九九热最新网址,777奇米四色米奇影院在线播放,国产精品18久久久久久久久久,中文有码视频,亚洲一区在线免费观看,国产91精品在线,婷婷丁香六月天

(通用版)2022年高考數(shù)學一輪復習 第11章 統(tǒng)計與統(tǒng)計案例 2 第2講 用樣本估計總體教案 理

上傳人:xt****7 文檔編號:106105641 上傳時間:2022-06-13 格式:DOC 頁數(shù):17 大?。?00KB
收藏 版權申訴 舉報 下載
(通用版)2022年高考數(shù)學一輪復習 第11章 統(tǒng)計與統(tǒng)計案例 2 第2講 用樣本估計總體教案 理_第1頁
第1頁 / 共17頁
(通用版)2022年高考數(shù)學一輪復習 第11章 統(tǒng)計與統(tǒng)計案例 2 第2講 用樣本估計總體教案 理_第2頁
第2頁 / 共17頁
(通用版)2022年高考數(shù)學一輪復習 第11章 統(tǒng)計與統(tǒng)計案例 2 第2講 用樣本估計總體教案 理_第3頁
第3頁 / 共17頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《(通用版)2022年高考數(shù)學一輪復習 第11章 統(tǒng)計與統(tǒng)計案例 2 第2講 用樣本估計總體教案 理》由會員分享,可在線閱讀,更多相關《(通用版)2022年高考數(shù)學一輪復習 第11章 統(tǒng)計與統(tǒng)計案例 2 第2講 用樣本估計總體教案 理(17頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、(通用版)2022年高考數(shù)學一輪復習 第11章 統(tǒng)計與統(tǒng)計案例 2 第2講 用樣本估計總體教案 理 1.統(tǒng)計圖表 (1)頻率分布直方圖的畫法步驟 ①求極差(即一組數(shù)據(jù)中最大值與最小值的差); ②決定組距與組數(shù); ③將數(shù)據(jù)分組; ④列頻率分布表; ⑤畫頻率分布直方圖. (2)頻率分布折線圖和總體密度曲線 ①頻率分布折線圖:連接頻率分布直方圖中各小長方形上端的中點,就得到頻率分布折線圖. ②總體密度曲線:隨著樣本容量的增加,作圖時所分組數(shù)增加,組距減小,相應的頻率折線圖會越來越接近于一條光滑曲線,統(tǒng)計中稱這條光滑曲線為總體密度曲線. (3)莖葉圖的畫法步驟 第一步:將每個數(shù)

2、據(jù)分為莖(高位)和葉(低位)兩部分; 第二步:將最小莖與最大莖之間的數(shù)按大小次序排成一列; 第三步:將各個數(shù)據(jù)的葉依次寫在其莖的兩側(cè). 2.樣本的數(shù)字特征 (1)眾數(shù):一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的那個數(shù)據(jù),叫做這組數(shù)據(jù)的眾數(shù). (2)中位數(shù):把n個數(shù)據(jù)按大小順序排列,處于最中間位置的一個數(shù)據(jù)(或最中間兩個數(shù)據(jù)的平均數(shù))叫做這組數(shù)據(jù)的中位數(shù). (3)平均數(shù):把稱為a1,a2,…,an這n個數(shù)的平均數(shù). (4)標準差與方差:設一組數(shù)據(jù)x1,x2,x3,…,xn的平均數(shù)為,則這組數(shù)據(jù)的標準差和方差分別是 s= s2=[(x1-)2+(x2-)2+…+(xn-)2] 3.與平

3、均數(shù)和方差有關的結(jié)論 (1)若x1,x2,…,xn的平均數(shù)為,那么mx1+a,mx2+a,…,mxn+a的平均數(shù)為m+a; (2)數(shù)據(jù)x1,x2,…,xn與數(shù)據(jù)x′1=x1+a,x′2=x2+a,…,x′n=xn+a的方差相等,即數(shù)據(jù)經(jīng)過平移后方差不變; (3)若x1,x2,…,xn的方差為s2,那么ax1+b,ax2+b,…,axn+b的方差為a2s2; (4)s2=(xi-)2=-2,即各數(shù)平方的平均數(shù)減去平均數(shù)的平方. 判斷正誤(正確的打“√”,錯誤的打“×”) (1)一組數(shù)據(jù)的方差越大,說明這組數(shù)據(jù)的波動越大.(  ) (2)在頻率分布直方圖中,小矩形的面積越大,表

4、示樣本數(shù)據(jù)落在該區(qū)間內(nèi)的頻率越大.(  ) (3)莖葉圖中的數(shù)據(jù)要按從小到大的順序?qū)?,相同的?shù)據(jù)可以只記一次.(  ) (4)頻率分布表和頻率分布直方圖是一組數(shù)據(jù)頻率分布的兩種形式,前者準確,后者直觀.(  ) (5)在頻率分布直方圖中,最高的小長方形底邊中點的橫坐標是眾數(shù)的估計值.(  ) 答案:(1)√ (2)√ (3)× (4)√ (5)√ (2017·高考全國卷Ⅲ)某城市為了解游客人數(shù)的變化規(guī)律,提高旅游服務質(zhì)量,收集并整理了2014年1月至2016年12月期間月接待游客量(單位:萬人)的數(shù)據(jù),繪制了下面的折線圖. 根據(jù)該折線圖,下列結(jié)論錯誤的是(  ) A.月接待

5、游客量逐月增加 B.年接待游客量逐年增加 C.各年的月接待游客量高峰期大致在7,8月份 D.各年1月至6月的月接待游客量相對7月至12月,波動性更小,變化比較平穩(wěn) 解析:選A.根據(jù)折線圖可知,2014年8月到9月、2014年10月到11月等月接待游客量都是減少,所以A錯誤. 重慶市某年各月的平均氣溫(℃)數(shù)據(jù)的莖葉圖如圖,則這組數(shù)據(jù)的中位數(shù)是(  ) A.19 B.20 C.21.5 D.23 解析:選B.由莖葉圖可知這組數(shù)據(jù)由小到大依次為8,9,12,15,18,20,20,23,23,28,31,32,所以中位數(shù)為=20. (2018·鄭州第一次質(zhì)量預測)

6、我市某校組織學生參加英語測試,成績的頻率分布直方圖如圖,數(shù)據(jù)的分組依次為[20,40),[40,60),[60,80),[80,100],若低于60分的人數(shù)是15,則該班的學生人數(shù)是________. 解析:依題意得,成績低于60分的相應的頻率等于(0.005+0.01)×20=0.3,所以該班的學生人數(shù)是15÷0.3=50. 答案:50 甲、乙兩人在10天中每天加工零件的個數(shù)用莖葉圖表示如圖,中間一列的數(shù)字表示零件個數(shù)的十位數(shù),兩邊的數(shù) 字表示零件個數(shù)的個位數(shù),則這10天甲、乙兩人日加工零件的平均數(shù)分別為________和________. 解析:由莖葉圖可知甲的平均數(shù)為

7、 =24. 乙的平均數(shù)為 =23. 答案:24 23 莖葉圖 [典例引領] (2017·高考山東卷)如圖所示的莖葉圖記錄了甲、乙兩組各5名工人某日的產(chǎn)量數(shù)據(jù)(單位:件).若這兩組數(shù)據(jù)的中位數(shù)相等,且平均值也相等,則x和y的值分別為(  ) A.3,5         B.5,5 C.3,7 D.5,7 【解析】 根據(jù)兩組數(shù)據(jù)的中位數(shù)相等可得65=60+y,解得y=5,又它們的平均值相等, 所以= ,解得x=3.故選A. 【答案】 A 莖葉圖中的三個關注點 (1)“葉”的位置只有一個數(shù)字,而“莖”的位置的數(shù)字位數(shù)一般不需要統(tǒng)一. (2)重復

8、出現(xiàn)的數(shù)據(jù)要重復記錄,不能遺漏. (3)給定兩組數(shù)據(jù)的莖葉圖,估計數(shù)字特征,莖上的數(shù)字由小到大排列,一般“重心”下移者平均數(shù)較大,數(shù)據(jù)集中者方差較?。? [通關練習] 1.(2018·貴州遵義航天高中模擬)某學生在一門功課的22次考試中,所得分數(shù)莖葉圖如圖所示,則此學生該門功課考試分數(shù)的極差與中位數(shù)之和為(  ) A.117 B.118 C.118.5 D.119.5 解析:選B.22次考試中,所得分數(shù)最高的為98,最低的為56,所以極差為98-56=42, 將分數(shù)從小到大排列,中間兩數(shù)為76,76,所以中位數(shù)為76, 所以此學生該門功課考試分數(shù)的極差與中位數(shù)之和

9、為42+76=118. 2.為了了解某校教師使用多媒體進行教學的情況,現(xiàn)采用簡單隨機抽樣的方法,從該校400名授課教師中抽取20名,調(diào)查了他們上學期使用多媒體進行教學的次數(shù),結(jié)果用莖葉圖表示,如圖所示.據(jù)此可估計上學期該校400名教師中,使用多媒體進行教學的次數(shù)在[16,30)內(nèi)的人數(shù)為(  ) A.100 B.160 C.200 D.280 解析:選B.由莖葉圖可知在20名教師中,上學期使用多媒體進行教學的次數(shù)在[16,30)內(nèi)的人數(shù)為8,據(jù)此可以估計400名教師中,使用多媒體進行教學的次數(shù)在[16,30)內(nèi)的人數(shù)為400×=160. 頻率分布直方圖(高頻考點) 頻率

10、分布直方圖是高考的熱點,選擇題、填空題、解答題都有可能出現(xiàn).難度一般較?。呖紝︻l率分布直方圖的考查主要有以下三個命題角度: (1)求樣本的頻率、頻數(shù); (2)求樣本的數(shù)字特征; (3)與概率結(jié)合的問題. [典例引領] 角度一 求樣本的頻率、頻數(shù) (2016·高考山東卷)某高校調(diào)查了200名學生每周的自習時間(單位:小時),制成了如圖所示的頻率分布直方圖,其中自習時間的范圍是[17.5,30],樣本數(shù)據(jù)分組為[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根據(jù)直方圖,這200名學生中每周的自習時間不少于22.5小時的人數(shù)是(

11、  ) A.56         B.60 C.120 D.140 【解析】 由頻率分布直方圖可知,這200名學生每周的自習時間不少于22.5小時的頻率為(0.16+0.08+0.04)×2.5=0.7,故這200名學生中每周的自習時間不少于22.5小時的人數(shù)為200×0.7=140.故選D. 【答案】 D 角度二 求樣本的數(shù)字特征 (2018·云南省11??鐓^(qū)調(diào)研)為了解一種植物果實的情況,隨機抽取一批該植物果實樣本測量重量(單位:克),按照[27.5,32.5),[32.5,37.5),[37.5,42.5),[42.5,47.5),[47.5,52.5]分為5組

12、,其頻率分布直方圖如圖所示. (1)求圖中a的值; (2)估計這種植物果實重量的平均數(shù)和方差s2(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表). 【解】 (1)組距d=5,由5×(0.02+0.04+0.075+a+0.015)=1得a=0.05. (2)各組中點值和相應的頻率依次為 中點值 30 35 40 45 50 頻率 0.1 0.2 0.375 0.25 0.075 =30×0.1+35×0.2+40×0.375+45×0.25+50×0.075=40, s2=(-10)2×0.1+(-5)2×0.2+02×0.375+52×0.25+102×0.

13、075=28.75. 角度三 與概率結(jié)合的問題 (2018·東北四市高考模擬)某手機廠商推出一款6寸大屏手機,現(xiàn)對500名該手機使用者(200名女性,300名男性)進行調(diào)查,對手機進行打分,打分的頻數(shù)分布表如下: 女性 用戶 分值區(qū)間 [50,60) [60,70) [70,80) [80,90) 頻數(shù) 20 40 80 50 男性用戶 分值區(qū)間 [50,60) [60,70) [70,80) [80,90) 頻數(shù) 45 75 90 60 (1)完成下列頻率分布直方圖,并比較女性用戶和男性用戶評分的波動大小(不計算具體值,給出結(jié)論即可);

14、 (2)根據(jù)評分的不同,運用分層抽樣的方法從男性用戶中抽取20名用戶,再從這20名用戶中滿足評分不低于80分的用戶中任意抽取3名用戶,求3名用戶中評分小于90分的人數(shù)X的分布列和數(shù)學期望. 【解】 (1)女性用戶和男性用戶的頻率分布直方圖如圖. 由圖可知女性用戶評分的波動小,男性用戶評分的波動大. (2)運用分層抽樣的方法從男性用戶中抽取20名用戶,評分不低于80分的用戶有6人,其中評分小于90分的有4人, 從6人中任取3人,則X的可能取值為1,2,3, P(X=1)===,P(X=2)===, P(X=3)===. 所以X的分布列為 X 1 2 3 P

15、 E(X)=++=2. 頻率、頻數(shù)、樣本容量的計算方法 (1)×組距=頻率. (2)=頻率,=樣本容量,樣本容量×頻率=頻數(shù). [提醒] 制作好頻率分布表后,可以利用各組的頻率之和是否為1來檢驗該表是否正確.  [通關練習] 1.在樣本頻率分布直方圖中,共有9個小長方形,若中間一個小長方形的面積等于其他8個長方形的面積和的,且樣本容量為140,則中間一組的頻數(shù)為(  ) A.28 B.40 C.56 D.60 解析:選B.設中間一組的頻數(shù)為x, 因為中間一個小長方形的面積等于其他8個長方形的面積和的,所以其他8組的頻數(shù)和為x,由x+x=140,解得x=4

16、0. 2.(2018·武漢市武昌區(qū)調(diào)研考試)我國是世界上嚴重缺水的國家,城市缺水問題較為突出.某市政府為了鼓勵居民節(jié)約用水,計劃在本市試行居民生活用水定額管理,即確定一個合理的居民月用水量標準x(噸),月用水量不超過x的部分按平價收費,超出x的部分按議價收費.為了了解全市居民用水量的分布情況,通過抽樣,獲得了100位居民某年的月均用水量(單位:噸),將數(shù)據(jù)按照[0,0.5),[0.5,1),…,[4,4.5]分成9組,制成了如圖所示的頻率分布直方圖. (1)求頻率分布直方圖中a的值; (2)已知該市有80萬居民,估計全市居民中月均用水量不低于3噸的人數(shù),并說明理由; (3)若該市政

17、府希望使85%的居民每月的用水量不超過標準x(噸),估計x的值,并說明理由. 解:(1)由頻率分布直方圖,可得(0.08+0.16+a+0.40+0.52+a+0.12+0.08+0.04)×0.5=1, 解得a=0.30. (2)由頻率分布直方圖知,100位居民每人月均用水量不低于3噸的頻率為(0.12+0.08+0.04)×0.5=0.12. 由以上樣本頻率分布,可以估計全市80萬居民中月均用水量不低于3噸的人數(shù)為800 000×0.12=96 000. (3)因為前6組的頻率之和為(0.08+0.16+0.30+0.40+0.52+0.30)×0.5=0.88>0.85,前5組

18、的頻率之和為(0.08+0.16+0.30+0.40+0.52)×0.5=0.73<0.85, 所以2.5≤x<3. 由0.3×(x-2.5)=0.85-0.73,解得x=2.9. 因此,估計月用水量標準為2.9噸時,85%的居民每月的用水量不超過標準. 樣本數(shù)字特征的求解與應用 [典例引領] (1)在發(fā)生某公共衛(wèi)生事件期間,有專業(yè)機構(gòu)認為該事件在一段時間內(nèi)沒有發(fā)生大規(guī)模群體感染的標志是“連續(xù)10天,每天新增疑似病例不超過7人”.根據(jù)過去10天甲、乙、丙、丁四地新增疑似病例的數(shù)據(jù),一定符合該標志的是(  ) A.甲地:總體均值為3,中位數(shù)為4 B.乙地:總體均值為1,總體方

19、差大于0 C.丙地:中位數(shù)為2,眾數(shù)為3 D.丁地:總體均值為2,總體方差為3 (2)(2018·南昌模擬)若1,2,3,4,m這五個數(shù)的平均數(shù)為3,則這五個數(shù)的方差為________. (3)(2018·石家莊市教學質(zhì)量檢測(二))設樣本數(shù)據(jù)x1,x2,…,x2 017的方差是4,若yi=2xi-1(i=1,2,…,2 017),則y1,y2,…,y2 017的方差為________. 【解析】 (1)根據(jù)標志,要求數(shù)據(jù)中每個個體不超過7.中位數(shù)與眾數(shù)不能體現(xiàn)個體數(shù)據(jù),無法確定.方差體現(xiàn)數(shù)據(jù)中個體的波動程度,若大于0,則無法確定.若均值為2,方差為3,假設?xi≥8,則s2≥=>3

20、,故假設不成立. (2)由=3得m=5,所以這五個數(shù)的方差為[(1-3)2+(2-3)2+(3-3)2+(4-3)2+(5-3)2]=2. (3)設樣本數(shù)據(jù)的平均數(shù)為,則yi=2xi-1的平均數(shù)為2-1,則y1,y2,…,y2 017的方差為[(2x1-1-2+1)2+(2x2-1-2+1)2+…+(2x2 017-1-2+1)2]=4×[(x1-)2+(x2-)2+…+(x2 017-)2]=4×4=16. 【答案】 (1)D (2)2 (3)16 (1)眾數(shù)、中位數(shù)、平均數(shù)及方差的意義 ①平均數(shù)與方差都是重要的數(shù)字特征,是對總體的一種簡明地描述. ②平均數(shù)、中位數(shù)、眾數(shù)描述

21、其集中趨勢,方差和標準差描述波動大?。? (2)在計算平均數(shù)、方差時可利用平均數(shù)、方差的有關結(jié)論.  [通關練習] 1.甲、乙兩人在一次射擊比賽中各射靶5次,兩人成績的條形統(tǒng)計圖如圖所示,則(  ) A.甲的成績的平均數(shù)小于乙的成績的平均數(shù) B.甲的成績的中位數(shù)等于乙的成績的中位數(shù) C.甲的成績的方差小于乙的成績的方差 D.甲的成績的極差小于乙的成績的極差 解析:選C. 甲=(4+5+6+7+8)=6, 乙=(5×3+6+9)=6, 甲的成績的方差為(22×2+12×2)=2, 乙的成績的方差為(12×3+32×1)=2.4. 2.(2018·合肥市第二次教學質(zhì)

22、量檢測)某同學在高三學年的五次階段性考試中,數(shù)學成績依次為110,114,121,119,126,則這組數(shù)據(jù)的方差是________. 解析:因為對一組數(shù)據(jù)同時加上或減去同一個常數(shù),方差不變,所以本題中可以先對這5個數(shù)據(jù)同時減去110,得到新的數(shù)據(jù)分別為0,4,11,9,16,其平均數(shù)為8,根據(jù)方差公式可得s2= =30.8. 答案:30.8 3.(2018·貴陽市監(jiān)測考試)在某??破罩R競賽前的模擬測試中,得到甲、乙兩名學生的6次模擬測試成績(百分制)的莖葉圖(如圖).若從甲、乙兩名學生中選擇一人參加該知識競賽,你會選哪位?請運用統(tǒng)計學的知識說明理由. 解:學生甲的平均成績甲=

23、=82, 學生乙的平均成績乙==82, 又s=×[(68-82)2+(76-82)2+(79-82)2+(86-82)2+(88-82)2+(95-82)2]=77, s=×[(71-82)2+(75-82)2+(82-82)2+(84-82)2+(86-82)2+(94-82)2]=,則甲=乙,s>s,說明甲、乙的平均水平一樣,但乙的方差小,即乙發(fā)揮更穩(wěn)定,故可選擇學生乙參加知識競賽. 眾數(shù)、中位數(shù)和平均數(shù)的異同 眾 數(shù) 中位數(shù) 平均數(shù) 相同點 都是描述一組數(shù)據(jù)集中趨勢的量 不同點 與這組數(shù)據(jù)中的部分數(shù)據(jù)有關,出現(xiàn)在這些數(shù)據(jù)中 不一定在這些數(shù)據(jù)中出現(xiàn).奇數(shù)個

24、時,在這組數(shù)據(jù)中出現(xiàn);偶數(shù)個時,為中間兩數(shù)的平均值 不一定在這些數(shù)據(jù)中出現(xiàn) 標準差和方差的異同 相同點:標準差和方差描述了一組數(shù)據(jù)圍繞平均數(shù)波動的大小. 不同點:方差與原始數(shù)據(jù)的單位不同,且平方后可能夸大了偏差程度,標準差則不然. 易錯防范 (1)易忽視頻率分布直方圖中縱軸表示的應為. (2)在繪制莖葉圖時,易遺漏重復出現(xiàn)的數(shù)據(jù),重復出現(xiàn)的數(shù)據(jù)要重復記錄,同時不要混淆莖葉圖中莖與葉的含義.                                            1.把樣本容量為20的數(shù)據(jù)分組,分組區(qū)間與頻數(shù)如下:[10,20),2;[20,30),3;[

25、30,40),4;[40,50),5;[50,60),4;[60,70],2,則在區(qū)間[10,50)上的數(shù)據(jù)的頻率是(  ) A.0.05          B.0.25 C.0.5 D.0.7 解析:選D.由題知,在區(qū)間[10,50)上的數(shù)據(jù)的頻數(shù)是2+3+4+5=14,故其頻率為=0.7. 2.(2018·廣西三市第一次聯(lián)考)在如圖所示一組數(shù)據(jù)的莖葉圖中,有一個數(shù)字被污染后模糊不清,但曾計算得該組數(shù)據(jù)的極差與中位數(shù)之和為61,則被污染的數(shù)字為(  ) A.1 B.2 C.3 D.4 解析:選B.由題圖可知該組數(shù)據(jù)的極差為48-20=28,則該組數(shù)據(jù)的中位數(shù)

26、為61-28=33,易得被污染的數(shù)字為2. 3.(2018·岳陽模擬)某商場在國慶黃金周的促銷活動中,對10月2日9時到14時的銷售額進行統(tǒng)計,其頻率分布直方圖如圖所示,已知9時至10時的銷售額為2.5萬元,則11時到12時的銷售額為(  ) A.6萬元 B.8萬元 C.10萬元 D.12萬元 解析:選C.設11時到12時的銷售額為x萬元,依題意有=,解得x=10. 4.某學校隨機抽取20個班,調(diào)查各班中有網(wǎng)上購物經(jīng)歷的人數(shù),所得數(shù)據(jù)的莖葉圖如圖所示,以組距為5將數(shù)據(jù)分組成[0,5),[5,10),…,[30,35),[35,40]時,所作的頻率分布直方圖是(  )

27、 解析:選A.由分組可知C,D一定不對;由莖葉圖可知[0,5)有1人,[5,10)有1人,所以第一、二小組頻率相同,頻率分布直方圖中矩形的高應相等,可排除B. 5.某人5次上班途中所花的時間(單位:分鐘)分別為x,y,10,11,9.已知這組數(shù)據(jù)的平均數(shù)為10,方差為2,則|x-y|的值為(  ) A.1 B.2 C.3 D.4 解析:選D.由題意這組數(shù)據(jù)的平均數(shù)為10,方差為2,可得:x+y=20,(x-10)2+(y-10)2=8, 設x=10+t,y=10-t,由(x-10)2+(y-10)2=8,得t2=4,所以|x-y|=2|t|=4. 6.(2018·湖南省

28、五市十校聯(lián)考)某中學奧數(shù)培訓班共有14人,分為兩個小組,在一次階段測試中兩個小組成績的莖葉圖如圖所示,其中甲組學生成績的平均數(shù)是88,乙組學生成績的中位數(shù)是89,則n-m的值是________. 解析:由甲組學生成績的平均數(shù)是88,可得 =88,解得m=3.由乙組學生成績的中位數(shù)是89,可得n=9,所以n-m=6. 答案:6 7.為了普及環(huán)保知識,增強環(huán)保意識,某大學有300名員工參加環(huán)保知識測試,按年齡分組:第1組[25,30),第2組[30,35),第3組[35,40),第4組[40,45),第5組[45,50],得到的頻率分布直方圖如圖所示.現(xiàn)在要從第1,3,4組中用分層抽樣

29、的方法抽取16人,則在第4組中抽取的人數(shù)為________. 解析:根據(jù)頻率分布直方圖得,第1,3,4組的頻率之比為1∶4∶3,所以用分層抽樣的方法抽取16人時,在第4組中應抽取的人數(shù)為16×=6. 答案:6 8.(2018·成都市第二次診斷性檢測)在一個容量為5的樣本中,數(shù)據(jù)均為整數(shù),已測出其平均數(shù)為10,但墨水污損了兩個數(shù)據(jù),其中一個數(shù)據(jù)的十位數(shù)字1未被污損,即9,10,11,1 ,那么這組數(shù)據(jù)的方差s2可能的最大值是________. 解析:由題意可設兩個被污損的數(shù)據(jù)分別為10+a,b,(a,b∈Z,0≤a≤9),則10+a+b+9+10+11=50,即a+b=10,b

30、=10-a,所以s2=[(9-10)2+(10-10)2+(11-10)2+(10+a-10)2+(b-10)2]=[2+a2+(b-10)2]=(1+a2)≤×(1+92)=32.8. 答案:32.8 9.某校1 200名高三年級學生參加了一次數(shù)學測驗(滿分為100分),為了分析這次數(shù)學測驗的成績,從這1 200人的數(shù)學成績中隨機抽取200人的成績繪制成如下的統(tǒng)計表,請根據(jù)表中提供的信息解決下列問題: 成績分組 頻數(shù) 頻率 平均分 [0,20) 3 0.015 16 [20,40) a b 32.1 [40,60) 25 0.125 55 [60,80)

31、 c 0.5 74 [80,100] 62 0.31 88 (1)求a、b、c的值; (2)如果從這1 200名學生中隨機抽取一人,試估計這名學生該次數(shù)學測驗及格的概率P(注:60分及60分以上為及格); (3)試估計這次數(shù)學測驗的年級平均分. 解:(1)由題意可得,b=1-(0.015+0.125+0.5+0.31)=0.05,a=200×0.05=10,c=200×0.5=100. (2)根據(jù)已知,在抽出的200人的數(shù)學成績中,及格的有162人.所以P===0.81. (3)這次數(shù)學測驗樣本的平均分為 ==73, 所以這次數(shù)學測驗的年級平均分大約為73分.

32、10.(2017·高考北京卷)某大學藝術專業(yè)400名學生參加某次測評,根據(jù)男女學生人數(shù)比例,使用分層抽樣的方法從中隨機抽取了100名學生,記錄他們的分數(shù),將數(shù)據(jù)分成7組:[20,30),[30,40),…,[80,90],并整理得到如下頻率分布直方圖: (1)從總體的400名學生中隨機抽取一人,估計其分數(shù)小于70的概率; (2)已知樣本中分數(shù)小于40的學生有5人,試估計總體中分數(shù)在區(qū)間[40,50)內(nèi)的人數(shù); (3)已知樣本中有一半男生的分數(shù)不小于70,且樣本中分數(shù)不小于70的男女生人數(shù)相等.試估計總體中男生和女生人數(shù)的比例. 解:(1)根據(jù)頻率分布直方圖可知,樣本中分數(shù)不小于70

33、的頻率為(0.02+0.04)×10=0.6, 所以樣本中分數(shù)小于70的頻率為1-0.6=0.4. 所以從總體的400名學生中隨機抽取一人,其分數(shù)小于70的概率估計為0.4. (2)根據(jù)題意,樣本中分數(shù)不小于50的頻率為 (0.01+0.02+0.04+0.02)×10=0.9, 分數(shù)在區(qū)間[40,50)內(nèi)的人數(shù)為100-100×0.9-5=5. 所以總體中分數(shù)在區(qū)間[40,50)內(nèi)的人數(shù)估計為400×=20. (3)由題意可知,樣本中分數(shù)不小于70的學生人數(shù)為 (0.02+0.04)×10×100=60, 所以樣本中分數(shù)不小于70的男生人數(shù)為60×=30. 所以樣本中的男

34、生人數(shù)為30×2=60,女生人數(shù)為100-60=40,男生和女生人數(shù)的比例為60∶40=3∶2. 所以根據(jù)分層抽樣原理,總體中男生和女生人數(shù)的比例估計為3∶2. 1.(2018·長春模擬)某銷售公司為了解員工的月工資水平,從1 000位員工中隨機抽取100位員工進行調(diào)查,得到如下的頻率分布直方圖: (1)試由此圖估計該公司員工的月平均工資; (2)該公司的工資發(fā)放是以員工的營銷水平為重要依據(jù)來確定的,一般認為,工資低于4 500元的員工屬于學徒階段,沒有營銷經(jīng)驗,若進行營銷將會失??;高于4 500元的員工屬于成熟員工,進行營銷將會成功.現(xiàn)將該樣本按照“學徒階段工資”“成熟員工工

35、資”分成兩層,進行分層抽樣,從中抽出5人,在這5人中任選2人進行營銷活動.活動中,每位員工若營銷成功,將為公司賺得3萬元,否則公司將損失1萬元.試問在此次比賽中公司收入多少萬元的可能性最大? 解:(1)估計該公司員工的月平均工資為0.000 1×1 000×2 000+0.000 1×1 000×3 000+0.000 2×1 000×4 000+0.000 3×1 000×5 000+0.000 2×1 000×6 000+0.000 1×1 000×7 000=4 700(元). (2)抽取比為=, 從工資在[1 500,4 500)內(nèi)的員工中抽出100×(0.1+0.1+0.2)×

36、=2人,設這兩位員工分別為1,2;從工資在[4 500,7 500]內(nèi)的員工中抽出100×(0.3+0.2+0.1)×=3人,設這三位員工分別為A,B,C. 從中任選2人,共有以下10種不同的等可能結(jié)果:(1,2),(1,A),(1,B),(1,C),(2,A),(2,B),(2,C),(A,B),(A,C),(B,C). 兩人營銷都成功,公司收入6萬元,有以下3種不同的等可能結(jié)果:(A,B),(A,C),(B,C),概率為; 其中一人營銷成功,一人營銷失敗,公司收入2萬元,有以下6種不同的等可能結(jié)果:(1,A),(1,B),(1,C),(2,A),(2,B),(2,C),概率為=;

37、兩人營銷都失敗,公司收入-2萬元,即損失2萬元,有1種結(jié)果:(1,2),概率為. 因為<<,所以公司收入2萬元的可能性最大. 2.(2018·河北三市第二次聯(lián)考)某高三畢業(yè)班甲、乙兩名同學在連續(xù)的8次數(shù)學周練中,統(tǒng)計解答題失分的莖葉圖如圖: (1)比較這兩名同學8次周練解答題失分的平均數(shù)和方差的大小,并判斷哪位同學做解答題相對穩(wěn)定些; (2)以上述數(shù)據(jù)統(tǒng)計甲、乙兩名同學失分超過15分的頻率作為概率,假設甲、乙兩名同學在同一次周練中失分多少互不影響,預測在接下來的2次周練中,甲、乙兩名同學失分均超過15分的次數(shù)X的分布列和均值. 解:(1) 甲 =(7+9+11+13+13+16+

38、23+28)=15,乙=(7+8+10+15+17+19+21+23)=15, s=[(-8)2+(-6)2+(-4)2+(-2)2+(-2)2+12+82+132]=44.75, s=[(-8)2+(-7)2+(-5)2+02+22+42+62+82]=32.25. 甲、乙兩名同學解答題失分的平均數(shù)相等;甲同學解答題失分的方差比乙同學解答題失分的方差大.所以乙同學做解答題相對穩(wěn)定些. (2)根據(jù)統(tǒng)計結(jié)果,在一次周練中,甲和乙失分超過15分的概率分別為P1=,P2=, 兩人失分均超過15分的概率為P1P2=, X的所有可能取值為0,1,2.依題意,X~B(2,), P(X=k)=C()k()2-k,k=0,1,2, 則X的分布列為 X 0 1 2 P X的均值E(X)=2×=.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!