 又AB⊥AD,BC∩AB=B,AB?平面ABC,BC?平面ABC,所以AD⊥平面ABC. 又因為AC?平面ABC, 所以AD⊥AC. [方法技巧] 立體幾何證明問題的2個注意點 (1)證明立體幾何問題的主要方法是定理法,解題時必須按照定理成立的條件進行推理.如線面平行的判定定理中要求其中一條直線在平面內,另一條直線必須說明它在平面外;線面垂直的判定定理中要求平面內的兩條直線必須是相交直線等,如果定理的條件不完整,則結論不一定正確. (2)證明立體幾何問題,要緊密結合圖形,有時要利用平面幾何的相關知識,因此需要多畫出一些圖形輔助使用. [演練沖關] 1.(2018·蘇錫常鎮(zhèn)

3、調研)如圖,在四棱錐P-ABCD中,∠ADB=90°,CB=CD,點E為棱PB的中點. (1)若PB=PD,求證:PC⊥BD; (2)求證:CE∥平面PAD. 證明:(1)取BD的中點O,連結CO,PO, 因為CD=CB,所以BD⊥CO. 因為PB=PD,所以BD⊥PO. 又PO∩CO=O, 所以BD⊥平面PCO. 因為PC?平面PCO,所以PC⊥BD. (2)由E為PB中點,連結EO,則EO∥PD, 又EO?平面PAD,PD?平面PAD, 所以EO∥平面PAD. 由∠ADB=90°,以及BD⊥CO,所以CO∥AD, 又CO?平面PAD,所以CO∥平面PAD. 又C

4、O∩EO=O,所以平面CEO∥平面PAD, 而CE?平面CEO,所以CE∥平面PAD. 2.(2018·蘇州模擬)在如圖所示的空間幾何體ABCDPE中,底面ABCD是邊長為4的正方形,PA⊥平面ABCD,PA∥EB,且PA=AD=4,EB=2. (1)若點Q是PD的中點,求證:AQ⊥平面PCD; (2)證明:BD∥平面PEC. 證明:(1)因為PA=AD,Q是PD的中點, 所以AQ⊥PD. 又PA⊥平面ABCD, 所以CD⊥PA. 又CD⊥DA,PA∩DA=A, 所以CD⊥平面ADP. 又因為AQ?平面ADP, 所以CD⊥AQ, 又PD∩CD=D, 所以AQ⊥平面P

5、CD. (2)如圖,取PC的中點M,連結AC交BD于點N,連結MN,ME, 在△PAC中,易知MN=PA,MN∥PA, 又PA∥EB,EB=PA, 所以MN=EB,MN∥EB, 所以四邊形BEMN是平行四邊形, 所以EM∥BN. 又EM?平面PEC,BN?平面PEC, 所以BN∥平面PEC,即BD∥平面PEC. 題型(二) 兩平面之間位置關系的證明 考查面面平行和面面垂直,都需要用判定定理,其本質是考查線面垂直和平行. [典例感悟] [例2] (2018·南京模擬)如圖,直線PA垂直于圓O所在的平面,△ABC內接于圓O,且AB為圓O的直徑,M為線段PB的中點

6、,N為線段BC的中點. 求證:(1)平面MON∥平面PAC; (2)平面PBC⊥平面MON. [證明] (1)因為M,O,N分別是PB,AB,BC的中點,所以MO∥PA,NO∥AC, 又MO∩NO=O,PA∩AC=A, 所以平面MON∥平面PAC. (2)因為PA⊥平面ABC,BC?平面ABC,所以PA⊥BC. 由(1)知,MO∥PA,所以MO⊥BC. 連結OC,則OC=OB,因為N為BC的中點,所以ON⊥BC. 又MO∩ON=O,MO?平面MON,ON?平面MON, 所以BC⊥平面MON. 又BC?平面PBC,所以平面PBC⊥平面MON. [方法技巧] 證明兩平面位

7、置關系的求解思路 (1)證明面面平行依據判定定理,只要找到一個面內兩條相交直線與另一個平面平行即可,從而將證明面面平行轉化為證明線面平行,再轉化為證明線線平行. (2)證明面面垂直常用面面垂直的判定定理,即證明一個面過另一個面的一條垂線,將證明面面垂直轉化為證明線面垂直,一般先從現有直線中尋找,若圖中不存在這樣的直線,則借助中線、高線或添加輔助線解決. [演練沖關] (2018·江蘇高考)在平行六面體ABCD-A1B1C1D1中,AA1=AB,AB1⊥B1C1. 求證:(1)AB∥平面A1B1C; (2)平面ABB1A1⊥平面A1BC. 證明:(1)在平行六面體ABCD-A

8、1B1C1D1中, AB∥A1B1. 因為AB?平面A1B1C,A1B1?平面A1B1C, 所以AB∥平面A1B1C. (2)在平行六面體ABCD-A1B1C1D1中, 四邊形ABB1A1為平行四邊形. 又因為AA1=AB, 所以四邊形ABB1A1為菱形, 因此AB1⊥A1B. 因為AB1⊥B1C1,BC∥B1C1, 所以AB1⊥BC. 因為A1B∩BC=B,A1B?平面A1BC, BC?平面A1BC, 所以AB1⊥平面A1BC. 因為AB1?平面ABB1A1, 所以平面ABB1A1⊥平面A1BC. 題型(三) 空間位置關系的綜合問題 主要考查空間線

9、面、面面平行或垂直的位置關系的證明與翻折 或存在性問題相結合的綜合問題. [典例感悟] [例3] 如圖1,在矩形ABCD中,AB=4,AD=2,E是CD的中點,將△ADE沿AE折起,得到如圖2所示的四棱錐D1-ABCE,其中平面D1AE⊥平面ABCE. (1)證明:BE⊥平面D1AE; (2)設F為CD1的中點,在線段AB上是否存在一點M,使得MF∥平面D1AE,若存在,求出的值;若不存在,請說明理由. [解] (1)證明:∵四邊形ABCD為矩形且AD=DE=EC=BC=2,∴AE=BE=2. 又AB=4,∴AE2+BE2=AB2, ∴∠AEB=90°,即BE⊥AE.

10、 又平面D1AE⊥平面ABCE,平面D1AE∩平面ABCE=AE,BE?平面ABCE,∴BE⊥平面D1AE. (2)=,理由如下: 取D1E的中點L,連接FL,AL, ∴FL∥EC,FL=EC=1. 又EC∥AB,∴FL∥AB,且FL=AB, ∴M,F,L,A四點共面. 若MF∥平面AD1E,則MF∥AL. ∴四邊形AMFL為平行四邊形, ∴AM=FL=AB,即=. [方法技巧] 與平行、垂直有關的存在性問題的解題步驟 [演練沖關]  (2018·全國卷Ⅰ)如圖,在平行四邊形ABCM中,AB=AC=3,∠ACM=90°.以AC為折痕將△ACM折起,使點M到達點D的位

11、置,且AB⊥DA. (1)證明:平面ACD⊥平面ABC; (2)Q為線段AD上一點,P為線段BC上一點,且BP=DQ=DA,求三棱錐Q-ABP的體積. 解:(1)證明:由已知可得,∠BAC=90°,即BA⊥AC. 又因為BA⊥AD,AC∩AD=A,所以AB⊥平面ACD. 因為AB?平面ABC, 所以平面ACD⊥平面ABC. (2)由已知可得,DC=CM=AB=3,DA=3. 又BP=DQ=DA,所以BP=2. 如圖,過點Q作QE⊥AC,垂足為E,則QE綊DC. 由已知及(1)可得,DC⊥平面ABC, 所以QE⊥平面ABC,QE=1. 因此,三棱錐Q-ABP的體積

12、為VQ-ABP=×S△ABP×QE=××3×2sin 45°×1=1. [課時達標訓練] A組——大題保分練 1.如圖,在三棱錐V-ABC中,O,M分別為AB,VA的中點,平面VAB⊥平面ABC,△VAB是邊長為2的等邊三角形,AC⊥BC且AC=BC. (1)求證:VB∥平面MOC; (2)求線段VC的長. 解:(1)證明:因為點O,M分別為AB,VA的中點,所以MO∥VB. 又MO?平面MOC,VB?平面MOC, 所以VB∥平面MOC. (2)因為AC=BC,O為AB的中點,AC⊥BC,AB=2,所以OC⊥AB,且CO=1. 連結VO,因為△VAB是邊長為2的等邊三角

13、形,所以VO=.又平面VAB⊥平面ABC,OC⊥AB,平面VAB∩平面ABC=AB,OC?平面ABC, 所以OC⊥平面VAB,所以OC⊥VO, 所以VC==2. 2.(2018·南通二調)如圖,在直三棱柱ABC-A1B1C1中,AC⊥BC,A1B與AB1交于點D,A1C與AC1交于點E. 求證:(1)DE∥平面B1BCC1; (2)平面A1BC⊥平面A1ACC1. 證明:(1)在直三棱柱ABC-A1B1C1中,四邊形A1ACC1為平行四邊形. 又E為A1C與AC1的交點, 所以E為A1C的中點. 同理,D為A1B的中點,所以DE∥BC. 又BC?平面B1BCC1,DE?

14、平面B1BCC1, 所以DE∥平面B1BCC1. (2)在直三棱柱ABC-A1B1C1中,AA1⊥平面ABC, 又BC?平面ABC,所以AA1⊥BC. 又AC⊥BC,AC∩AA1=A,AC?平面A1ACC1,AA1?平面A1ACC1,所以BC⊥平面A1ACC1. 因為BC?平面A1BC,所以平面A1BC⊥平面A1ACC1. 3.如圖,在三棱錐A-BCD中,E,F分別為棱BC,CD上的點,且BD∥平面AEF. (1)求證:EF∥平面ABD; (2)若BD⊥CD,AE⊥平面BCD,求證:平面AEF⊥平面ACD. 證明:(1)因為BD∥平面AEF, BD?平面BCD,平面AEF

15、∩平面BCD=EF, 所以 BD∥EF. 因為BD?平面ABD,EF?平面ABD, 所以 EF∥平面ABD. (2)因為AE⊥平面BCD,CD?平面BCD, 所以AE⊥CD. 因為BD⊥CD,BD∥EF,所以 CD⊥EF, 又AE∩EF=E,AE?平面AEF,EF?平面AEF, 所以CD⊥平面AEF. 又CD?平面ACD,所以平面AEF⊥平面ACD. 4.(2018·無錫期末)如圖,ABCD是菱形,DE⊥平面ABCD,AF∥DE,DE=2AF. 求證:(1)AC⊥平面BDE; (2)AC∥平面BEF. 證明:(1)因為DE⊥平面ABCD,AC?平面ABCD,所以DE⊥

16、AC. 因為四邊形ABCD是菱形,所以AC⊥BD, 因為DE?平面BDE,BD?平面BDE,且DE∩BD=D, 所以AC⊥平面BDE. (2)設AC∩BD=O,取BE中點G,連結FG,OG, 易知OG∥DE且OG=DE. 因為AF∥DE,DE=2AF, 所以AF∥OG且AF=OG, 從而四邊形AFGO是平行四邊形,所以FG∥AO. 因為FG?平面BEF,AO?平面BEF, 所以AO∥平面BEF,即AC∥平面BEF. B組——大題增分練 1.(2018·鹽城三模)在直四棱柱ABCD-A1B1C1D1中,已知底面ABCD是菱形,M,N分別是棱A1D1,D1C1的中點. 求

17、證:(1)AC∥平面DMN; (2)平面DMN⊥平面BB1D1D. 證明:(1)連結A1C1,在四棱柱ABCD-A1B1C1D1中,因為AA1綊BB1,BB1綊CC1,所以AA1綊CC1,所以A1ACC1為平行四邊形,所以A1C1∥AC.又M,N分別是棱A1D1,D1C1的中點,所以MN∥A1C1,所以AC∥MN.又AC?平面DMN,MN?平面DMN,所以AC∥平面DMN. (2)因為四棱柱ABCD-A1B1C1D1是直四棱柱, 所以DD1⊥平面A1B1C1D1,而MN?平面A1B1C1D1, 所以MN⊥DD1. 又因為棱柱的底面ABCD是菱形,所以底面A1B1C1D1也是菱形,

18、 所以A1C1⊥B1D1,而MN∥A1C1,所以MN⊥B1D1. 又MN⊥DD1,DD1?平面BB1D1D,B1D1?平面BB1D1D,且DD1∩B1D1=D1, 所以MN⊥平面BB1D1D. 而MN?平面DMN,所以平面DMN⊥平面BB1D1D. 2.如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,AB∥CD,AB⊥BC,AB=BC=1,DC=2,點E在PB上. (1)求證:平面AEC⊥平面PAD; (2)當PD∥平面AEC時,求PE∶EB的值. 解:(1)證明:在平面ABCD中,過A作AF⊥DC于F,則CF=DF=AF=1, ∴∠DAC=∠DAF+∠FAC=45°+45°

19、=90°,即AC⊥DA. 又PA⊥平面ABCD,AC?平面ABCD,∴AC⊥PA. ∵PA?平面PAD,AD?平面PAD,且PA∩AD=A, ∴AC⊥平面PAD. 又AC?平面AEC,∴平面AEC⊥平面PAD. (2)連結BD交AC于O,連結EO. ∵PD∥平面AEC,PD?平面PBD,平面PBD∩平面AEC=EO,∴PD∥EO, 則PE∶EB=DO∶OB. 又△DOC∽△BOA,∴DO∶OB=DC∶AB=2∶1, ∴PE∶EB的值為2. 3.(2018·南通、揚州、淮安、宿遷、泰州、徐州六市二調)如圖,在三棱柱ABC-A1B1C1中,已知AB=AC,點E,F分別在棱BB1

20、,CC1上(均異于端點),且∠ABE=∠ACF,AE⊥BB1,AF⊥CC1. 求證:(1)平面AEF⊥平面BB1C1C; (2)BC∥平面AEF. 證明:(1)在三棱柱ABC-A1B1C1中,BB1∥CC1. 因為AF⊥CC1,所以AF⊥BB1. 又AE⊥BB1,AE∩AF=A,AE?平面AEF,AF?平面AEF, 所以BB1⊥平面AEF. 又因為BB1?平面BB1C1C, 所以平面AEF⊥平面BB1C1C. (2)因為AE⊥BB1,AF⊥CC1,∠ABE=∠ACF,AB=AC, 所以Rt△AEB≌Rt△AFC. 所以BE=CF. 又BE∥CF,所以四邊形BEFC是平行

21、四邊形. 從而BC∥EF. 又BC?平面AEF,EF?平面AEF, 所以BC∥平面AEF. 4.(2018·常州期末)如圖,四棱錐P-ABCD的底面ABCD是平行四邊形,PC⊥平面ABCD,PB=PD,點Q是棱PC上異于P,C的一點. (1)求證:BD⊥AC; (2)過點Q和AD的平面截四棱錐得到截面ADQF(點F在棱PB上),求證:QF∥BC. 證明:(1)因為PC⊥平面ABCD,BD?平面ABCD,所以BD⊥PC. 記AC,BD交于點O,連結OP. 因為平行四邊形對角線互相平分,則O為BD的中點. 在△PBD中,PB=PD,所以BD⊥OP. 又PC∩OP=P,PC?平面PAC,OP?平面PAC. 所以BD⊥平面PAC, 又AC?平面PAC,所以BD⊥AC. (2)因為四邊形ABCD是平行四邊形,所以AD∥BC. 又AD?平面PBC,BC?平面PBC, 所以AD∥平面PBC. 又AD?平面ADQF,平面ADQF∩平面PBC=QF, 所以AD∥QF,所以QF∥BC.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
5. 裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網站聲明 - 網站地圖 - 資源地圖 - 友情鏈接 - 網站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網版權所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對上載內容本身不做任何修改或編輯。若文檔所含內容侵犯了您的版權或隱私,請立即通知裝配圖網,我們立即給予刪除!