九九热最新网址,777奇米四色米奇影院在线播放,国产精品18久久久久久久久久,中文有码视频,亚洲一区在线免费观看,国产91精品在线,婷婷丁香六月天

江蘇省2022高考數(shù)學二輪復習 專題七 隨機變量、空間向量(理)7.2 運用空間向量求角達標訓練(含解析)

上傳人:xt****7 文檔編號:106070996 上傳時間:2022-06-13 格式:DOC 頁數(shù):9 大?。?57.50KB
收藏 版權(quán)申訴 舉報 下載
江蘇省2022高考數(shù)學二輪復習 專題七 隨機變量、空間向量(理)7.2 運用空間向量求角達標訓練(含解析)_第1頁
第1頁 / 共9頁
江蘇省2022高考數(shù)學二輪復習 專題七 隨機變量、空間向量(理)7.2 運用空間向量求角達標訓練(含解析)_第2頁
第2頁 / 共9頁
江蘇省2022高考數(shù)學二輪復習 專題七 隨機變量、空間向量(理)7.2 運用空間向量求角達標訓練(含解析)_第3頁
第3頁 / 共9頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《江蘇省2022高考數(shù)學二輪復習 專題七 隨機變量、空間向量(理)7.2 運用空間向量求角達標訓練(含解析)》由會員分享,可在線閱讀,更多相關《江蘇省2022高考數(shù)學二輪復習 專題七 隨機變量、空間向量(理)7.2 運用空間向量求角達標訓練(含解析)(9頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、江蘇省2022高考數(shù)學二輪復習 專題七 隨機變量、空間向量(理)7.2 運用空間向量求角達標訓練(含解析) 1.(2018·南京學情調(diào)研)如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AB⊥AD,AD∥BC,AP=AB=AD=1. (1)若直線PB與CD所成角的大小為,求BC的長; (2)求二面角B-PD-A的余弦值. 解:(1) 以{,,}為單位正交基底,建立如圖所示的空間直角坐標系A-xyz. 因為AP=AB=AD=1, 所以A(0,0,0),B(1,0,0),D(0,1,0),P(0,0,1). 設C(1,y,0),則=(1,0,-1),=(-1,1-y,0). 因為

2、直線PB與CD所成角大小為, 所以|cos〈,〉|==, 即=,解得y=2或y=0(舍), 所以C(1,2,0),所以BC的長為2. (2)設平面PBD的法向量為n1=(x,y,z). 因為=(1,0,-1),=(0,1,-1), 則即 令x=1,則y=1,z=1,所以n1=(1,1,1). 因為平面PAD的一個法向量為n2=(1,0,0), 所以cos〈n1,n2〉==, 所以由圖可知二面角B-PD-A的余弦值為. 2.(2018·蘇北四市期末)在正三棱柱ABC-A1B1C1中,已知AB=1,AA1=2,E,F(xiàn),G分別是棱AA1,AC和A1C1的中點,以

3、{,,→}為正交基底,建立如圖所示的空間直角坐標系F-xyz. (1)求異面直線AC與BE所成角的余弦值; (2)求二面角F-BC1-C的余弦值. 解:(1)因為AB=1,AA1=2,則F(0,0,0),A,C,B,E,A1,C1, 所以=(-1,0,0),=. 記異面直線AC和BE所成角為α, 則cos α=|cos〈,〉|==, 所以異面直線AC和BE所成角的余弦值為. (2)設平面BFC1的法向量為m=(x1,y1,z1). 因為=,=, 則即 取x1=4,得平面BFC1的一個法向量為m=(4,0,1). 設平面BCC1的法向量為n=(x2,y2,z2). 因為

4、=,=(0,0,2), 則即 取x2=,得平面BCC1的一個法向量為n=(,-1,0), 所以cos〈m,n〉==. 根據(jù)圖形可知二面角F-BC1-C為銳二面角, 所以二面角F-BC1-C的余弦值為. 3.(2018·南京、鹽城二模)如圖,在直四棱柱ABCD-A1B1C1D1中,底面四邊形ABCD為菱形,A1A=AB=2,∠ABC=60°,E,F(xiàn)分別是BC,A1C的中點. (1)求異面直線EF,AD所成角的余弦值; (2)點M在線段A1D上,=λ.若CM∥平面AEF,求實數(shù)λ的值. 解:因為四棱柱ABCD-A1B1C1D1為直四棱柱, 所以A1A⊥平面ABCD. 又AE?

5、平面ABCD,AD?平面ABCD, 所以A1A⊥AE,A1A⊥AD. 在菱形ABCD中,∠ABC=60°,則△ABC是等邊三角形. 因為E是BC的中點,所以BC⊥AE. 因為BC∥AD,所以AE⊥AD. 故以A為原點,AE,AD,AA1所在直線分別為x軸,y軸,z軸建立如圖所示的空間直角坐標系.則A(0,0,0),E(,0,0),C(,1,0),D(0,2,0),A1(0,0,2),F(xiàn). (1)因為=(0,2,0),=, 所以cos〈,〉==, 所以異面直線EF,AD所成角的余弦值為. (2)設M(x,y,z),由于點M在線段A1D上,且 =λ,即=λ, 則(x,y,z-2

6、)=λ(0,2,-2). 解得M(0,2λ,2-2λ),=(-,2λ-1,2-2λ). 設平面AEF的法向量為n=(x0,y0,z0). 因為=(,0,0),=, 所以即 令y0=2,得z0=-1, 所以平面AEF的一個法向量為n=(0,2,-1). 由于CM∥平面AEF,則n·=0, 即2(2λ-1)-(2-2λ)=0,解得λ=. 4.如圖,在直三棱柱ABC-A1B1C1中,底面△ABC是直角三角形,AB=AC=1,AA1=2,點P是棱BB1上一點,滿足=λ (0≤λ≤1). (1)若λ=,求直線PC與平面A1BC所成角的正弦值; (2)若二面角P-A1C-B的正弦值為

7、,求λ的值. 解:以A為坐標原點,分別以AB,AC,AA1所在直線為x軸,y軸,z軸建立如圖所示的空間直角坐標系A-xyz.因為AB=AC=1,AA1=2,則A(0,0,0),B(1,0,0),C(0,1,0),A1(0,0,2),B1(1,0,2),P(1,0,2λ). (1)由λ=得,=,=(1,0,-2),=(0,1,-2). 設平面A1BC的法向量為n1=(x1,y1,z1), 由得 不妨取z1=1,則x1=y(tǒng)1=2, 從而平面A1BC的一個法向量為n1=(2,2,1). 設直線PC與平面A1BC所成的角為θ, 則sin θ===, 所以直線PC與平面A1BC所成角的

8、正弦值為. (2)設平面PA1C的法向量為n2=(x2,y2,z2), 又=(1,0,2λ-2), 故由得 不妨取z2=1,則x2=2-2λ,y2=2, 所以平面PA1C的一個法向量為n2=(2-2λ,2,1). 則cos〈n1,n2〉=, 又二面角P-A1C-B的正弦值為, 所以=, 化簡得λ2+8λ-9=0,解得λ=1或λ=-9(舍去), 故λ的值為1. B組——大題增分練 1.(2018·鎮(zhèn)江期末)如圖,AC⊥BC,O為AB中點,且DC⊥平面ABC,DC∥BE.已知AC=BC=DC=BE=2. (1)求直線AD與CE所成的角; (2)求二面角O-CE-B的

9、余弦值. 解:(1)因為AC⊥CB且DC⊥平面ABC,則以C為原點,CB為x軸正方向,CA為y軸正方向,CD為z軸正方向,建立如圖所示的空間直角坐標系. 因為AC=BC=BE=2,則C(0,0,0),B(2,0,0),A(0,2,0),O(1,1,0),E(2,0,2),D(0,0,2),且=(0,-2,2),=(2,0,2). 所以cos〈,〉===. 所以直線AD和CE的夾角為60°. (2)平面BCE的一個法向量為m=(0,1,0), 設平面OCE的法向量n=(x0,y0,z0). 由=(1,1,0),=(2,0,2), 得則解得 取x0=-1,則n=(-1,1,1).

10、 因為二面角O-CE-B為銳二面角,記為θ, 則cos θ=|cos〈m,n〉|==. 即二面角O-CE-B的余弦值為. 2.(2018·江蘇高考)如圖,在正三棱柱ABC-A1B1C1中,AB=AA1=2,點P,Q分別為A1B1,BC的中點. (1)求異面直線BP與AC1所成角的余弦值; (2)求直線CC1與平面AQC1所成角的正弦值. 解:如圖,在正三棱柱ABC-A1B1C1中,設AC,A1C1的中點分別為O,O1,則OB⊥OC,OO1⊥OC,OO1⊥OB,以{,,}為基底,建立空間直角坐標系O -xyz. 因為AB=AA1=2,所以A(0,-1,0),B(,0,0),C(0

11、,1,0),A1(0,-1,2),B1(,0,2),C1(0,1,2). (1)因為P為A1B1的中點,所以P, 從而=,=(0,2,2), 所以|cos〈,〉|===. 所以異面直線BP與AC1所成角的余弦值為. (2)因為Q為BC的中點,所以Q, 因此=,=(0,2,2),=(0,0,2). 設n=(x,y,z)為平面AQC1的一個法向量, 則即 不妨取n=(,-1,1). 設直線CC1與平面AQC1所成角為θ, 則sin θ=|cos〈,n〉|===. 所以直線CC1與平面AQC1所成角的正弦值為. 3. (2018·蘇錫常鎮(zhèn)調(diào)研(一))如圖,在四棱錐P-ABC

12、D中,已知底面ABCD是矩形,PD垂直于底面ABCD,PD=AD=2AB,點Q為線段PA(不含端點)上一點. (1)當Q是線段PA的中點時,求CQ與平面PBD所成角的正弦值; (2)已知二面角Q-BD-P的正弦值為,求的值. 解:以{,,}為正交基底建立如圖所示的空間直角坐標系D-xyz. 不妨設AB=1,則D(0,0,0),A(2,0,0),C(0,1,0),B(2,1,0),P(0,0,2). =(2,1,0),=(0,0,2). (1)當Q是線段PA的中點時,Q(1,0,1),=(1,-1,1). 設平面PBD的法向量為m=(x,y,z). 則即 不妨取x=1,解得y=

13、-2. 則平面PBD的一個法向量為m=(1,-2,0). 故cos〈m,〉===. 綜上,CQ與平面PBD所成角的正弦值為. (2)=(-2,0,2),設=λ (λ∈(0,1)), 即=(-2λ,0,2λ). 故Q(2-2λ,0,2λ),=(2,1,0),=(2-2λ,0,2λ). 設平面QBD的法向量為n=(x,y,z). 則即 不妨取x=1,則y=-2,z=1-, 故平面QBD的一個法向量為n=. 由(1)得平面PBD的一個法向量m=(1,-2,0), 由題意得cos2〈m,n〉= ===1-2=, 解得λ=或λ=-1. 又λ∈(0,1),所以λ=, 所以=

14、,即―= ,即=. 4.如圖,在四棱錐S-ABCD中,SD⊥平面ABCD,四邊形ABCD是直角梯形,∠ADC=∠DAB=90°,SD=AD=AB=2,DC=1. (1)求二面角S-BC-A的余弦值; (2)設P是棱BC上一點,E是SA的中點,若PE與平面SAD所成角的正弦值為,求線段CP的長. 解:(1)由題意,以D為坐標原點,DA,DC,DS所在直線為x軸,y軸,z軸建立如圖所示的空間直角坐標系D-xyz, 則D(0,0,0),A(2,0,0),B(2,2,0),C(0,1,0),S(0,0,2), 所以=(2,2,-2),=(0,1,-2),=(0,0,2). 設平面SBC的

15、法向量為n1=(x,y,z), 則即 令z=1,得x=-1,y=2, 所以n1=(-1,2,1)是平面SBC的一個法向量. 因為SD⊥平面ABC,取平面ABC的一個法向量n2=(0,0,1). 設二面角S-BC-A的大小為θ, 由圖可知二面角S-BC-A為銳二面角, 所以|cos θ|===, 所以二面角S-BC-A的余弦值為. (2)由(1)知E(1,0,1), =(2,1,0),=(1,-1,1). 設=λ (0≤λ≤1), 則=λ(2,1,0)=(2λ,λ,0), 所以=-=(1-2λ,-1-λ,1). 易知CD⊥平面SAD, 所以=(0,-1,0)是平面SAD的一個法向量. 設PE與平面SAD所成的角為α, 所以sin α=|cos〈,〉|==, 即=,得λ=或λ=(舍去). 所以=,||=, 所以線段CP的長為.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!