九九热最新网址,777奇米四色米奇影院在线播放,国产精品18久久久久久久久久,中文有码视频,亚洲一区在线免费观看,国产91精品在线,婷婷丁香六月天

2020屆高三數(shù)學(xué)二輪復(fù)習(xí) 專題四 第3講空間向量與立體幾何教案

上傳人:艷*** 文檔編號:110236683 上傳時間:2022-06-17 格式:DOC 頁數(shù):12 大?。?63.50KB
收藏 版權(quán)申訴 舉報 下載
2020屆高三數(shù)學(xué)二輪復(fù)習(xí) 專題四 第3講空間向量與立體幾何教案_第1頁
第1頁 / 共12頁
2020屆高三數(shù)學(xué)二輪復(fù)習(xí) 專題四 第3講空間向量與立體幾何教案_第2頁
第2頁 / 共12頁
2020屆高三數(shù)學(xué)二輪復(fù)習(xí) 專題四 第3講空間向量與立體幾何教案_第3頁
第3頁 / 共12頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2020屆高三數(shù)學(xué)二輪復(fù)習(xí) 專題四 第3講空間向量與立體幾何教案》由會員分享,可在線閱讀,更多相關(guān)《2020屆高三數(shù)學(xué)二輪復(fù)習(xí) 專題四 第3講空間向量與立體幾何教案(12頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、第3講 空間向量與立體幾何 自主學(xué)習(xí)導(dǎo)引 真題感悟 1.(2020·陜西)如圖所示,在空間直角坐標系中有直三棱柱ABC-A1B1C1,CA=CC1=2CB,則直線BC1與直線AB1夾角的余弦值為 A.    B. C.    D. 解析 利用向量法求解. 不妨令CB=1,則CA=CC1=2. 可得O(0,0,0),B(0,0,1),C1(0,2,0),A(2,0,0),B1(0,2,1), ∴=(0,2,-1),=(-2,2,1), ∴cos〈,〉====>0. ∴與的夾角即為直線BC1與直線AB1的夾角, ∴直線BC1與直線AB1夾角的余弦值為.

2、 答案 A 2.(2020·遼寧)如圖,直三棱柱ABCA′B′C′,∠BAC=90°,AB=AC=λAA′,點M,N分別為A′B和B′C′的中點. (1)證明:MN∥平面A′ACC′; (2)若二面角A′MNC為直二面角,求λ的值. 解析 (1)證明 證法一 連接AB′,AC′,由已知∠BAC=90°,AB=AC,三棱柱ABCA′B′C′為直三棱柱,所以M為AB′的中點.又因為N為B′C′的中點,所以MN∥AC′.又MN?平面A′ACC′,AC′?平面A′ACC′,因此MN∥平面A′ACC′. 證法二 取A′B′的中點P,連接MP,NP.而M,N分別為AB′與B′C′的中

3、點,所以MP∥AA′,PN∥A′C′,所以MP∥平面A′ACC′,PN∥平面A′ACC′.又MP∩NP=P,因此平面MPN∥平面A′ACC′.而MN?平面MPN,所以MN∥平面A′ACC′. (2)以A為坐標原點,分別以直線AB,AC,AA′為x軸,y軸,z軸建立空間直角坐標系O-xyz,如圖所示. 設(shè)AA′=1,則AB=AC=λ,于是A(0,0,0),B(λ,0,0),C(0,λ,0),A′(0,0,1),B′(λ,0,1),C′(0,λ,1),所以M,N. 設(shè)m=(x1,y1,z1)是平面A′MN的法向量, 由得 可取m=(1,-1,λ). 設(shè)n=(x2,y2,z2)是平面

4、MNC的法向量, 由得 可取n=(-3,-1,λ). 因為A′-MN-C為直二面角,所以m·n=0. 即-3+(-1)×(-1)+λ2=0,解得λ=(負值舍去). 考題分析 應(yīng)用空間向量解決立體幾何問題是高考的必考考點,空間向量的工具性主要體現(xiàn)在平行與垂直的判定,求空間的角的大?。忸}時要特別注意避免計算失誤. 網(wǎng)絡(luò)構(gòu)建 高頻考點突破 考點一:利用向量證明平行與垂直 【例1】如圖所示,在底面是矩形的四棱錐P-ABCD中,PA⊥底面ABCD,E、F分別是PC、PD的中點,PA=AB=1,BC=2. 求證:(1)EF∥平面PAB; (2)平面PAD⊥平面PDC.

5、[審題導(dǎo)引] 建立空間直角坐標系后,使用向量的共線定理證明∥即可證明第(1)問,第(2)問根據(jù)向量的垂直關(guān)系證明線線垂直,進而證明線面垂直,得出面面垂直. [規(guī)范解答] 以A為原點,AB、AD、AP所在直線分別為x軸,y軸,z軸,建立空間直角坐標系如圖所示,則A(0,0,0),B(1,0,0),C(1,2,0),D(0,2,0),P(0,0,1),所以E為,F(xiàn)為 =,=(1,0,-1),=(0,2,-1),=(0,0,1),=(0,2,0),=(1,0,0),=(1,0,0). (1)因為=-,所以∥, 即EF∥AB. 又AB?平面PAB,EF?平面PAB, 所以EF∥平面PA

6、B. (2)因為·=(0,0,1)·(1,0,0)=0, ·=(0,2,0)·(1,0,0)=0, 所以⊥,⊥,即AP⊥DC,AD⊥DC. 又AP∩AD=A,AP?平面PAD,AD?平面PAD, 所以DC⊥平面PAD. 因為DC?平面PDC,所以平面PAD⊥平面PDC. 【規(guī)律總結(jié)】 用空間向量證明位置關(guān)系的方法 (1)線線平行:欲證直線與直線平行,只要證明它們的方向向量平行即可; (2)線面平行:用線面平行的判定定理,證明直線的方向向量與平面內(nèi)一條直線的方向向量平行;用共面向量定理,證明平面外直線的方向向量與平面內(nèi)兩相交直線的方向向量共面;證明直線的方向向量與平面的法向量

7、垂直; (3)面面平行:平面與平面的平行,除了用線面平行的判定定理轉(zhuǎn)化為線面平行外,只要證明兩平面的法向量平行即可; (4)線線垂直:直線與直線的垂直,只要證明兩直線的方向向量垂直; (5)線面垂直:用線面垂直的定義,證明直線的方向向量與平面內(nèi)的任意一條直線的方向向量垂直;用線面垂直的判定定理,證明直線的方向向量與平面內(nèi)的兩條相交直線的方向向量垂直;證明直線的方向向量與平面的法向量平行; (6)面面垂直:平面與平面的垂直,除了用面面垂直的判定定理轉(zhuǎn)化為線面垂直外,只要證明兩平面的法向量垂直即可. 【變式訓(xùn)練】 1.如圖所示,在底面是正方形的四棱錐P-ABCD中,PA⊥平面ABCD,

8、BD交AC于點E,F(xiàn)是PC的中點,G為AC上一點. (1)求證:BD⊥FG; (2)確定點G在線段AC上的位置,使FG∥平面PBD,并說明理由. 解析 (1)證明 以A為原點,AB、BD、PA所在的直線分別為x軸、y軸、z軸,建立空間直角坐標系A(chǔ)-xyz,如圖所示, 設(shè)正方形ABCD的邊長為1,則A(0,0,0),B(1,0,0),C(1,1,0),D(0,1,0), 設(shè)P(0,0,a)(a>0),G(m,m,0)(0<m<), 則E,F(xiàn). (1)=(-1,1,0),=, ·=-m++m-+0=0,所以BD⊥FG. (2)要使FG∥平面PBD,只需FG∥EP, 而=

9、, 由=λ,可得解得 所以G,所以=. 故當(dāng)AG=AC時,F(xiàn)G∥平面PBD. 考點二:利用向量求線線角、線面角 【例2】如圖所示,在四棱錐P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=2,AB=1,BM⊥PD于點M. (1)求證:AM⊥PD; (2)求直線CD與平面ACM所成角的余弦值. [審題導(dǎo)引] 建立坐標系,求出平面ACM的法向量,利用向量法求直線CD與平面ACM所成角的余弦值. [規(guī)范解答] (1)證明 ∵PA⊥平面ABCD, AB?平面ABCD, ∴PA⊥AB. ∵AB⊥AD,AD∩PA=A,AD?平面PAD, PA?平面PAD,

10、 ∴AB⊥平面PAD. ∵PD?平面PAD,∴AB⊥PD. ∵BM⊥PD,AB∩BM=B,AB?平面ABM, BM?平面ABM, ∴PD⊥平面ABM. ∵AM?平面ABM,∴AM⊥PD. (2)如圖所示,建立直角坐標系,則A(0,0,0),C(1,2,0), D(0,2,0),∴=(-1,0,0), 設(shè)M(0,y0,z0),∴=(0,y0,z0), ∵P(0,0,2),∴=(0,2,-2), =(0,y0,z0-2), 由⊥,得·=2y0-2z0=0, 即y0=z0, 又=λ,∴-2y0=2(z0-2),即-y0=z0-2, 解方程組得y0=z0=1,即M(0,

11、1,1), 設(shè)平面ACM的法向量為n=(x,y,z), 則令z=1,得n=(2,-1,1), ∴cos 〈,n〉==-, ∴直線CD與平面ACM成角的余弦值為 =. 【規(guī)律總結(jié)】 向量法求線線角、線面角的注意事項 (1)建立適當(dāng)?shù)闹苯亲鴺讼?,根?jù)對稱性原則,使盡可能多的點在坐標軸,易于求各點的坐標; (2)求直線與平面所成的角θ,主要通過直線的方向向量與平面的法向量的夾角α求得,即sin θ=|cos α|. 【變式訓(xùn)練】 2.(2020·山西四校模擬)在三棱錐M-ABC中,AB=2AC=2,MA=MB=,AB=4AN,AB⊥AC,平面MAB⊥平面ABC,S為BC的中點.

12、 (1)證明:CM⊥SN; (2)求SN與平面CMN所成角的大?。? 解析 (1)證明 取AB的中點O,連接MO,CO,SO, ∴MO⊥AB, ∵平面MAB⊥平面ABC,MO⊥平面ABC, 又AC⊥AB,OS∥AC,∴OS⊥AB, 以O(shè)為坐標原點,OB為x軸,OS為y軸,OM為z軸建立空間直角坐標系. 則C(-1,1,0),M,N,S, 所以=,=, 故·=0,即CM⊥SN. (2)由(1)知,=,=, 設(shè)平面CMN的法向量為n=(x,y,z), 則,得,令x=2, 則得平面CMN的一個法向量為n=(2,1,-2), 則|cos〈n,〉|=, 所以SN與平面

13、SMN所成角為. 考點三:利用向量求二面角 【例3】(2020·泉州模擬)如圖,在直三棱柱ABC-A1B1C1中,底面△ABC為等腰直角三角形,∠B=90°,D為棱BB1上一點,且面DA1C⊥面AA1C1C (1)求證:D為棱BB1的中點; (2)為何值時,二面角A-A1D-C的平面角為60°? [審題導(dǎo)引] (1)取AC的中點F,A1C的中點E,利用BDEF證明; (2)以D為原點建系,設(shè)出相關(guān)點的坐標,利用公式求解. [規(guī)范解答] (1)證明 過點D作DE⊥A1C于E點,取AC的中點F,連BF、EF. ∵面DA1C⊥面AA1C1C且相交于A1C,面DA1C內(nèi)的直線D

14、E⊥A1C, ∴直線DE⊥面AA1C1C. 又∵面BAC⊥面AA1C1C且相交于AC,易知BF⊥AC, ∴BF⊥面AA1C1C. 由此知:DE∥BF,從而有D,E,F(xiàn),B共面, 又易知BB1∥面AA1C1C,故有DB∥EF, 從而有EF∥AA1, 又點F是AC的中點,所以DB=EF=AA1=BB1, ∴D點為棱BB1的中點. (2)建立如圖所示的直角坐標系,設(shè)AA1=2b,AB=BC=a, 則D(0,0,b),A1(a,0,2b),C(0,a,0), 所以,=(a,0,b),=(0,a,-b), 設(shè)面DA1C的法向量為n=(x,y,z), 則,可取n=(b,-b,

15、-a), 又可取平面AA1DB的法向量 m==(0,a,0), cos〈n,m〉===-, 據(jù)題意有:=,解得:==. 【規(guī)律總結(jié)】 利用向量求二面角的注意事項 (1)兩平面的法向量的夾角不一定就是所求的二面角,有可能兩法向量夾角的補角為所求. (2)求平面的法向量的方法: ①待定系數(shù)法:設(shè)出法向量坐標,利用垂直關(guān)系建立坐標的方程解之. ②先確定平面的垂線,然后取相關(guān)線段對應(yīng)的向量,即確定了平面的法向量.當(dāng)平面的垂線較易確定時,常考慮此方法. 【變式訓(xùn)練】 3.(2020·北京東城二模)如圖,矩形AMND所在的平面與直角梯形MBCN所在的平面互相垂直,MB∥NC,MN⊥

16、MB,且MC⊥CB,BC=2,MB=4,DN=3. (1)求證:AB∥平面DNC; (2)求二面角D-BC-N的余弦值. 解析 (1)證明 因為MB∥NC,MB?平面DNC,NC?平面DNC, 所以MB∥平面DNC. 因為AMND為矩形,所以MA∥DN. 又MA?平面DNC,DN?平面DNC, 所以MA∥平面DNC. 又MA∩MB=M,且MA,MB?平面AMB, 所以平面AMB∥平面DNC. 又AB?平面AMB,所以AB∥平面DNC. (2)由已知平面AMND⊥平面MBCN,且平面AMND∩平面MBCN=MN,DN⊥MN,所以DN⊥平面MBCN,又MN⊥NC,故以點N

17、為坐標原點,建立空間直角坐標系N-xyz. 由已知得MC=2,∠MCN=30°, 易得MN=,NC=3. 則D(0,0,3),C(0,3,0),B(,4,0). =(0,3,-3),=(,1,0). 設(shè)平面DBC的法向量n1=(x,y,z), 則即 令x=-1,則y=,z=. 所以n1=(-1,,). 又n2=(0,0,1)是平面NBC的一個法向量, 所以cos〈n1,n2〉===. 故所求二面角D-BC-N的余弦值為. 名師押題高考 【押題1】如圖,已知三棱柱ABC-A1B1C1的各條棱長都相等,且CC1⊥底面ABC,M是側(cè)棱CC1的中點,則異面直線AB1和BM

18、所成的角為 A.          B. C. D. 解析 由題意可知該三棱柱為正三棱柱,設(shè)其棱長為2,=a,=b,=c,則|a|=|b|=|c|=2,且〈a,c〉=,〈a,b〉=〈b,c〉=,所以a·c=2×2×cos =2,a·b=b·c=0.而=b-a,=c+b,所以·=(b-a)·=b·c+b2-a·c-a·b=0,故〈,〉=,即異面直線AB1與BM所成的角為. 答案 A [押題依據(jù)] 空間向量與立體幾何相結(jié)合是高考的一個熱點問題,空間向量在高考試題中的出現(xiàn)主要體現(xiàn)其工具性,獨立命題的可能性很小,一般用以解決立體幾何中的線面位置關(guān)系的證明,求空間角的大小及空

19、間的距離. 【押題2】在四棱錐P-ABCD中,側(cè)面PCD⊥底面ABCD,PD⊥CD,底面ABCD是直角梯形,AB∥CD,∠ADC=90°,AB=AD=PD=1,CD=2. (1)求證:BC⊥平面PBD; (2)設(shè)E為側(cè)棱PC上一點,=λ,試確定λ的值,使得二面角E-BD-P的大小為45°. 解析 (1)證明 因為側(cè)面PCD⊥底面ABCD,PD⊥CD,所以PD⊥底面ABCD,所以PD⊥AD.又因為∠ADC=90°,即AD⊥CD,以D為原點建立如圖所示的空間直角坐標系, 則A(1,0,0),B(1,1,0),C(0,2,0),P(0,0,1), 所以=(1,1,0),=(-1,

20、1,0). 所以·=0,所以BC⊥DB. 由PD⊥底面ABCD,可得PD⊥BC, 又因為PD∩DB=D,所以BC⊥平面PBD. (2)由(1)知平面PBD的一個法向量為=(-1,1,0),且P(0,0,1),C(0,2,0),所以=(0,2,-1),又=λ,所以E(0,2λ,1-λ),=(0,2λ,1-λ). 設(shè)平面EBD的法向量為n=(a,b,c), 因為=(1,1,0), 由n·=0,n·=0, 得, 令a=-1,則可得平面EBD的一個法向量為 n=,所以cos =, 解得λ=-1或λ=--1, 又由題意知λ∈(0,1),故λ=-1. [押題依據(jù)] 高考對立體幾何的考查,主要以柱體、錐體或其組合體為載體,考查線面位置關(guān)系的判定與證明,求空間角的大小等,但有時也會給出位置關(guān)系或角的大小,求使其成立的充分條件,即所謂的探索性問題,此類問題利用空間向量解決則更加方便.本題立意新穎,考查全面,難度適中,故押此題.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!