《2020屆高考數(shù)學(xué)總復(fù)習(xí) 課時跟蹤練(四十)直接證明與間接證明 文(含解析)新人教A版》由會員分享,可在線閱讀,更多相關(guān)《2020屆高考數(shù)學(xué)總復(fù)習(xí) 課時跟蹤練(四十)直接證明與間接證明 文(含解析)新人教A版(5頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、課時跟蹤練(四十)
A組 基礎(chǔ)鞏固
1.若a,b,c為實數(shù),且a<b<0,則下列命題正確的是( )
A.a(chǎn)c2<bc2 B.a(chǎn)2>ab>b2
C.< D.>
解析:a2-ab=a(a-b),
因為a<b<0,所以a-b<0,
所以a2-ab>0,
所以a2>ab.①
同理,ab>b2,②
由①②得a2>ab>b2.
答案:B
2.已知f(x)是定義在R上的奇函數(shù),且當x≥0時,f(x)單調(diào)遞減,若x1+x2>0,則f(x1)+f(x2)的值( )
A.恒為負值 B.恒等于零
C.恒為正值 D.無法確定正負
解析:由f(x)是定義在R上的奇函
2、數(shù),且當x≥0時,f(x)單調(diào)遞減,可知f(x)是R上的單調(diào)遞減函數(shù),由x1+x2>0,可知x1>-x2,f(x1)1,a=-,b=-,則以下結(jié)論正確的是( )
A.a(chǎn)>b B.a(chǎn)+>0(m>1),
所以<,即a
3、>0 D.(a-b)(a-c)<0
解析:由題意知<a?b2-ac<3a2?(a+c)2-ac<3a2?a2+2ac+c2-ac-3a2<0?-2a2+ac+c2<0?2a2-ac-c2>0?(a-c)(2a+c)>0?(a-c)(a-b)>0.
答案:C
5.設(shè)a,b是兩個實數(shù),給出下列條件:
①a+b>1;②a+b=2;③a+b>2;④a2+b2>2;⑤ab>1.其中能推出“a,b中至少有一個大于1”的條件是( )
A.②③ B.①②③ C.③ D.③④⑤
解析:若a=,b=,則a+b>1,但a<1,b<1,故①推不出;若a=b=1,則a+b=2,但不
4、滿足a,b中至少有一個大于1,故②推不出;
若a=-2,b=-3,則a2+b2>2,但a<1,b<1,故④推不出;
若a=-2,b=-3,則ab>1,但a<1,b<1,故⑤推不出.
對于③,若a+b>2,則“a,b中至少有一個大于1”成立.
證明(反證法):假設(shè)a≤1且b≤1,則a+b≤2,與a+b>2矛盾.
因此假設(shè)不成立,故a,b中至少有一個大于1.故選C.
答案:C
6.用反證法證明“若x2-1=0,則x=-1或x=1”時,應(yīng)假設(shè)為________.
解析:“x=-1或x=1”的否定是“x≠-1且x≠1”.
答案:x≠-1且x≠1
7.[一題多解]設(shè)a>b>0,m=-
5、,n=,則m,n的大小關(guān)系是________.
解析:法一(取特殊值法) 取a=2,b=1,得m?a0,顯然成立.
答案:m
6、x+ycos B+cos A=0平行,求證:△ABC是直角三角形.
證明:法一 由兩直線平行可知bcos B-acos A=0,由正弦定理可知sin Bcos B-sin Acos A=0,即sin 2B-sin 2A=0,故2A=2B或2A+2B=π,即A=B或A+B=.若A=B,則a=b,cos A=cos B,兩直線重合,不符合題意,故A+B=,即△ABC是直角三角形.
法二 由兩直線平行可知bcos B-acos A=0,
由余弦定理,得a·=b·,
所以a2(b2+c2-a2)=b2(a2+c2-b2),
所以c2(a2-b2)=(a2+b2)(a2-b2),
所以(a2
7、-b2)(a2+b2-c2)=0,所以a=b或a2+b2=c2,
若a=b,則兩直線重合,不符合題意,
故a2+b2=c2,即△ABC是直角三角形.
10.已知△ABC的三個內(nèi)角A,B,C成等差數(shù)列,A,B,C的對邊分別為a,b,c.
求證:+=.
證明:要證+=,
即證+=3,也就是證+=1,
只需證c(b+c)+a(a+b)=(a+b)(b+c),
需證c2+a2=ac+b2,
又△ABC三內(nèi)角A,B,C成等差數(shù)列,故B=60°,
由余弦定理,得b2=c2+a2-2accos 60°,
即b2=c2+a2-ac,故c2+a2=ac+b2成立.
于是原等式成立.
B
8、組 素養(yǎng)提升
11.已知函數(shù)f(x)=,a,b是正實數(shù),A=f,B=f(),C=f,則A,B,C的大小關(guān)系為( )
A.A≤B≤C B.A≤C≤B
C.B≤C≤A D.C≤B≤A
解析:因為≥≥,又f(x)=在R上是減函數(shù).所以f≤f()≤f,即A≤B≤C.
答案:A
12.(2019·武漢模擬)已知a,b,c∈R,若·>1且+≥-2,則下列結(jié)論成立的是( )
A.a(chǎn),b,c同號
B.b,c同號,a與它們異號
C.a(chǎn),c同號,b與它們異號
D.b,c同號,a與b,c的符號關(guān)系不確定
解析:由·>1知與同號,若>0且>0,不等式+≥-2顯然成立,若<0且<0,則
9、->0,->0,+≥2>2,即+<-2,這與+≥-2矛盾,故>0且>0,即a,b,c同號.故選A.
答案:A
13.如果a+b>a+b,則a,b應(yīng)滿足的條件是________.
解析:a+b>a+b,即(-)2(+)>0,需滿足a≥0,b≥0且a≠b.
答案:a≥0,b≥0且a≠b
14.若f(x)的定義域為[a,b],值域為[a,b](a<b),則稱函數(shù)f(x)是[a,b]上的“四維光軍”函數(shù).
(1)設(shè)g(x)=x2-x+是[1,b]上的“四維光軍”函數(shù),求常數(shù)b的值;
(2)是否存在常數(shù)a,b(a>-2),使函數(shù)h(x)=是區(qū)間[a,b]上的“四維光軍”函數(shù)?若存在.求出a,b的值;若不存在,請說明理由.
解:(1)由題設(shè)得g(x)=(x-1)2+1,其圖象的對稱軸為x=1,區(qū)間[1,b]在對稱軸的右邊,所以函數(shù)在區(qū)間[1,b]上單調(diào)遞增.由“四維光軍”函數(shù)的定義可知,g(1)=1,g(b)=b,
即b2-b+=b,解得b=1或b=3.
因為b>1,所以b=3.
(2)假設(shè)函數(shù)h(x)=在區(qū)間[a,b](a>-2)上是“四維光軍”函數(shù),
因為h(x)=在區(qū)間(-2,+∞)上單調(diào)遞減,
所以有即
解得a=b,這與已知矛盾.故不存在.
5