《2022年高考數(shù)學(xué) 6年高考母題精解精析 專題10 圓錐曲線02 理》由會員分享,可在線閱讀,更多相關(guān)《2022年高考數(shù)學(xué) 6年高考母題精解精析 專題10 圓錐曲線02 理(8頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
1、2022年高考數(shù)學(xué) 6年高考母題精解精析 專題10 圓錐曲線02 理
【xx高考真題遼寧理20】(本小題滿分12分)
如圖,橢圓:,a,b為常數(shù)),動圓,。點(diǎn)分別為的左,右頂點(diǎn),與相交于A,B,C,D四點(diǎn)。
(Ⅰ)求直線與直線交點(diǎn)M的軌跡方程;
(Ⅱ)設(shè)動圓與相交于四點(diǎn),其中,
。若矩形與矩形的面積相等,證明:為定值。
【答案】
22.【xx高考真題湖北理】(本小題滿分13分)
設(shè)是單位圓上的任意一點(diǎn),是過點(diǎn)與軸垂直的直線,是直線與 軸的交點(diǎn),點(diǎn)在直線上,且滿足. 當(dāng)點(diǎn)在圓上運(yùn)動時,記點(diǎn)M的軌跡為曲線.
(Ⅰ)求曲線的方程,判斷曲線為何種圓錐
2、曲線,并求其焦點(diǎn)坐標(biāo);
(Ⅱ)過原點(diǎn)且斜率為的直線交曲線于,兩點(diǎn),其中在第一象限,它在軸上的射影為點(diǎn),直線交曲線于另一點(diǎn). 是否存在,使得對任意的,都有?若存在,求的值;若不存在,請說明理由.
故存在,使得在其對應(yīng)的橢圓上,對任意的,都有.
23.【xx高考真題北京理19】(本小題共14分)
【答案】解:(1)原曲線方程可化
3、簡得:
由題意可得:,解得:
24.【xx高考真題廣東理20】(本小題滿分14分)
在平面直角坐標(biāo)系xOy中,已知橢圓C1:的離心率e=,且橢圓C上的點(diǎn)到Q(0,2)的距離的最大值為3.
(1)求橢圓C的方程;
(2)在橢圓C上,是否存在點(diǎn)M(m,n)使得直線:mx+ny=1與圓O:x2+y2=1相交于不同的兩點(diǎn)A、B,且△OAB的面積最大?若存在,求出點(diǎn)M的坐標(biāo)及相對應(yīng)的△OAB的面積;若不存在,請說明理由.
【答案】本題是一道綜合性的題目,考查直線、圓與圓錐曲線的問題,涉及到最值與探索性問題,意在考查學(xué)生的綜合分析問題與運(yùn)算求解的能力。
25.【xx高考真題重慶理
4、20】(本小題滿分12分(Ⅰ)小問5分(Ⅱ)小問7分)
如圖,設(shè)橢圓的中心為原點(diǎn)O,長軸在x軸上,上頂點(diǎn)為A,左右焦點(diǎn)分別為,線段 的中點(diǎn)分別為,且△ 是面積為4的直角三角形.
(Ⅰ)求該橢圓的離心率和標(biāo)準(zhǔn)方程;
(Ⅱ)過 做直線交橢圓于P,Q兩點(diǎn),使,求直線的方程
【答案】
26.【xx高考真題四川理21】(本小題滿分12分)
如圖,動點(diǎn)到兩定點(diǎn)、構(gòu)成,且,設(shè)動點(diǎn)的軌跡為。
(Ⅰ)求軌跡的方程;
(Ⅱ)設(shè)直線與軸交于點(diǎn),與軌跡相交于點(diǎn),且,求的取值范圍。
【答案】本題主要考查軌跡方程的求法,圓錐曲線的定義等基礎(chǔ)知識,考查基本運(yùn)算能力,邏輯推理能力,考查方程與函數(shù)、數(shù)形結(jié)合、分類討論、化歸與轉(zhuǎn)化等數(shù)學(xué)思想
27.【xx高考真題新課標(biāo)理20】(本小題滿分12分)
設(shè)拋物線的焦點(diǎn)為,準(zhǔn)線為,,已知以為圓心,
為半徑的圓交于兩點(diǎn);
(1)若,的面積為;求的值及圓的方程;
(2)若三點(diǎn)在同一直線上,直線與平行,且與只有一個公共點(diǎn),
求坐標(biāo)原點(diǎn)到距離的比值.
【答案】(1)由對稱性知:是等腰直角,斜邊
點(diǎn)到準(zhǔn)線的距離
圓的方程為