《高考數(shù)學沖刺復習 精練2》由會員分享,可在線閱讀,更多相關(guān)《高考數(shù)學沖刺復習 精練2(4頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、數(shù)學沖刺復習
數(shù)學精練(2)
1 .已知點是以為焦點的橢圓上一點,且則該橢圓的離心率等于________.
【答案】
【解析】因為所以,又因為所以可設(shè),則,,所以由橢圓的定義知:,又因為,所以離心率
.
2. 設(shè)、滿足約束條件 ,若目標函數(shù)的最大值為6,則的最小值為 .
【答案】2
【解析】畫出不等式組表示的平面區(qū)域,可知當直線經(jīng)過點(2,4)時,z取最大值,所以,即,所以
+=3,所以=2,故的最小值為2.
3.已知函數(shù)在區(qū)間上恒有,則實數(shù)的取值范圍是 。
【答案】
2、
【解析】當時, 函數(shù)在區(qū)間上是減函數(shù),所以,即,解得;當時, 函數(shù)在區(qū)間上是增函數(shù),所以,即,解得,此時無解.綜上所述,
實數(shù)的取值范圍是.
4.給出下列五個命題:①當時,有;②中,是成立的充分必要條件;③函數(shù)的圖像可以由函數(shù)(其中)的圖像通過平移得到;④已知是等差數(shù)列的前n項和,若,則;⑤函數(shù)與函數(shù)的圖像關(guān)于直線對稱。其中正確命題的序號為 。
【答案】②③④
【解析】對①,可以為負,故錯誤.
5.已知點是以為焦點的橢圓上一點,且則該橢圓的離心率等于________.
【答案】
【解析】因為所以,又因為所以可設(shè),則,,所以由橢圓的定義知:,又因為,所以離
3、心率
.
6. 設(shè)、滿足約束條件 ,若目標函數(shù)的最大值為6,則的最小值為 .
【答案】2
【解析】畫出不等式組表示的平面區(qū)域,可知當直線經(jīng)過點(2,4)時,z取最大值,所以,即,所以
+=3,所以=2,故的最小值為2.
7.已知函數(shù)在區(qū)間上恒有,則實數(shù)的取值范圍是 。
【答案】
【解析】當時, 函數(shù)在區(qū)間上是減函數(shù),所以,即,解得;當時, 函數(shù)在區(qū)間上是增函數(shù),所以,即,解得,此時無解.綜上所述,
實數(shù)的取值范圍是.
8.給出下列五個命題:①當時,有;②中,是成立的充分必要條件;③函數(shù)的圖像可以由函數(shù)(其中)的圖像通過平移得到;④已知
4、是等差數(shù)列的前n項和,若,則;⑤函數(shù)與函數(shù)的圖像關(guān)于直線對稱。其中正確命題的序號為 。
【答案】②③④
【解析】對①,可以為負,故錯誤.
9.已知在上是奇函數(shù),且滿足當時,,則等于 ( )
A. B.2 C. D. 98
【答案】A
【解析】因為所以,所以4是的周期,所以===-2,故選A.
10.對任意的實數(shù),記,若,其中奇函數(shù)在時有極小值,是正比例函數(shù),函數(shù)與函數(shù)的圖象如圖所示,則下列關(guān)于函數(shù)的說法中,正確的是( )
A.為奇函數(shù)
B.有極大值且有極小值
C.的最小值為且最大值為
D.在上不是單調(diào)函數(shù)
【答案】D
【解析】因為,,由是奇函數(shù),其圖象關(guān)于原點對稱,故可知,選項D正確.