九九热最新网址,777奇米四色米奇影院在线播放,国产精品18久久久久久久久久,中文有码视频,亚洲一区在线免费观看,国产91精品在线,婷婷丁香六月天

2023屆大一輪復習 第15練 三角恒等變換(Word版含解析)

上傳人:新** 文檔編號:132953492 上傳時間:2022-08-09 格式:DOCX 頁數(shù):13 大?。?5.78KB
收藏 版權申訴 舉報 下載
2023屆大一輪復習 第15練 三角恒等變換(Word版含解析)_第1頁
第1頁 / 共13頁
2023屆大一輪復習 第15練 三角恒等變換(Word版含解析)_第2頁
第2頁 / 共13頁
2023屆大一輪復習 第15練 三角恒等變換(Word版含解析)_第3頁
第3頁 / 共13頁

下載文檔到電腦,查找使用更方便

12 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2023屆大一輪復習 第15練 三角恒等變換(Word版含解析)》由會員分享,可在線閱讀,更多相關《2023屆大一輪復習 第15練 三角恒等變換(Word版含解析)(13頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、2023屆大一輪復習 第15練 三角恒等變換 一、選擇題(共29小題) 1. 若已知 cos2α=12,其中 α∈?π4,0,則 sinα 的值為 ?? A. 12 B. ?12 C. 32 D. ?32 2. 若 cos2θ=14,則 sin2θ+2cos2θ 的值為 ?? A. 78 B. 1932 C. 138 D. 32 3. 已知 sinx+cosx=325,則 sin2x= ?? A. 1825 B. 725 C. ?725 D. ?1625 4. sin20°cos10°+cos20°sin10°= ?? A. 12

2、B. 32 C. ?12 D. ?32 5. cos2π8?sin2π8 等于 ?? A. 0 B. 22 C. 1 D. ?22 6. 若 cosα=?45,α 是第二象限的角,則 cosα+π4 等于 ?? A. ?210 B. 22 C. ?7210 D. 7210 7. 已知 tanx=?34,則 tan2x 等于 ?? A. 724 B. ?724 C. 247 D. ?247 8. 已知 tanα=2,tanα+β=?1,則 tanβ= ?? A. 3 B. 1 C. ?1 D. ?3 9. 若 sinα=35,且

3、 α∈π2,π,則 tanα+π4= ?? A. ?34 B. 34 C. 7 D. 17 10. 已知角 α 的頂點在坐標原點 O,始邊與 x 軸的非負半軸重合,將角 α 的終邊繞點 O 順時針旋轉(zhuǎn) π3 后,經(jīng)過點 ?3,4,則 sinα= ?? A. 33+410 B. 4?3310 C. 33?410 D. ?4+3310 11. 已知角 α 的頂點在坐標原點,始邊與 x 軸的非負半軸重合,終邊經(jīng)過點 P3,4,則 cos2α+βcosβ+sin2α+βsinβ 的值是 ?? A. ?925 B. 725 C. ?725 D. 925 12

4、. 函數(shù) y=sin2x+π4+sin2x?π4 的最小值為 ?? A. 2 B. ?2 C. ?2 D. 3 13. 函數(shù) fx=sin2x+3sinxcosx 在區(qū)間 π4,π2 上的最大值是 ?? A. 1 B. 1+32 C. 32 D. 1+3 14. 函數(shù) y=12+sinx+cosx 的最大值是 ?? A. 22?1 B. ?22?1 C. 1?22 D. 1+22 15. sinπ4+αcosπ4+β 化為和差的結果是 ?? A. 12sinα+β+12cosα?β B. 12cosα+β+12sinα?β C. 12sinα+

5、β+12sinα?β D. 12cosα+β+12cosα?β 16. 若 3cosπ2?θ+cosπ+θ=0,則 cos2θ+12sin2θ 的值是 ?? A. ?65 B. ?45 C. 65 D. 45 17. 若 ?2π<α0 B. cos2α<0 C. sin2α>0 D. sin2α<0 19. 已知 sinθ+sinθ+π3=1,則 sinθ

6、+π6= ?? A. 12 B. 33 C. 23 D. 22 20. 已知 α∈0,π,且 3cos2α?8cosα=5,則 sinα= ?? A. 53 B. 23 C. 13 D. 59 21. 若 sinα=13,則 cos2α= ?? A. 89 B. 79 C. ?79 D. ?89 22. 已知 sinα,cosα 是方程 5x2?5x?2=0 的兩個實根,且 α∈0,π,則 cosα+π4= ?? A. 1010 B. ?1010 C. 31010 D. ?31010 23. 若 sinα+cosα=13,0<α<

7、π,則 sin2α+cos2α= ?? A. ?8?179 B. ?8±179 C. ?8+179 D. 8+179 24. 已知函數(shù) fx=sin∣2x∣+2∣sinx∣cosx,給出下列四個命題: ① fx 是偶函數(shù) ② fx 在區(qū)間 π4,π2 上單調(diào)遞增 ③ fx 在 ?2π,2π 有 7 個零點 ④ fx 的最大值為 2 其中真命題的個數(shù)是 ?? A. 0 B. 1 C. 2 D. 3 25. 已知函數(shù) fx=sinωx+3cosωxω>0,x1,x2 為函數(shù) fx 的兩個極值點,若 x1?x2 的最小值為 π2,則 ?? A.

8、 fx 在 ?5π12,π12 上單調(diào)遞減 B. fx 在 ?5π12,π12 上單調(diào)遞增 C. fx 在 ?2π3,π3 上單調(diào)遞減 D. fx 在 ?2π3,π3 上單調(diào)遞增 26. 若 cosα+β=35,sinβ?π4=513,α,β∈0,π2,則 cosα+π4= ?? A. ?3365 B. 3365 C. 5665 D. ?1665 27. 已知 2tanθ?tanθ+π4=7,則 tanθ= ?? A. ?2 B. ?1 C. 1 D. 2 28. 已知 α∈0,π2,2sin2α=cos2α+1,則 sinα= ??

9、 A. 15 B. 55 C. 33 D. 255 29. 若 fx=cosx?sinx 在 0,a 是減函數(shù),則 a 的最大值是 ?? A. π4 B. π2 C. 3π4 D. π 二、選擇題(共4小題) 30. 函數(shù) y=sinxcosx+3cos2x?3 的圖象的一個對稱中心為 ?? A. π3,?32 B. 5π6,?32 C. ?2π3,32 D. 2π3,?3 31. 在 △ABC 中,C=120°,tanA+tanB=233,下列各式正確的是 ?? A. A+B=2C B. tanA+B=?3 C. tanA=tanB D.

10、cosB=3sinA 32. 已知 α,β 是銳角,cosα=55,cosα?β=31010,則 cosβ= ?? A. 22 B. 7210 C. 210 D. ?22 33. 設函數(shù) fx=sin2x+π4+cos2x+π4,則 fx ?? A. 是偶函數(shù) B. 在區(qū)間 0,π2 上單調(diào)遞增 C. 最大值為 2 D. 其圖象關于點 π4,0 對稱 三、填空題(共5小題) 34. 已知 tanα=3,tanβ=2,則 tanα?β 等于 ?. 35. 在平面直角坐標系中,已知一個角 α 的頂點在坐標原點

11、,始邊與 x 軸的非負半軸重合,終邊經(jīng)過點 P5,?12,則 sin2α= ?. 36. 已知 cosα+β=15,cosα?β=35,則 tanαtanβ 的值為 ?. 37. 若 π4

12、?2sin2α,cos2α=12, 所以 sinα=±1?cos2α2=±12. 因為 α∈?π4,0,所以 sinα=?12. 2. C 【解析】sin2θ+2cos2θ=1?cos2θ2+2×1+cos2θ2=32+cos2θ2=32+18=138, 故選:C. 3. C 【解析】sinx+cosx=325?sinx+cosx2=1825?1+2sinxcosx=1825?sin2x=?725, 故選C. 4. A 【解析】sin20°cos10°+cos20°sin10°=sin20°+10°=sin30°=12,故選A. 5. B 【解析】根據(jù)余弦的

13、二倍角公式可得 cos2π8?sin2π8=cosπ4=22,故選B. 6. C 【解析】因為 α 是第二象限角, 所以 sinα=1?cos2α=35, 因此, cosα+π4=cosαcosπ4?sinαsinπ4=?45×22?35×22=?7210. 故選:C. 7. D 【解析】tan2x=2tanx1?tan2x=2×?341??342=?247. 8. A 【解析】tanα+β=tanα+tanβ1?tanα?tanβ, 代入 tanα=2, 得:2+tanβ1?2tanβ=?1, 解得:tanβ=3. 故選:A. 9. D 【解析】若

14、 sinα=35,且 α∈π2,π,則 cosα=?1?sin2α=?1?352=?45, 所以 tanα=sinαcosα=35?45=?34, 故 tanα+π4=tanα+tanπ41?tanαtanπ4=?34+11??34×1=17. 故選:D. 10. B 【解析】因為角 α 的終邊按順時針方向旋轉(zhuǎn) π3 后得到的角為 α?π3, 所以由三角函數(shù)的定義,可得:cosα?π3=?3?32+42=?35,sinα?π3=4?32+42=45, 所以 sinα=sinα?π3+π3=sinα?π3cosπ3+cosα?π3sinπ3=45×12+?35×32=4?33

15、10, 故選:B. 11. C 【解析】由題意知,cosα=332+42=35, cos2α+βcosβ+sin2α+βsinβ=cos2α+β?β=cos2α=2cos2α?1=1825?1=?725. 故選:C. 12. C 【解析】原式=sin2x+π4+sin2x?π4=sin2xcosπ4+cos2xsinπ4+sin2xcosπ4?cos2xsinπ4=2sin2x, 所以 y 的最小值為 ?2. 13. C 【解析】由 fx=1?cos2x2+32sin2x=12+sin2x?π6, 因為 π4≤x≤π2?π3≤2x?π6≤5π6, 所以 fx

16、max=12+1=32,故選C. 14. D 【解析】y=12+sinx+cosx=12+2sinx+π4≤12?2=2+22. 15. B 16. C 【解析】因為 3cosπ2?θ+cosπ+θ=0, 由誘導公式可得 3sinθ?cosθ=0,即 tanθ=13, 所以 cos2θ+12sin2θ=cos2θ+sinθcosθsin2θ+cos2θ=1+tanθ1+tan2θ=1+131+19=65. 故選:C. 17. D 【解析】1?cosα?π2=1+cosα2=cosα2. 因為 ?2π<α

17、α2<0,所以 cosα2=?cosα2. 18. D 【解析】α 為第四象限角, 則 ?π2+2kπ<α<2kπ,k∈Z, 則 ?π+4kπ<2α<4kπ, 所以 2α 是第三或第四象限角或為 y 軸負半軸上的角, 所以 sin2α<0. 19. B 【解析】因為 sinθ+sinθ+π3=1, 所以 sinθ+12sinθ+32cosθ=1, 即 32sinθ+32cosθ=1,得 312cosθ+32sinθ=1, 即 3sinθ+π6=1,得 sinθ+π6=33. 故選:B. 20. C 【解析】由 3cos2α?8cosα=5,得 32cos2α?

18、1?8cosα?5=0, 即 3cos2α?4cosα?4=0,解得 cosα=2(舍去),或 cosα=?23. 因為 α∈0,π, 所以 α∈π2,π, 則 sinα=1?cos2α=1??232=53. 故選:A. 21. B 【解析】因為 sinα=13, 所以 cos2α=1?2sin2α=1?2×19=79. 故選:B. 22. D 【解析】因為 sinα,cosα 是方程 5x2?5x?2=0 的兩個實根, 所以 sinα+cosα=55,sinα?cosα=?25, 因為 α∈0,π,且 sinα?cosα<0,所以 sinα>0 且 cosα<0

19、, 所以 cosα?sinα<0, 所以 cosα+π4=cosαcosπ4?sinαsinπ4=22cosα?sinα=?22cosα?sinα2=?22cosα+sinα2?4sinα?cosα=?22552+4×25=?22×355=?31010. 23. A 【解析】因為 sinα+cosα=13,???① 所以 1+2sinαcosα=19,即 2sinαcosα=sin2α=?89, 所以 1?2sinαcosα=sinα?cosα2=179. 因為 sinαcosα<0,且 0<α<π, 所以 sinα>0,cosα<0, 所以 sinα?cosα=17

20、3. ① × ②變形得 cos2α?sin2α=cos2α=?179, 所以 sin2α+cos2α=?89?179=?8?179. 故選:A. 24. C 【解析】因為 f?x=sin∣2x∣+2sin∣x∣cosx=fx,故 fx 為 R 上的偶函數(shù),故①正確. 當 x≥0 時,fx=sin2x+2∣sinx∣cosx=2sin2x,sinx≥00,sinx<0, 又在 0,+∞ 上,fx=fx+2π 總成立,故可考慮 fx 在 0,2π 上的圖象和性質(zhì). 又 fx=2sin2x,x∈0,π0,x∈π,2π, 其圖象如下: 由圖象可知④對,②錯, 而 fx 在

21、?2π,2π 有無數(shù)個零點,故③錯, 故選:C. 25. B 【解析】函數(shù)的解析式 fx=2sinωx+π3, 由題意可得:T2=π2?T=π, 即 2πω,則 ω=2, 函數(shù)的解析式為:fx=2sin2x+π3, 由 2kπ?π2≤2x+π3≤2kπ+π2, 即 kπ?512π≤x≤kπ+π12k∈Z, 令 k=0 可得函數(shù)的一個單調(diào)遞增區(qū)間為 ?512π,π12, 2kπ+π2≤2x+π3≤2kπ+3π2, 即 kπ+π12≤x≤kπ+7π12k∈Z, 不存在滿足題意的單調(diào)減區(qū)間. 故選:B. 26. C 【解析】因為 α+β?β?π4=α+π4, 所

22、以 cosα+π4=cosα+β?β?π4=cosα+β?cosβ?π4+sinα+β?sinβ?π4, 因為 α?β∈0,π2, 所以 0<α+β<π,?π2<β?π4<π2, 所以 sinα+β=45,cosβ?π4=1213, 所以 cosα+π4=35?1213+45?513=5665, 故選:C. 27. D 【解析】由 2tanθ?tanθ+π4=7,得 2tanθ?tanθ+11?tanθ=7, 即 2tanθ?2tan2θ?tanθ?1=7?7tanθ, 得 2tan2θ?8tanθ+8=0, 即 tan2θ?4tanθ+4=0, 即 tanθ?2

23、2=0, 則 tanθ=2, 故選:D. 28. B 【解析】因為 2sin2α=cos2α+1, 所以可得:4sinαcosα=2cos2α, 因為 α∈0,π2,sinα>0,cosα>0, 所以 cosα=2sinα, 因為 sin2α+cos2α=sin2α+2sinα2=5sin2α=1, 所以解得:sinα=55. 故選:B. 29. C 【解析】fx=cosx?sinx=?sinx?cosx=?2sinx?π4, 由 ?π2+2kπ≤x?π4≤π2+2kπ,k∈Z, 得 ?π4+2kπ≤x≤3π4+2kπ,k∈Z, 取 k=0,得 fx 的一個減

24、區(qū)間為 ?π4,3π4, 由 fx 在 0,a 是減函數(shù),得 a≤3π4. 則 a 的最大值是 3π4. 30. A, B 【解析】y=12sin2x+321+cos2x?3=12sin2x+32cos2x?32=sin2x+π3?32, 令 2x+π3=kπ,x=kπ2?π6k∈Z, 當 k=1 時,x=π3,對稱中心是 π3,?32; 當 k=2 時,x=5π6,對稱中心是 5π6,?32. 故答案為:AB. 31. C, D 【解析】因為 C=120°, 所以 A+B=60°, 所以 2A+B=C, 所以 tanA+B=3, 所以選項A,B錯誤;

25、 因為 tanA+tanB=31?tanA?tanB=233, 所以 tanA?tanB=13,???① 又 tanA+tanB=233,???② 所以聯(lián)立①②解得 tanA=tanB=33, 所以 cosB=3sinA,故選項C,D正確; 故選:CD. 32. A, C 【解析】由 α 是銳角,cosα=55,則 sinα=1?cos2α=255, 又 α,β 是銳角,則 ?β∈?π2,0,得 α?β∈?π2,π2, 又 cosα?β=31010,則 sinα?β=±1010, 則 cosβ=cosα?α?β=cosαcosα?β+sinαsinα?β=55×

26、31010±255×1010=32±2210. 得 cosβ=22 或 cosβ=210. 故選:AC. 33. A, D 【解析】fx=sin2x+π4+cos2x+π4=2sin2x+π4+π4=2cos2x 選項A:f?x=2cos?2x=2cos2x=fx,它是偶函數(shù),正確; 選項B:x∈0,π2,所以 2x∈0,π,因此 fx 是單調(diào)遞減,錯誤; 選項C:fx=2cos2x 的最大值為 2,錯誤; 選項D:函數(shù)的對稱中心為 kπ2+π4,0,k∈Z,當 k=0,圖象關于點 π4,0 對稱,正確. 34. 17 【解析】由兩角差的正切公式得 tanα

27、?β=tanα?tanβ1+tanαtanβ=3?21+3×2=17. 35. ?120169 【解析】因為一個角 α 的頂點在坐標原點,始邊與 x 軸的非負半軸重合,終邊經(jīng)過點 P5,?12, 所以由三角函數(shù)定義可得得 sinα=?1225+144=?1213,cosα=525+144=513. 則由正弦二倍角公式可得 sin2α=2sinα?cosα=?120169. 故答案為:?120169. 36. 12 【解析】因為 cosα+β=cosαcosβ?sinαsinβ=15,cosα?β=cosαcosβ+sinαsinβ=35, 所以 cosαcosβ=25,si

28、nαsinβ=15, 相除可得 tanαtanβ=1525=12. 故答案為 12. 37. ?16 【解析】因為 π41, 所以 y=2×2tanx1?tan2x?tan3x=4tan4x1?tan2x, 所以 1y=141tan4x?1tan2x. 令 t=1tan2x,則 t∈0,1, 所以 1y=14t2?t=14t?122?14. 當 t=12 時,1y 最小值為 ?116, 所以 ?116≤1y<0, 所以 y≤?16. 即 y 的最大值為 ?16. 38. 5,1010 【解析】fx=2sinx?cosx=5sinx?φ,其中 sinφ=55,cosφ=255, 則 fθ=5sinθ?φ=5,即 sinθ?φ=1, 所以 θ?φ=π2+2kπk∈Z,即 θ=φ+π2+2kπk∈Z, 所以 sinθ+π4=sinφ+π2+2kπ+π4=?sinφ?π4=?sinφcosπ4+cosφsinπ4=?55×22+255×22=1010. 故答案為:5;1010. 第13頁(共13 頁)

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!