《浙江省2022年中考數(shù)學(xué)復(fù)習(xí) 微專題八 巧用圖形變換進(jìn)行計(jì)算與證明訓(xùn)練》由會(huì)員分享,可在線閱讀,更多相關(guān)《浙江省2022年中考數(shù)學(xué)復(fù)習(xí) 微專題八 巧用圖形變換進(jìn)行計(jì)算與證明訓(xùn)練(7頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、浙江省2022年中考數(shù)學(xué)復(fù)習(xí) 微專題八 巧用圖形變換進(jìn)行計(jì)算與證明訓(xùn)練
1.已知如圖1所示的四張牌,若將其中一張牌旋轉(zhuǎn)180°后得到圖2,則旋轉(zhuǎn)的牌是( )
2.如圖,在邊長(zhǎng)為4的等邊三角形ABC中,AD是BC邊上的高,點(diǎn)E,F(xiàn)是AD上的兩點(diǎn),則圖中陰影部分的面積是( )
A. B.2 C.3 D.4
3.如圖,已知⊙O的半徑為3,∠AOB+∠COD=150°,則陰影部分的面積為_________.
4.如圖是一個(gè)臺(tái)階的縱切面圖,∠B=90°,AB=3 m,BC=5 m,現(xiàn)需在臺(tái)階從點(diǎn)A到點(diǎn)C處鋪上紅地毯,則該地毯的長(zhǎng)度為______
2、m.
5.將一張矩形紙片折疊成如圖所示的圖形,若AB=6 cm,則AC=______cm.
6.如圖①,四邊形CFDE是正方形,且點(diǎn)E,D,F(xiàn)分別在三角形ABC的三邊上,觀察圖①和圖②,請(qǐng)回答下列問(wèn)題:
(1)請(qǐng)簡(jiǎn)述由圖①變成圖②的形成過(guò)程:_______________________________
_______________________.
(2)若AD=3,DB=4,則△ADE和△BDF的面積之和為______.
7.如圖,在△ABC中,AC=BC=2,AB=1,將它沿AB翻折得到△ABD,則四邊形ADBC的形狀是______形,點(diǎn)P,E,F(xiàn)分別為
3、線段AB,AD,DB的任意點(diǎn),則PE+PF的最小值是_________.
8.如圖,把正方形鐵片OABC置于平面直角坐標(biāo)系中,頂點(diǎn)A的坐標(biāo)為(3,0),點(diǎn)P(1,2)在正方形鐵片上,將正方形鐵片繞其右下角的頂點(diǎn)按順時(shí)針?lè)较蛞来涡D(zhuǎn)90°,第一次旋轉(zhuǎn)至圖①位置,第二次旋轉(zhuǎn)至圖②位置…,則正方形鐵片連續(xù)旋轉(zhuǎn)2 019次后,點(diǎn)P的坐標(biāo)為______________________.
9.如圖,在正方形ABCD中,點(diǎn)M,N分別是AD,CD邊上的動(dòng)點(diǎn)(含端點(diǎn)),且∠MBN=45°.求證:AM+CN=MN.
10.問(wèn)題背景:
如圖1,點(diǎn)A,B在直線l的
4、同側(cè),要在直線l上找一點(diǎn)C,使AC與BC的距離之和最小,我們可以作出點(diǎn)B關(guān)于l的對(duì)稱點(diǎn)B′,連結(jié)AB′與直線l交于點(diǎn)C,則點(diǎn)C即為所求.
(1)實(shí)踐運(yùn)用:
如圖2,已知,⊙O的直徑CD為4,點(diǎn)A在⊙O上,∠ACD=30°,B為弧AD的中點(diǎn),P為直徑CD上一動(dòng)點(diǎn),則BP+AP的最小值為________.
(2)知識(shí)拓展:
如圖3,在Rt△ABC中,AB=10,∠BAC=45°,∠BAC的平分線交BC于點(diǎn)D,E,F(xiàn)分別是線段AD和AB上的動(dòng)點(diǎn),求BE+EF的最小值,并寫出解答過(guò)程.
11.已知:△AOB和△COD均為等腰直角三角形,∠AOB=∠COD=90
5、°.連結(jié)AD,BC,點(diǎn)H為BC中點(diǎn),連結(jié)OH.
(1)如圖1所示,求證:OH=AD且OH⊥AD;
(2)將△COD繞點(diǎn)O旋轉(zhuǎn)到圖2,圖3所示位置時(shí),線段OH與AD又有怎樣的關(guān)系,并選擇一個(gè)圖形證明你的結(jié)論.
參考答案
1.A 2.B 3. 4.8 5.6
6.(1)圖①中的△ADE繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°得到圖② (2)6
7.菱 8.(6 058,1)
9.證明:∵∠C=∠A=90°,BC=BA,
∴將△BCN繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°得到△BAN′,如圖所示.
∵∠MBN=45°,∴∠MBN′=45°.
在△MBN和△MBN′中,
∴△MBN≌
6、△MBN′(SAS),
∴MN=MN′,
即AM+AN′=MN,
∴AM+CN=MN.
10.解:(1)2
(2)如圖,在斜邊AC上截取AB′=AB,連結(jié)BB′.
∵AD平分∠BAC,
∴∠B′AM=∠BAM,
在△B′AM和△BAM中,
∴△B′AM≌△BAM(SAS),
∴BM=B′M,∠BMA=∠B′MA=90°,
∴點(diǎn)B與點(diǎn)B′關(guān)于直線AD對(duì)稱.
如圖,過(guò)點(diǎn)B′作B′F⊥AB,垂足為F,交AD于E,連結(jié)B′E,
則線段B′F的長(zhǎng)即為所求.(點(diǎn)到直線的距離最短)
在Rt△AFB′中,∵
7、∠BAC=45°,
AB′=AB=10,
∴B′F=AB′·sin 45°=AB·sin 45°
=10×=5,
∴BE+EF的最小值為5.
11.(1)證明:∵△OAB與△OCD為等腰直角三角形,∠AOB=∠COD=90°,
∴OC=OD,OA=OB.
在△AOD與△BOC中,
∴△AOD≌△BOC(SAS),
∴BC=AD,∠ADO=∠BCO,∠OAD=∠OBC,
∵點(diǎn)H為線段BC的中點(diǎn),
∴OH=BC=AD,
可得OH=HB,
∴∠OBH=∠HOB=∠OAD,
又∵∠OAD+∠ADO=90°,
∴∠ADO+∠BOH=90°,∴OH⊥AD.
(2)解:①結(jié)論:OH=AD,OH⊥AD,如圖,延長(zhǎng)OH到E,使得HE=OH,連結(jié)BE,
易證△BEO≌△ODA,∴OE=AD,
∴OH=OE=AD.
由△BEO≌△ODA,知∠EOB=∠DAO,
∴∠DAO+∠AOH=∠EOB+∠AOH=90°,
∴OH⊥AD.
②結(jié)論不變,如圖.延長(zhǎng)OH到E,使得HE=OH,連結(jié)BE,延長(zhǎng)EO交AD于G.
易證△BEO≌△ODA,
∴OE=AD,
∴OH=OE=AD.
由△BEO≌△ODA,知∠EOB=∠DAO.
∴∠DAO+∠AOG=∠EOB+∠AOG=90°,
∴∠AGO=90°,∴OH⊥AD.