喜歡就充值下載吧。。。資源目錄里展示的全都有,,下載后全都有,所見即所得,CAD圖紙均為高清圖可自行編輯,文檔WORD都可以自己編輯的哦,有疑問咨詢QQ:1064457796,,,課題后的【XX系列】為整理分類用,與內(nèi)容無關(guān),請忽視
廣西工學(xué)院鹿山學(xué)院本科生畢業(yè)設(shè)計
摘要
汽車轉(zhuǎn)向系統(tǒng)是決定汽車操縱穩(wěn)定性和主動安全性的關(guān)鍵。轉(zhuǎn)向器是轉(zhuǎn)向系統(tǒng)的重要組成部分。它的作用是:增大轉(zhuǎn)向盤傳到轉(zhuǎn)向傳動機構(gòu)的力和改變力的傳遞方向。而轉(zhuǎn)向器中的類型中,齒輪齒條式轉(zhuǎn)向器由于其自身的特點被廣泛應(yīng)用于各種汽車上。本設(shè)計選擇BJ121型輕型載貨汽車為車型,設(shè)計齒輪齒條式轉(zhuǎn)向器。其主要內(nèi)容有介紹轉(zhuǎn)向器的設(shè)計參數(shù),齒輪齒條及其他零件的設(shè)計、校核。
關(guān)鍵詞:齒輪齒條;設(shè)計;轉(zhuǎn)向器;校核
Abstract
The steering system is to determine the vehicle handing and stability and active safety
the key. The steering is an important part of the steering system. Its role is to increase the
steerting wheel to spread the force of the steering linkage and change the direction of force
transmission. Type of steering gear, rack and pinion steering gear because of its characteristics are widely used in a variety of vehicle. This design choice the BJ121 light
tuck models, the design of rack and pinion steering. Its main design parameters introduce
steering rack and pinion and other parts of the design.
Key Words: rack and pinion; design; steering; check.
34
目錄
1 引言 1
2 齒輪齒條式轉(zhuǎn)向器設(shè)計方案選擇 2
2.1 轉(zhuǎn)向系統(tǒng)的簡介 2
2.1.1 轉(zhuǎn)向操縱機構(gòu) 2
2.1.2 轉(zhuǎn)向傳動機構(gòu) 3
2.2 轉(zhuǎn)向系統(tǒng)的設(shè)計要求 4
2.3 轉(zhuǎn)向器 5
2.4 對轉(zhuǎn)向器的要求 7
2.5 轉(zhuǎn)向系的主要性能參數(shù)介紹 7
2.5.1 轉(zhuǎn)向器傳動效率 7
2.5.2 轉(zhuǎn)向盤自由行程 9
2.5.3 轉(zhuǎn)向器角傳動比的變化規(guī)律 9
2.5.4 轉(zhuǎn)向器的傳動間隙 9
2.5.5 轉(zhuǎn)向系的剛度 10
2.5.6 轉(zhuǎn)向阻力矩 10
2.5.7 傳動比 11
2.5.8 轉(zhuǎn)向梯形 11
3 轉(zhuǎn)向系統(tǒng)的計算 16
4 齒輪齒條的設(shè)計 20
4.1 齒輪的設(shè)計 20
4.2 齒條的設(shè)計 20
5 齒輪齒條的校核 21
5.1 齒輪彎曲疲勞強度計算 21
5.1.1 計算許用彎曲應(yīng)力 21
5.1.2 計算齒根彎曲強度并校核 21
5.2 齒面接觸強度校核 22
5.2.1 計算許用接觸應(yīng)力 22
5.2.2 計算齒面接觸強度并校核 23
5.3 驗算齒輪模數(shù) 23
6 齒輪軸的設(shè)計 24
6.1 齒輪齒條傳動受力分析 24
6.2 軸的強度校核 24
6.2.1 軸的支撐反力的算計 24
6.2.2 判斷危險剖面 25
6.2.3 軸的彎扭合成強度校核 26
6.2.4 軸的疲勞強度安全系數(shù)的校核 26
7 其他零件的設(shè)計選擇 28
7.1 彈簧的選擇 28
7.2 軸承的選擇 28
7.3 螺釘?shù)倪x擇 28
7.4 彈簧壓塊的設(shè)計 28
7.5 齒條支撐的設(shè)計 29
7.6 軸承壓塊的設(shè)計 29
結(jié)束語 30
致 謝 31
參考文獻 32
廣西工學(xué)院鹿山學(xué)院本科生畢業(yè)設(shè)計
1 引言
汽車在行駛過程中,需按駕駛員的意志經(jīng)常改變其行駛方向,即所謂汽車轉(zhuǎn)向。就輪式汽車而言,實現(xiàn)汽車轉(zhuǎn)向的方法是駕駛員通過一套專設(shè)的機構(gòu),使汽車轉(zhuǎn)向橋(一般是前橋)上的車輪(轉(zhuǎn)向輪)相對于汽車縱軸線偏轉(zhuǎn)一定角度。在汽車直線行駛時,轉(zhuǎn)向輪往往也會受到路面?zhèn)认蚋蓴_力的作用,自動偏轉(zhuǎn)而改變行駛方向。此時,駕駛員也可以利用這套機構(gòu)使轉(zhuǎn)向輪向相反的方向偏轉(zhuǎn),從而使汽車恢復(fù)原來的行駛方向。這一套用來改變或恢復(fù)汽車行駛方向的專設(shè)機構(gòu),稱為汽車轉(zhuǎn)向系統(tǒng)。
轉(zhuǎn)向系是用來保持或者改變汽車行駛方向的機構(gòu),在汽車轉(zhuǎn)向行駛時,保證各轉(zhuǎn)向輪之間有協(xié)調(diào)的轉(zhuǎn)角關(guān)系。汽車轉(zhuǎn)向系統(tǒng)的功用就是保證汽車能按駕駛員的意志而進行轉(zhuǎn)向行駛。因此,轉(zhuǎn)向系統(tǒng)的性能直接影響著汽車的操縱穩(wěn)定性和安全性。
對轉(zhuǎn)向系統(tǒng)產(chǎn)品的需求隨著汽車化的提高而提高而發(fā)生著變化。最初駕駛員們只希望比較容易地操作轉(zhuǎn)向系統(tǒng),而后則追求在高速行駛的穩(wěn)定性、舒適性和良好的操縱感。
據(jù)了解,在世界范圍內(nèi),汽車循環(huán)球式轉(zhuǎn)向器占45%左右,齒條齒輪式轉(zhuǎn)向器占40%左右,蝸桿滾輪式轉(zhuǎn)向器占10%左右,其它型式的轉(zhuǎn)向器占5%。循環(huán)球式轉(zhuǎn)向器一直在穩(wěn)步發(fā)展。在西歐小客車中,齒條齒輪式轉(zhuǎn)向器有很大的發(fā)展。日本汽車轉(zhuǎn)向器的特點是循環(huán)球式轉(zhuǎn)向器占的比重越來越大,日本裝備不同類型發(fā)動機的各類型汽車,采用不同類型轉(zhuǎn)向器,在公共汽車中使用的循環(huán)球式轉(zhuǎn)向器,已由60年代的62.5%,發(fā)展到現(xiàn)今的100%了(蝸桿滾輪式轉(zhuǎn)向器在公共汽車上已經(jīng)被淘汰)。大、小型貨車大都采用循環(huán)球式轉(zhuǎn)向器,但齒條齒輪式轉(zhuǎn)向器也有所發(fā)展。微型貨車用循環(huán)球式轉(zhuǎn)向器占65%,齒條齒輪式占35%。
綜合上述對有關(guān)轉(zhuǎn)向器品種的使用分析,得出以下結(jié)論:
循環(huán)球式轉(zhuǎn)向器和齒輪齒條式轉(zhuǎn)向器,已成為當(dāng)今世界汽車上主要的兩種轉(zhuǎn)向器;而蝸輪蝸桿式轉(zhuǎn)向器和蝸桿肖式轉(zhuǎn)向器,正在逐步被淘汰或保留較小的地位。
在小客車上發(fā)展轉(zhuǎn)向器的觀點各異,美國和日本重點發(fā)展循環(huán)球式轉(zhuǎn)向器,比率都已達到或超過90%;西歐則重點發(fā)展齒輪齒條式轉(zhuǎn)向器,比率超過50%,法國已高達95%。
本次設(shè)計設(shè)計的是齒輪齒條式轉(zhuǎn)向器。
2 齒輪齒條式轉(zhuǎn)向器設(shè)計方案選擇
在設(shè)計齒輪齒條式轉(zhuǎn)向器之前,我介紹下轉(zhuǎn)向系統(tǒng)的一些知識和轉(zhuǎn)向器的一些知識,然后再細入了解齒輪齒條式轉(zhuǎn)向器。
本次設(shè)計是輕型載貨汽車轉(zhuǎn)向器的設(shè)計。選擇的是齒輪齒條式轉(zhuǎn)向器。采用非獨立懸架,轉(zhuǎn)向器位于前軸前方,梯形后置,中間輸入,兩端輸出,直齒齒輪齒條,圓形斷面。
2.1 轉(zhuǎn)向系統(tǒng)的簡介
用來改變或保持汽車行駛或倒退方向的一些列裝置稱為汽車轉(zhuǎn)向系統(tǒng)(steering system)。汽車轉(zhuǎn)向系統(tǒng)對汽車的行駛安全至關(guān)重要。
汽車轉(zhuǎn)向系統(tǒng)按轉(zhuǎn)向能源的不同,分為機械轉(zhuǎn)向系統(tǒng)和動力轉(zhuǎn)向系統(tǒng)兩大類。
機械轉(zhuǎn)向系統(tǒng)以駕駛員的體力作為轉(zhuǎn)向能源,其中所有傳力件都是機械的。它主要由轉(zhuǎn)向操縱機構(gòu)、轉(zhuǎn)向器和轉(zhuǎn)向傳動機構(gòu)三大部分組成。如圖2-1所示。
圖2-1轉(zhuǎn)向系統(tǒng)示意圖
2.1.1 轉(zhuǎn)向操縱機構(gòu)
1).轉(zhuǎn)向操縱機構(gòu)的組成和布置
從轉(zhuǎn)向盤到轉(zhuǎn)向傳動軸這一系列的零部件屬于轉(zhuǎn)向操縱機構(gòu)。它包括轉(zhuǎn)向盤、轉(zhuǎn)向柱管、轉(zhuǎn)向軸、上萬向節(jié)、下萬向節(jié)和轉(zhuǎn)向傳動軸等。轉(zhuǎn)向柱管中部用橡膠墊和半圓形沖壓轉(zhuǎn)向柱管支架固定在駕駛室前圍板上,下端插入鑄鐵轉(zhuǎn)向柱管支座的孔中,支座則固定在轉(zhuǎn)向操縱機構(gòu)支架上。
穿過轉(zhuǎn)向柱管的轉(zhuǎn)向軸上端借轉(zhuǎn)向軸襯套支承,下端則支承在轉(zhuǎn)向柱管支座中的圓錐滾子軸承上,其軸向位置由轉(zhuǎn)向軸限位彈簧限定。轉(zhuǎn)向軸通過萬向傳動裝置與轉(zhuǎn)向器中的轉(zhuǎn)向蝸桿相連。下萬向節(jié)與轉(zhuǎn)向傳動軸用滑動花鍵連接。
2).轉(zhuǎn)向盤
轉(zhuǎn)向盤由輪緣、輪輻和輪轂組成。輪輻一般為三根輻條或四根輻條,也有用兩根
輻條的。轉(zhuǎn)向盤輪轂孔細牙內(nèi)花鍵,借此與轉(zhuǎn)向軸連接。轉(zhuǎn)向盤內(nèi)部由成形的金屬骨架構(gòu)成。骨架外面一般包有柔軟的合成橡膠或樹脂,也有包皮革的,這樣可有良好的手感,而且還可以防止手心出汗時握轉(zhuǎn)向盤打滑。
當(dāng)汽車發(fā)生碰撞時,從安全性考慮,不僅要求轉(zhuǎn)向盤應(yīng)具有柔軟的外表皮,起到緩沖作用,而且還要求轉(zhuǎn)向盤在撞車時,其骨架能產(chǎn)生一定變形,以吸收沖擊能量,減輕駕駛員受傷的程度。
3).轉(zhuǎn)向軸和轉(zhuǎn)向柱管的吸能裝置
轉(zhuǎn)向軸是連接轉(zhuǎn)向盤和轉(zhuǎn)向器的傳動件,并傳遞它們之間的轉(zhuǎn)矩。轉(zhuǎn)向柱管安裝
在車身上,支承著轉(zhuǎn)向盤。轉(zhuǎn)向軸從轉(zhuǎn)向柱管中穿過,支承在柱管內(nèi)的軸承和襯套上。
對于轎車,除要求裝有吸能式轉(zhuǎn)向盤外,還要求轉(zhuǎn)向柱管也必須備有緩和沖擊的吸能裝置。轉(zhuǎn)向軸和轉(zhuǎn)向柱管的吸能裝置有多種形式。其基本結(jié)構(gòu)原理是,當(dāng)受到巨大沖擊時,轉(zhuǎn)向軸產(chǎn)生軸向位移,使支架或某些支承件產(chǎn)生塑性變形,從而吸收沖擊能量。
2.1.2 轉(zhuǎn)向傳動機構(gòu)
轉(zhuǎn)向傳動機構(gòu)的功用是將轉(zhuǎn)向器輸出的力和運動傳到轉(zhuǎn)向橋兩側(cè)的轉(zhuǎn)向節(jié),使兩
側(cè)轉(zhuǎn)向輪偏轉(zhuǎn),并使兩轉(zhuǎn)向輪偏轉(zhuǎn)角按一定關(guān)系變化,以保證汽車轉(zhuǎn)向時車輪與地面的相對滑動盡可能小。
轉(zhuǎn)向傳動機構(gòu)的組成和布置,因轉(zhuǎn)向器位置和轉(zhuǎn)向輪懸架類型不同而異。
1).與非獨立懸架配用的轉(zhuǎn)向傳動機構(gòu)
與非獨立懸架配用的轉(zhuǎn)向傳動機構(gòu),主要包括轉(zhuǎn)向搖臂、轉(zhuǎn)向直拉桿、轉(zhuǎn)向節(jié)臂
和轉(zhuǎn)向梯形臂。在前橋僅為轉(zhuǎn)向橋的情況下,由轉(zhuǎn)向橫拉桿和左、右梯形臂組成的轉(zhuǎn)向梯形一般布置在前橋之后。當(dāng)轉(zhuǎn)向輪處于與汽車直線行駛相應(yīng)的中立位置時,梯形臂與橫拉桿在與道路平行的平面(水平平面)內(nèi)的交角。在發(fā)動機位置比較低或轉(zhuǎn)向橋兼充驅(qū)動橋的情況下,為避免運動干涉,往往將轉(zhuǎn)向梯形布置在前橋之前。此時,上述交角。若轉(zhuǎn)向搖臂不是在汽車縱向平面內(nèi)前后擺動,而是在與道路平行的平面內(nèi)左右擺動,則可將轉(zhuǎn)向直拉桿橫置,并借球頭銷直接帶動轉(zhuǎn)向橫拉桿,使兩側(cè)梯形臂轉(zhuǎn)動。
轉(zhuǎn)向搖臂是轉(zhuǎn)向器傳動副與轉(zhuǎn)向直拉桿間的傳動件。
轉(zhuǎn)向直拉桿是轉(zhuǎn)向搖臂與轉(zhuǎn)向節(jié)臂之間的傳動桿件。在轉(zhuǎn)向輪偏轉(zhuǎn)而且因懸架彈性變形而相對于車架跳動時,轉(zhuǎn)向直拉桿與轉(zhuǎn)向搖臂及轉(zhuǎn)向節(jié)臂的相對運動都是空間運動。因此,為了不發(fā)生運動干涉,三者之間的連接件都是球形鉸鏈。直拉桿體是一段兩端擴大的鋼管。其前端帶有球頭銷。球頭銷的尾端可以用螺母固定于轉(zhuǎn)向節(jié)臂的端部。兩個球頭座在壓縮彈簧的作用下,將球頭銷的球頭夾持住。為保證球頭與座的潤滑,可以從油嘴注入潤滑脂,使其 直拉桿端部官腔。供球頭拆裝時出入的孔口用耐油橡膠防塵墊封蓋。壓縮彈簧隨時補償球頭與座的磨損,保證兩者之間無間隙,并可緩和經(jīng)車輪和轉(zhuǎn)向節(jié)傳來的路面沖擊。彈簧預(yù)緊力可用端部螺塞調(diào)節(jié),調(diào)好后需用開口銷固定螺塞位置。當(dāng)球頭銷作用在內(nèi)球頭座上的沖擊力超過壓縮彈簧預(yù)緊力時,彈簧便進一步變形而吸收沖擊能量。
直拉桿體后端可以嵌裝轉(zhuǎn)向搖臂球頭銷。這一端的壓縮彈簧也裝在球頭座后方。這樣,兩個壓縮彈簧可分別在沿軸線的不同方向上起緩沖作用。自球頭銷傳來的向后的沖擊力由前壓縮彈簧承受。當(dāng)球頭銷受到向前的沖擊力時,沖擊力依次經(jīng)過前球頭座、前端部螺塞、直拉桿體和后端部螺塞傳給后壓縮彈簧。
轉(zhuǎn)向橫拉桿式轉(zhuǎn)向梯形機構(gòu)的底邊。轉(zhuǎn)向橫拉桿由橫拉桿體和旋裝在兩端的橫拉桿接頭組成。兩端的接頭結(jié)構(gòu)相同,球頭銷的尾部與梯形臂相連。上、下球頭座用聚甲醛制成,有很好的耐磨性。裝配時,兩球頭座的凹凸部分相嵌合。彈簧保證兩球頭座與球頭緊密接觸。并起緩沖作用。兩接頭借螺紋與橫拉桿體聯(lián)接。接頭螺紋部分有切口,故具有彈性。接頭旋裝到橫拉桿體上后,用夾緊螺栓夾緊。橫拉桿體兩端的螺紋,一端為右旋,一端為左旋。因此,在旋松夾緊螺栓以后,轉(zhuǎn)動橫拉桿體,即可改變轉(zhuǎn)向橫拉桿的總長度,從而可調(diào)整轉(zhuǎn)向輪前束。
2).與獨立懸架配用的轉(zhuǎn)向傳動機構(gòu)
當(dāng)轉(zhuǎn)向輪采用獨立懸架時,每個轉(zhuǎn)向輪分別相對于車架作獨立運動,因而轉(zhuǎn)向橋
必須是斷開式的。與此相應(yīng),轉(zhuǎn)向傳動機構(gòu)中的轉(zhuǎn)向梯形也必須分成兩段或三段,并且由在平行于路面的平面中擺動的轉(zhuǎn)向搖臂直接帶動或通過轉(zhuǎn)向直拉桿帶動。
2.2 轉(zhuǎn)向系統(tǒng)的設(shè)計要求
1).汽車轉(zhuǎn)彎行駛時,全部車輪應(yīng)繞瞬時轉(zhuǎn)向中心旋轉(zhuǎn),任何車輪不應(yīng)有側(cè)滑。不滿足這項要求會加速輪胎磨損,并降低汽車的行駛穩(wěn)定性。
2).汽車轉(zhuǎn)向行駛后,在駕駛員松開轉(zhuǎn)向盤的條件下,轉(zhuǎn)向輪能自動返回到直線行駛位置,并穩(wěn)定行駛。
3).汽車在任何行駛狀態(tài)下,轉(zhuǎn)向輪都不得產(chǎn)生自振,轉(zhuǎn)向盤沒有擺動。
4).轉(zhuǎn)向傳動機構(gòu)和懸架導(dǎo)向裝置共同工作時,由于運動不協(xié)調(diào)使車輪產(chǎn)生的擺動應(yīng)最小。
5).保證汽車有較高的機動性,具有迅速和小轉(zhuǎn)彎行駛能力。
6).操縱輕便。
7).轉(zhuǎn)向輪碰撞到障礙物以后,傳給轉(zhuǎn)向盤的反沖力要盡可能小。
8).轉(zhuǎn)向器和轉(zhuǎn)向傳動機構(gòu)的球頭處,有消除因磨損而產(chǎn)生間隙的調(diào)整機構(gòu)。
9).在車禍中,當(dāng)轉(zhuǎn)向軸和轉(zhuǎn)向盤由于車架或車身變形而共同后移時,轉(zhuǎn)向系應(yīng)有能使駕駛員免遭或減輕傷害的防傷裝置。
10).進行運動校核,保證轉(zhuǎn)向輪與轉(zhuǎn)向盤轉(zhuǎn)動方向一致。
正確設(shè)計轉(zhuǎn)向梯形機構(gòu),可以保證汽車轉(zhuǎn)彎行駛時,全部車輪應(yīng)繞瞬時轉(zhuǎn)向中心旋轉(zhuǎn)。
轉(zhuǎn)向輪的自動回正能力決定于轉(zhuǎn)向輪的定位參數(shù)和轉(zhuǎn)向器逆效率的大小.合理確定轉(zhuǎn)向輪的定位參數(shù),正確選擇轉(zhuǎn)向器的形式,可以保證汽車具有良好的自動回正能力。
轉(zhuǎn)向系中設(shè)置有轉(zhuǎn)向減振器時,能夠防止轉(zhuǎn)向輪產(chǎn)生自振,同時又能使傳到轉(zhuǎn)向盤上的反沖力明顯降低。
為了使汽車具有良好的機動性能,必須使轉(zhuǎn)向輪有盡可能大的轉(zhuǎn)角,其最小轉(zhuǎn)彎半徑能達到汽車軸距的倍。
轉(zhuǎn)向操縱的輕便性通常用轉(zhuǎn)向時駕駛員作用在轉(zhuǎn)向盤上的切向力大小和轉(zhuǎn)向盤轉(zhuǎn)動圈數(shù)多少兩項指標來評價。
轎車轉(zhuǎn)向盤從中間位置轉(zhuǎn)到第一端的圈數(shù)不得超過2.0圈,貨車則要求不超過3.0圈。
2.3 轉(zhuǎn)向器
隨著汽車工業(yè)的迅速發(fā)展,轉(zhuǎn)向裝置的結(jié)構(gòu)也有很大變化。汽車轉(zhuǎn)向器的結(jié)構(gòu)很多,從目前使用的普遍程度來看,主要的轉(zhuǎn)向器類型有4種:有蝸桿指銷式(WP型)、蝸桿滾輪式(WR型)、循環(huán)球式(BS型)、齒條齒輪式(RP型)。這四種轉(zhuǎn)向器型式,已經(jīng)被廣泛使用在汽車上。
1).齒輪齒條式轉(zhuǎn)向器是最常見的轉(zhuǎn)向器。其基本結(jié)構(gòu)是一對相互嚙合的小齒輪和齒條。由與軸做成一體的轉(zhuǎn)向輪和常與轉(zhuǎn)向橫拉桿做成一體的齒條組成。轉(zhuǎn)向軸帶動小齒輪旋轉(zhuǎn)時,齒條便做直線運動。有時,靠齒條來直接帶動橫拉桿,就可使轉(zhuǎn)向輪轉(zhuǎn)向。是一種最簡單的轉(zhuǎn)向器。具有結(jié)構(gòu)簡單、成本低廉,體積小,緊湊,質(zhì)量輕,剛性大,轉(zhuǎn)向靈敏,制造容易,正、逆效率都高以及便于布置等優(yōu)點,傳動效率高達90%;而且特別適合與燭式和麥弗遜式懸架配用,因此,目前它在轎車和微型、輕型貨車上得到了廣泛的應(yīng)用。
2).循環(huán)球式轉(zhuǎn)向器也是國內(nèi)外汽車上應(yīng)用比較多的一種結(jié)構(gòu)形式。循環(huán)球式轉(zhuǎn)向器由螺桿和螺母共同形成的螺旋槽內(nèi)裝有鋼珠構(gòu)成傳動副,以及螺母上齒條與搖臂軸上齒扇構(gòu)成的傳動副組成,如圖2-2所示。循環(huán)球式轉(zhuǎn)向器中一般有兩級傳動副,第一級是螺桿螺母傳動副,第二級一般采用齒條齒扇傳動副。循環(huán)球式轉(zhuǎn)向器的正傳動效率很高(可達),故操縱輕便,使用壽命長,工作平穩(wěn)、可靠。但其逆效率也很高,容易將路面沖擊力傳到轉(zhuǎn)向盤。不過,對于前軸載質(zhì)量不大而又經(jīng)常在平坦路面上行駛的汽車而言,這一缺點影響不大。因此,循環(huán)球式轉(zhuǎn)向器廣泛應(yīng)用于商用汽車上。
圖2-2 循環(huán)球式轉(zhuǎn)向器
3).蝸桿指銷式轉(zhuǎn)向器的傳動副以轉(zhuǎn)向蝸桿為主動件,其從動件是裝在搖臂軸曲柄端部的指銷。轉(zhuǎn)向蝸桿傳動時,與之嚙合的指銷即繞搖臂軸軸線沿圓弧運動,并帶動搖臂軸轉(zhuǎn)動。蝸桿指銷式轉(zhuǎn)向器的銷子若不能自傳,稱為固定銷式蝸桿指銷轉(zhuǎn)向器;銷子除隨同搖臂軸轉(zhuǎn)動外,還能繞自身軸線轉(zhuǎn)動,稱為旋轉(zhuǎn)銷式轉(zhuǎn)向器。根據(jù)銷子數(shù)量的不同,又有單銷和雙銷之分。
固定銷蝸桿指銷式轉(zhuǎn)向器的結(jié)構(gòu)簡單、制造容易;但是因銷子不能自轉(zhuǎn),銷子的工作部位基本保持不變,所以磨損快、工作效率低。旋轉(zhuǎn)銷式轉(zhuǎn)向器的效率高、磨損慢,但結(jié)構(gòu)復(fù)雜。
要求搖臂軸有較大的轉(zhuǎn)角時,應(yīng)該采用雙銷式結(jié)構(gòu)。雙銷式轉(zhuǎn)向器在直線行駛區(qū)域附近,兩個銷子同時工作,可降低銷子上的負荷,減少磨損。當(dāng)一個銷子脫離嚙合狀態(tài)時,另一個銷子要承受全部作用力,而恰恰在此位置,作用力達到最大值,所以設(shè)計時要注意核算其強度。雙銷與單銷蝸桿指銷式轉(zhuǎn)向器比較,結(jié)構(gòu)復(fù)雜、尺寸和質(zhì)量大,并且對兩主銷間的位置精度、蝸桿上螺紋槽的形狀及尺寸精度等要求高。此外,傳動比的變化特性和傳動間隙特性受限制。
蝸桿指銷式轉(zhuǎn)向器應(yīng)用比較少。
4).蝸桿滾輪式轉(zhuǎn)向器由蝸桿和滾輪嚙合而構(gòu)成。其主要優(yōu)點是:結(jié)構(gòu)簡單;制造容易;因為滾輪的齒面和蝸桿上的螺紋呈面接觸,所以有比較高的強度,工作可靠,磨損小,壽命長;逆效率低。
蝸桿滾輪式轉(zhuǎn)向器的主要缺點是:正效率低;工作齒面磨損以后,調(diào)整嚙合間隙比較困難;轉(zhuǎn)向器的傳動比不能變化。
這種轉(zhuǎn)向器曾經(jīng)在汽車上廣泛使用過,但是現(xiàn)在已經(jīng)淘汰。
考慮到本次設(shè)計的是輕型載貨汽車的轉(zhuǎn)向器。所以選擇齒輪齒條式轉(zhuǎn)向器比較合適。
2.4 對轉(zhuǎn)向器的要求
1).提供準確而輕便的轉(zhuǎn)向控制,同時轉(zhuǎn)向盤的轉(zhuǎn)角范圍不允許過大。這要求轉(zhuǎn)向器的自由行程(由傳動零件之間的間隙引起)盡可能小,傳動比適當(dāng),駕駛員主動轉(zhuǎn)動轉(zhuǎn)向盤時的機械效率(正效率)高,可能還需要動力助力。
2).使地面對前輪的擾動盡可能少地被傳到轉(zhuǎn)向盤上,同時還要讓駕駛員能夠感覺得到路面狀況(粗糙程度、附著力的大小等)的變化。這要求在前輪因受到地面干擾而試圖轉(zhuǎn)動轉(zhuǎn)向盤時轉(zhuǎn)向器的機械效率適當(dāng)?shù)氐停茨嫘蔬m當(dāng)?shù)氐汀?
3).不能妨礙汽車完成轉(zhuǎn)向后、返回直線行駛狀態(tài)時的前輪自動回正,這又要求轉(zhuǎn)向器的逆效率適當(dāng)?shù)馗摺?
4).停車(車速為零)轉(zhuǎn)向時駕駛員轉(zhuǎn)動轉(zhuǎn)向盤的力(轉(zhuǎn)向力)應(yīng)該被減小到最低限度。
5).使汽車具有良好的高速操縱穩(wěn)定性。這一般要求轉(zhuǎn)向器的自由行程、摩擦盡可能小,有適當(dāng)?shù)膫鲃颖群蛣恿χ?在采用動力助力的情況下。)
2.5 轉(zhuǎn)向系的主要性能參數(shù)介紹
2.5.1 轉(zhuǎn)向器傳動效率
轉(zhuǎn)向器的輸出功率與輸入功率之比稱為轉(zhuǎn)向器傳動效率。在功率由轉(zhuǎn)向軸輸入、由轉(zhuǎn)向搖臂輸出的情況下求得的傳動效率稱為正效率;而傳動方向與上述相反時求得的效率,則稱為逆效率。逆效率很高的轉(zhuǎn)向器很容易將經(jīng)轉(zhuǎn)向機構(gòu)傳來的路面反力傳到轉(zhuǎn)向盤上,故稱為可逆式轉(zhuǎn)向器??赡媸睫D(zhuǎn)向器有利于汽車轉(zhuǎn)向結(jié)束后轉(zhuǎn)向輪和轉(zhuǎn)向盤的自動回正,但也能將壞路面對車輪的沖擊力傳到轉(zhuǎn)向盤,發(fā)生“打手”現(xiàn)象。
逆效率很低的轉(zhuǎn)向器稱為不可逆式轉(zhuǎn)向器。不平路面對轉(zhuǎn)向輪的沖擊載荷輸入到這種轉(zhuǎn)向器,即由其中各傳動零件(主要是傳動副)承受,而不會傳到轉(zhuǎn)向盤上。路面作用于轉(zhuǎn)向輪上的回正力矩同樣也不能傳到轉(zhuǎn)向盤上,使得駕駛員不能得到路面反饋信息,喪失“路感”,無法據(jù)此調(diào)節(jié)轉(zhuǎn)向力矩。
逆效率略高于不可逆式的轉(zhuǎn)向器稱為極限可逆式轉(zhuǎn)向器,其反向傳力性能介于可逆式和不可逆式之間,而接近于不可逆式。采用這種轉(zhuǎn)向器時,駕駛員能有一定的路感,轉(zhuǎn)向輪自動回正也是可實現(xiàn),而且只有在路面沖擊力很大時,才能部分地傳到轉(zhuǎn)向盤。
轉(zhuǎn)向系的效率由轉(zhuǎn)向器的效率和轉(zhuǎn)向操縱機構(gòu)的效率決定,即
(2-1)
轉(zhuǎn)向器的效率又有正效率與逆效率之分。轉(zhuǎn)向搖臂軸輸出的功率()與轉(zhuǎn)向軸輸入功率之比,稱為轉(zhuǎn)向器的正效率,即
(2-2)
式中:-轉(zhuǎn)向器的摩擦功率。
反之,即轉(zhuǎn)向軸輸出的功率()與轉(zhuǎn)向搖臂軸輸入的功率之比,稱為轉(zhuǎn)向器的逆效率:
(2-3)
正效率愈大,轉(zhuǎn)動轉(zhuǎn)向輪時的摩擦損失就愈小,轉(zhuǎn)向操縱就愈容易。轉(zhuǎn)向器的類型、結(jié)構(gòu)特點、結(jié)構(gòu)參數(shù)和制造質(zhì)量等是影響轉(zhuǎn)向器正效率的主要因素。循環(huán)球式轉(zhuǎn)向器的傳動副為滾動摩擦,摩擦損失小,其正效率可達85%;蝸桿指銷式和蝸桿滾輪式轉(zhuǎn)向器的傳動副存在較大的滑動摩擦,效率較低。對于蝸桿和螺桿類轉(zhuǎn)向器,如果忽略軸承和其他地方的摩擦損失而只考慮嚙合副的摩擦,則其正效率為
(2-4)
式中:為蝸桿或螺桿的螺線導(dǎo)程角;為摩擦角,;為摩擦系數(shù)。
逆效率表示轉(zhuǎn)向器的可逆性。根據(jù)逆效率值的大小,轉(zhuǎn)向器又可分為可逆式、極限可逆式與不可逆式三種。
如果忽略軸承和其他地方的摩擦損失而只考慮副的摩擦,則蝸桿和螺桿類轉(zhuǎn)向器的逆效率為
(2-5)
通常,由轉(zhuǎn)向盤至轉(zhuǎn)向輪的效率即轉(zhuǎn)向系的正效率的平均值為;當(dāng)向上述相反反向傳遞力時逆效率的平均值為。轉(zhuǎn)向操縱及傳動機構(gòu)的效率用于評價在這些機構(gòu)中的摩擦損失,其中轉(zhuǎn)向輪輪向主銷等的摩擦損失約為轉(zhuǎn)向系總損失的,而拉桿球銷的摩擦損失約為轉(zhuǎn)向系總損失的。
2.5.2 轉(zhuǎn)向盤自由行程
單從轉(zhuǎn)向操縱的靈敏性而言,最好是轉(zhuǎn)向盤和轉(zhuǎn)向節(jié)的運動能同步開始并同步終止。然而,這在實際上是不可能的。因為在整個轉(zhuǎn)向系統(tǒng)中,各傳動件之間都必然存在著裝配間隙,而且這些間隙將隨著零件的磨損而增大。在轉(zhuǎn)向盤傳動過程的開始階段,駕駛員對轉(zhuǎn)向盤所施加的力矩很小,因為只是用來克服轉(zhuǎn)向系統(tǒng)內(nèi)部的摩擦,使各傳動件運動到其間的間隙完全消除,故可以認為這一階段是轉(zhuǎn)向盤空轉(zhuǎn)階段。此后,才需要對轉(zhuǎn)向盤施加更大的轉(zhuǎn)向力矩,以克服經(jīng)車輪傳到轉(zhuǎn)向節(jié)上的轉(zhuǎn)向阻力矩,從而實現(xiàn)使各轉(zhuǎn)向輪的偏轉(zhuǎn)。轉(zhuǎn)向盤在空轉(zhuǎn)階段中的角行程稱為轉(zhuǎn)向盤自由行程。轉(zhuǎn)向盤自由行程對于緩和路面沖擊及避免使駕駛員過度緊張是有利的,但不宜過大,以免影響靈敏性。一般說來,轉(zhuǎn)向盤從相應(yīng)于汽車直線行駛的中間位置向任一方向的自由行程最好不要超過。當(dāng)零件磨損嚴重到使轉(zhuǎn)向盤自由行程超過時,必須進行調(diào)整。
2.5.3 轉(zhuǎn)向器角傳動比的變化規(guī)律
轉(zhuǎn)向器的角傳動比是一個重要參數(shù),它影響著汽車的許多轉(zhuǎn)向性能。由于增大
傳動比可以增大力傳動比,因此轉(zhuǎn)向器的角傳動比不僅對汽車轉(zhuǎn)向靈敏性和穩(wěn)定性有直接影響,而且也影響著汽車的操縱輕便性。可以看出:轉(zhuǎn)向輪的轉(zhuǎn)角與轉(zhuǎn)向器的角傳動比成反比。增大會使在同一轉(zhuǎn)向盤轉(zhuǎn)角下的轉(zhuǎn)向輪轉(zhuǎn)角變小,使轉(zhuǎn)向操縱時間變長,汽車轉(zhuǎn)向靈敏度降低。因此轉(zhuǎn)向“輕便性”與“靈敏性”是產(chǎn)品設(shè)計中遇到的一對矛盾。采用可變角傳動比的轉(zhuǎn)向器可協(xié)調(diào)對“輕便性”
和“靈敏性”的要求。而轉(zhuǎn)向器角傳動比的變化規(guī)律又因為轉(zhuǎn)向器的結(jié)構(gòu)形式和參數(shù)的不同而異。
2.5.4 轉(zhuǎn)向器的傳動間隙
轉(zhuǎn)向器的傳動間隙是指轉(zhuǎn)向器傳動副之間的間隙。改間隙隨轉(zhuǎn)向盤轉(zhuǎn)角的改變而改變。通常將這種變化關(guān)系成為轉(zhuǎn)向器的傳動間隙特性。研究改傳動間隙的意義在于它對汽車直線行駛時的穩(wěn)定性和轉(zhuǎn)向器的壽命都有直接影響。
當(dāng)轉(zhuǎn)向盤處于中間位置即汽車作直線行駛時,如果轉(zhuǎn)向器傳有傳動間隙則將使轉(zhuǎn)向輪在該間隙范圍內(nèi)偏離直線行駛而失去穩(wěn)定性。這一要求應(yīng)該在汽車使用的全部時間內(nèi)得到保證。汽車多直行行駛,因此轉(zhuǎn)向器傳動副在中間部位的磨損量大于其兩端。為了保證轉(zhuǎn)向器傳動副摩擦最大的中間部位能通過調(diào)整來消除因磨損而形成的間隙,調(diào)整后當(dāng)轉(zhuǎn)動轉(zhuǎn)向盤時又不致于使轉(zhuǎn)向器傳動副在其他嚙合部位卡住,應(yīng)使傳動間隙從中間部位到兩端逐漸增大,并在端部達到其最大值(礦量轉(zhuǎn)角約為),以利于對間隙的調(diào)整及提高轉(zhuǎn)向器的使用壽命。不同結(jié)構(gòu)的轉(zhuǎn)向器其傳動間隙特性亦不同。
2.5.5 轉(zhuǎn)向系的剛度
轉(zhuǎn)向系的各零、部件尤其是一些桿件均具有一定的彈性,這就使得轉(zhuǎn)向輪的實際
轉(zhuǎn)角要比駕駛員轉(zhuǎn)動轉(zhuǎn)向盤并按轉(zhuǎn)向系角傳動比換算至轉(zhuǎn)向輪的轉(zhuǎn)角要小,這樣就不會有不足轉(zhuǎn)向的趨勢。轉(zhuǎn)向系剛度對輪胎的側(cè)偏剛度影響也很大。如果令為不考慮轉(zhuǎn)向系剛度時的輪胎側(cè)偏剛度,而為考慮轉(zhuǎn)向系剛度時的輪胎側(cè)偏剛度(稱為等階剛度),則有如下關(guān)系:
(2-6)
式中:為整個轉(zhuǎn)向系的剛度;為拖后距(后傾拖距與輪胎拖距之和)。
由上式可見:當(dāng)值很大時,,即前輪的側(cè)偏剛度近似為;當(dāng)值很小時,前輪的側(cè)偏剛度為且。后者表明:轉(zhuǎn)向系剛度不足會使前輪的側(cè)偏剛度減小,并導(dǎo)致汽車不足轉(zhuǎn)向傾向的加劇,使汽車的轉(zhuǎn)向靈敏性變差。
2.5.6 轉(zhuǎn)向阻力矩
為了保證行駛安全,組成轉(zhuǎn)向系的各零件應(yīng)有足夠的強度。欲驗算轉(zhuǎn)向系零件的強度,需首先確定作用在各零件上的力。影響這些力的主要因素有轉(zhuǎn)向軸的負荷、路面阻力和輪胎氣壓等。為轉(zhuǎn)動轉(zhuǎn)向輪要克服的阻力,包括轉(zhuǎn)向輪繞主銷轉(zhuǎn)動的阻力、車輪穩(wěn)定阻力、輪胎變形阻力和轉(zhuǎn)向系中的內(nèi)摩擦阻力等。
其計算公式如下:
2.5.7 傳動比
從輪胎接地面中心作用在兩個轉(zhuǎn)向輪上的合力與作用在轉(zhuǎn)向盤上的手力之比,稱為力傳動比。
轉(zhuǎn)向盤角速度與同側(cè)轉(zhuǎn)向節(jié)偏轉(zhuǎn)角速度之比,稱為轉(zhuǎn)向系角傳動比。
轉(zhuǎn)向盤角速度與搖臂軸角速度之比,稱為轉(zhuǎn)向器角傳動比。此定義適用于除齒輪齒條式之外的轉(zhuǎn)向器。
輪胎與地面之間的轉(zhuǎn)向阻力和作用在轉(zhuǎn)向節(jié)上的轉(zhuǎn)向阻力矩之間有如下關(guān)系
式中,a為主銷偏移距,指從轉(zhuǎn)向節(jié)主銷軸線的延長線與支撐平面的交點至車輪中心平面與支承平面交線間的距離。
作用在轉(zhuǎn)向盤上的手力為
式中,為作用在轉(zhuǎn)向盤上的力矩;為轉(zhuǎn)向盤直徑。
可知,當(dāng)主銷偏移距a小時,力傳動比應(yīng)取大一些才能保持轉(zhuǎn)向輕便。通常乘用車的a值在0.4-0.6倍輪胎的胎面寬度尺寸范圍內(nèi)選取,而貨車的a值在40-60mm范圍內(nèi)選用。轉(zhuǎn)向盤直徑對輕便性有影響,選用尺寸小一些的轉(zhuǎn)向盤,雖然占用的空間少,但是轉(zhuǎn)向時需對轉(zhuǎn)向盤施加較大的力;而選用尺寸大些的轉(zhuǎn)向盤又會使駕駛員進、出駕駛室時入座困難。
2.5.8 轉(zhuǎn)向梯形
轉(zhuǎn)向梯形有整體式和斷開式兩種。設(shè)計轉(zhuǎn)向梯形必須保證汽車轉(zhuǎn)彎時,全部車輪
繞一個瞬時轉(zhuǎn)向中心行駛,使在不同圓周上運動的車輪,作無滑動的純滾動運動。同時,為達到總體布置要求的最小轉(zhuǎn)彎直徑值,轉(zhuǎn)向車輪應(yīng)有足夠的轉(zhuǎn)角。
1).整體式轉(zhuǎn)向梯形
整體式轉(zhuǎn)向梯形是由轉(zhuǎn)向橫拉桿、轉(zhuǎn)向梯形臂和汽車前軸組成的。其中梯形臂呈收縮狀向后延伸。這種方案的優(yōu)點是結(jié)構(gòu)簡單,調(diào)整前束容易,制造成本低;主要缺點是一側(cè)轉(zhuǎn)向輪上、下跳動時,會影響另一側(cè)轉(zhuǎn)向輪。
當(dāng)汽車前懸架采用非獨立懸架時,應(yīng)當(dāng)采用整體式轉(zhuǎn)向梯形。整體式轉(zhuǎn)向梯形的橫拉桿可位于前軸后或前軸前(稱為前置梯形)。對于發(fā)動機位置低或前輪驅(qū)動汽車,常用采用前置梯形。前置梯形的梯形臂必須向外側(cè)方向延伸,因而會與車輪或制動底板發(fā)生干涉,所以在布置上有困難。為了保護橫拉桿免遭路面不平物的損壞,橫拉桿的位置應(yīng)盡可能布置的高一些,至少不低于前軸高度。
2).斷開時轉(zhuǎn)向梯形
轉(zhuǎn)向梯形的橫拉桿做成斷開式的,稱之為斷開式的轉(zhuǎn)向梯形。斷開式轉(zhuǎn)向梯形的主要優(yōu)點是它與前輪采用獨立懸架想配合,能夠保證一側(cè)車輪上、下跳動時,不會影響另外一側(cè)車輪。與整體式轉(zhuǎn)向梯形比較,由于其桿系、球頭增多,所以結(jié)構(gòu)復(fù)雜;制造成本高;并且調(diào)整前束比較困難。
本次畢業(yè)設(shè)計的設(shè)計的是齒輪齒條式轉(zhuǎn)向器整車性能參數(shù)如下。
車型:BJ121型輕型載貨汽車
驅(qū)動方式:FR4×2
表2-1 整車性能參數(shù)
名稱
軸距
前輪/后輪輪距
最小轉(zhuǎn)彎半徑
滿載軸荷分配:前/后
數(shù)值
2750mm
1440/1440(mm)
6.9m
877/1643(kg)
名稱
前輪氣壓P
主銷偏移距a
轉(zhuǎn)向節(jié)臂長L
方向盤直徑
數(shù)值
200kpa
50mm
200mm
400mm
齒輪齒條式轉(zhuǎn)向器的傳動效率高達90%;齒輪與齒條之間因磨損出現(xiàn)間隙后,利用裝在齒條背部、靠近主動小齒輪處的壓緊力可以調(diào)節(jié)彈簧,能自動消除齒間間隙,這不僅可以提高轉(zhuǎn)向系統(tǒng)的剛度,還可以防止工作時產(chǎn)生沖擊和噪聲;轉(zhuǎn)向器占用的體積小;沒有轉(zhuǎn)向搖臂和直拉桿,所以轉(zhuǎn)向輪轉(zhuǎn)角可以增大,制造成本低。目前它在微型轎車、輕型貨車上得到了廣泛的應(yīng)用。齒輪齒條式轉(zhuǎn)向器的主要缺點是:逆效率高(60%-70%),汽車在不平路面上行駛時,發(fā)生在轉(zhuǎn)向輪與路面之間沖擊力的大部分能傳到方向盤上,稱為反沖。反沖現(xiàn)象會使駕駛員精神緊張,并難以準確控制汽車行駛方向,方向盤突然轉(zhuǎn)動會造成打手,同時對駕駛員造成傷害。
齒輪齒條轉(zhuǎn)向器的小齒輪靠徑向止推軸承或滾針軸承支撐在殼體上。齒條由帶有彈簧的齒條托座推向齒輪,在彈簧力的作用下使齒條與齒輪總是處于無間隙嚙合狀態(tài)。當(dāng)小齒輪轉(zhuǎn)動時,齒條在轉(zhuǎn)向器殼體內(nèi)產(chǎn)生軸向移動。轉(zhuǎn)向拉桿的一端與轉(zhuǎn)向齒條固連,另一端與轉(zhuǎn)向節(jié)臂連接。在齒條移動時,將帶動轉(zhuǎn)向拉桿及轉(zhuǎn)向節(jié)臂一起移動,這樣就使車輪偏轉(zhuǎn),完成汽車轉(zhuǎn)向工作。工作示意圖如圖2-1所示。
圖2-2 自動消除間隙裝置
根據(jù)齒輪齒條式轉(zhuǎn)向器和轉(zhuǎn)向梯形相對前軸位置的不同,在汽車上有四種布置形式:轉(zhuǎn)向器位于前軸后方,后置梯形;轉(zhuǎn)向器位于前軸后方,前置梯形;轉(zhuǎn)向器位于前軸前方,后置梯形;轉(zhuǎn)向器位于前軸前方,前置梯形,見圖2-2a至圖2-2d。
圖2-3 齒輪齒條式轉(zhuǎn)向器的四種布置形式
本次設(shè)計采用轉(zhuǎn)向器位于前軸后方,后置梯形的方案。
根據(jù)使用車型及總布置需要的不同,齒輪齒條式轉(zhuǎn)向器的主要輸出形式有一下四種:中間輸入,兩端輸出、側(cè)面輸入,兩端輸出、側(cè)面輸入,中間輸出、側(cè)面輸入,
如圖2-3所示。
一端輸出,分別如圖2-3a至圖2-3d所示。
圖2-4 齒輪齒條式轉(zhuǎn)向器四種輸出形式
采用側(cè)面輸入,中間輸出方案時,由圖2-4可見,與齒條固連的左、右拉桿延伸到接近汽車總想對稱平面附近。由于拉桿長度增加,車輪上、下跳動時拉桿擺角減小,有利于減少車輪上、下跳動時轉(zhuǎn)向系與懸架系的運動干涉。拉桿與齒條用螺栓固定連接,因此,兩拉桿與齒條同時向左或向右移動,為此在轉(zhuǎn)向器殼體上開有軸向的長槽,從而降低了它的強度。
圖2-5 齒條齒條式轉(zhuǎn)向器
采用兩端輸出方案時,由于轉(zhuǎn)向拉桿長度受到限制,容易與懸架系統(tǒng)導(dǎo)向機構(gòu)產(chǎn)生運動干涉。但其結(jié)構(gòu)簡單,制造方便,且成本低等特點,常用于小型車輛上。
采用側(cè)面輸入,一端輸出的齒輪齒條式轉(zhuǎn)向器,常用于平頭貨車上。
本次設(shè)計采用的是中間輸入,兩端輸出的形式。
齒條斷面形狀有圓形(圖2-1)、V形(圖2-5)和Y形(圖2-6)三種。圓形斷面齒條的制作工藝比較簡單。V形和Y形斷面齒條與圓形斷面比較,消耗的材料少,約節(jié)約20%左右,故質(zhì)量?。晃挥邶X下面的兩斜面與齒條托座接觸,可用來防止齒條繞軸線轉(zhuǎn)動;Y形斷面齒條的齒寬可以做的寬一些,因而強度得到增加。在齒條與托座之間通常裝有堿性材料(如聚四氟乙烯)做的墊片,以減少滑動摩擦。當(dāng)車輪跳動、轉(zhuǎn)向或轉(zhuǎn)向器工作時,如在齒條上作用有能使齒條旋轉(zhuǎn)的力矩時,應(yīng)選用V形和Y形斷面齒條,用來防止因齒條旋轉(zhuǎn)而破壞齒條、齒輪的齒不能正確嚙合的情況出現(xiàn)。
圖2-6 圓形斷面 圖2-7 Y形斷面
本次設(shè)計選用圓形斷面。
綜合上訴,本次設(shè)計選用的是直齒輪,齒條斷面為圓形,采用中間輸入兩端輸出,與非獨立懸架配合使用。
3 轉(zhuǎn)向系統(tǒng)的計算
1).精確地計算出這些力是非常困難的。為此推薦用足夠精確的半經(jīng)驗公式來計算汽車在瀝青或混凝土路面上的原地轉(zhuǎn)向阻力矩(N·m),即
(3-1)
式中:為輪胎和路面間的滑動摩擦因數(shù),一般取0.7
為轉(zhuǎn)向軸負荷 ()
為輪胎氣壓()
則
2).
圖 3-1
(3-2)
式中:為汽車軸距
為最小轉(zhuǎn)彎半徑
則 查表得
(3-3)
式中:為汽車軸距
為最小轉(zhuǎn)彎半徑
為主銷中心距
則 查表得
轉(zhuǎn)向器角傳動比 (3-4)
式中:為轉(zhuǎn)向盤轉(zhuǎn)角
為轉(zhuǎn)向輪轉(zhuǎn)角
則
3).作用在轉(zhuǎn)向盤上的手力為
(3-5)
式中:為轉(zhuǎn)向搖臂長
為轉(zhuǎn)向節(jié)臂長
為轉(zhuǎn)向盤直徑
為轉(zhuǎn)向器正效率,0.9
為轉(zhuǎn)向阻力阻力矩
為轉(zhuǎn)向器角傳動比
由于齒輪齒條式轉(zhuǎn)向器無轉(zhuǎn)向搖臂和轉(zhuǎn)向節(jié)臂,故不代入數(shù)值。
則
4).從輪胎接地面中心作用在兩個輪向輪上的合力與作用在轉(zhuǎn)向盤上的手力之比,稱為力傳動比,即
(3-6)
輪胎與地面之間的轉(zhuǎn)向阻力和作用在轉(zhuǎn)向節(jié)上的轉(zhuǎn)向阻力矩之間有如下關(guān)系:
(3-7)
式中:a為主銷偏移距,指從轉(zhuǎn)向節(jié)主銷軸線的延長線與支撐平面的交點至車輪中心平面與支撐平面交線的距離。
作用在轉(zhuǎn)向盤上的手力可用下式表示:
(3-8)
式中:為作用在轉(zhuǎn)向盤上的力矩;為轉(zhuǎn)向盤直徑。
將式(3-7)、式(3-8)代入式(3-6)后得到
(3-9)
如果忽略摩擦損失,根據(jù)能量守恒原理得
(3-10)
由式(3-9)和式(3-10)得
(3-11)
則
則
則
5).本次設(shè)計采用整體式轉(zhuǎn)向梯形機構(gòu),汽車前懸架采用非獨立式懸架。采用后置轉(zhuǎn)向梯形。
圖3-2 轉(zhuǎn)向系各角度
圖中:、分別為內(nèi)、外轉(zhuǎn)向車輪轉(zhuǎn)角;L為汽車軸距;M為兩主銷中心線延長線到地面交點之間的距離;AE為轉(zhuǎn)向節(jié)臂;為梯形底角。
則
則
計算轉(zhuǎn)向橫拉桿和齒條的總長:
4 齒輪齒條的設(shè)計
4.1 齒輪的設(shè)計
根據(jù)齒輪齒條式轉(zhuǎn)向器的設(shè)計要求:齒輪模數(shù)取值范圍多在2~3mm之間。主動小齒輪齒數(shù)多數(shù)在5~7個齒范圍變化,壓力角取20°。
本次齒輪的材料選用20CrMnTi。熱處理方式為:表面滲碳淬火。
所以,法向壓力角取。法向模數(shù)mm。
分度圓直徑
齒頂高
齒根高
齒高
齒頂圓直徑
齒根圓直徑
齒寬
齒厚
4.2 齒條的設(shè)計
齒條選用45號鋼,調(diào)制處理。
因為相互嚙合齒輪的基圓距離必須相等,即
齒輪法面基圓齒距為
齒條法面基圓齒距為
取齒條法向模數(shù)
則
齒條齒頂高
齒條齒根高
齒高
5 齒輪齒條的校核
5.1 齒輪彎曲疲勞強度計算
5.1.1 計算許用彎曲應(yīng)力
(5-1)
式中:為試驗齒輪齒根的彎曲疲勞極限應(yīng)力;為試驗齒輪的應(yīng)力修正系數(shù);為彎曲疲勞強度計算的壽命系數(shù);為彎曲疲勞強度計算的尺寸系數(shù);為彎曲強度的最小安全系數(shù)。
查《中國機械設(shè)計大典》得
計算應(yīng)力循環(huán)次數(shù),確定彎曲疲勞強度壽命系數(shù)
式中:是齒輪每轉(zhuǎn)一周,同一側(cè)齒面的嚙合次數(shù);n是齒輪轉(zhuǎn)速(r/min);t是齒輪的設(shè)計壽命(h)。
根據(jù)N查表得:
則
5.1.2 計算齒根彎曲強度并校核
(5-2)
式中:為載荷作用于齒頂時的復(fù)合齒形系數(shù);K為載荷系數(shù);為齒輪轉(zhuǎn)矩;為齒輪齒寬;為重合度系數(shù)。
1).
式中:為斷面重合度,對于直齒輪
根據(jù)查表得重合度系數(shù)
2).確定載荷系數(shù)K
式中:為使用系數(shù);為動載系數(shù);彎曲強度計算的齒面載荷分布系數(shù);為彎曲強度計算的齒間載荷分配系數(shù)
查表得:;
[原動機輕微沖擊,工作機輕微沖擊]
則
3).齒輪轉(zhuǎn)矩
則
所以齒根彎曲強度符合要求。
5.2 齒面接觸強度校核
5.2.1 計算許用接觸應(yīng)力
(5-3)
式中:為試驗齒輪的接觸疲勞極限應(yīng)力;為接觸強度的最小安全系數(shù);為接觸疲勞強度計算的壽命系數(shù);為工作硬化系數(shù)。
查《中國機械設(shè)計大典》得:
則
5.2.2 計算齒面接觸強度并校核
(5-4)
式中:為材料彈性系數(shù);為重合度系數(shù);為齒數(shù)比。
查《中國機械設(shè)計大典》得:
因為齒輪和齒條均為鋼制,所以
齒數(shù)比u=5
則
所以,齒面接觸強度符合要求。
5.3 驗算齒輪模數(shù)
則
所以,所以
取優(yōu)先系列模數(shù)2.5mm,所以符合要求。
6 齒輪軸的設(shè)計
6.1 齒輪齒條傳動受力分析
若略去齒面間的摩擦力,則作用于節(jié)點的法向力可分解為徑向力和分力,分力又可分解為圓周力和軸向力。
6.2 軸的強度校核
齒輪軸受力分析圖
圖 6-1 軸的受力圖
6.2.1 軸的支撐反力的算計
在垂直面上
在水平面上
計算彎矩
在水平面上,a-a剖面左側(cè)
a- a剖面右側(cè)
在垂直面上,a-a剖面左側(cè)
a- a剖面右側(cè)
合成彎矩:
a-a面左側(cè)
a- a面右側(cè)
畫出彎矩圖:
圖 6-2 彎矩圖
計算轉(zhuǎn)矩并畫出轉(zhuǎn)矩圖
轉(zhuǎn)矩:
圖 6-3 轉(zhuǎn)矩圖
6.2.2 判斷危險剖面
顯然,a-a截面左側(cè)的合成彎矩最大、扭矩為,所以該截面左側(cè)或許為危險剖面。
6.2.3 軸的彎扭合成強度校核
由于齒輪的基圓直徑為,數(shù)值比較小,齒輪和軸之間采用鍵連接,齒輪和軸的強度將被降低,所以將其設(shè)計成齒輪軸,由于主動小齒輪采用材料制造并經(jīng)滲碳淬火,因此,軸的材料也選用材料制造并經(jīng)滲碳淬火。查《中國機械設(shè)計大典》得:材料的抗拉強度極限,屈服極限,彎曲疲勞極限,剪切疲勞極限
對稱循環(huán)疲勞極限:
,
脈動循環(huán)疲勞極限:
等效系數(shù):
6.2.4 軸的疲勞強度安全系數(shù)的校核
截面的抗扭截面系數(shù)
查《中國機械設(shè)計大典》得;
絕對尺寸系數(shù):;軸經(jīng)磨削加工,查得質(zhì)量系數(shù)
則 彎曲應(yīng)力:
應(yīng)力幅:
平均應(yīng)力
切應(yīng)力
安全系數(shù)校核
此安全系數(shù)符合要求。
7 其他零件的設(shè)計選擇
7.1 彈簧的選擇
根據(jù)GB/T 2089-1994選擇代號為A的標準圓柱螺旋壓縮彈簧,材料選擇45號鋼。
總?cè)?shù) n=5
有效圈數(shù)
彈簧直徑 d=4
節(jié)距 t=6.63
彈簧中徑
彈簧外進
彈簧內(nèi)徑
因為它的實驗載荷為,所以選擇此彈簧可行。
7.2 軸承的選擇
查《機械設(shè)計手冊大師》,選擇6202深溝球軸承,內(nèi)徑為15mm,外徑為35mm,寬
度為11mm。
選擇NA 4901滾針軸承,內(nèi)徑為12mm,外徑為24mm,寬度為13mm。
7.3 螺釘?shù)倪x擇
根據(jù)GB/T 5782-2000
選取螺紋規(guī)格d=M6 兩個
選取螺紋規(guī)格d=M12一個
材料為Q235
7.4 彈簧壓塊的設(shè)計
壓塊的設(shè)計如圖所示,材料選擇45號鋼
圖7-1 彈簧壓塊示意圖
7.5 齒條支撐的設(shè)計
齒條支撐的設(shè)計如圖所示,材料選擇45號鋼
圖7-2 齒條支撐示意圖
7.6 軸承壓塊的設(shè)計
軸承壓塊的設(shè)計尺寸如圖所示,材料選擇45號鋼
圖7-3 軸承壓塊示意圖
結(jié)束語
本次畢業(yè)設(shè)計主要設(shè)計了機械式齒輪齒條式轉(zhuǎn)向器。選用的中間輸入,兩端輸出的形式,與非獨立式懸架配合使用,齒輪的齒形為直齒輪,齒條的斷面形狀為圓形。齒輪齒條式轉(zhuǎn)向器結(jié)構(gòu)簡單、緊湊;轉(zhuǎn)向器質(zhì)量比較小,傳動效率高,比較適合用于輕型載貨汽車上。本次設(shè)計還有很多不足之處,希望大家指正。
致 謝
通過本次畢業(yè)設(shè)計我把我大學(xué)所學(xué)的知識進行了比較全面的運用和對其相關(guān)知識的進一步了解。
在本次畢業(yè)設(shè)計中,我系統(tǒng)的了解了關(guān)于汽車轉(zhuǎn)向系統(tǒng)的知識,讓我對其有了初步的了解和認識。尤其是對齒輪齒條轉(zhuǎn)向器有了深刻的認識。這次畢業(yè)設(shè)計是對大學(xué)四年學(xué)習(xí)的知識的一次總結(jié)。在畢業(yè)設(shè)計中,我遇到了很多困難,有時候甚至無法下手。在經(jīng)過自己看書和老師指點加上和同學(xué)之間的無相交流之后,一步一步的完成了畢業(yè)設(shè)計。
畢業(yè)設(shè)計雖然比較辛苦,但是對我有了很大的提高。主要表現(xiàn)在如下幾個方面:
1).通過這次別業(yè)設(shè)計,我系統(tǒng)的復(fù)習(xí)了解的了大學(xué)所學(xué)的知識,查缺補漏,溫故知新,對自己的知識成面有了一個提高,進一步完善了自己的知識結(jié)構(gòu)。
2).對自己使用軟件的能力有了一個很大的提高,對軟件的一些運用更加熟練。
3).用于面對挑戰(zhàn)和困難,知道了交流的重要性。
4).利用理論理論知識設(shè)計東西,使自己對設(shè)計有了初步了了解,學(xué)會了這種設(shè)計模式。
轉(zhuǎn)眼間畢業(yè)設(shè)計已經(jīng)接近了尾聲,這段奮斗的時光對我來說是非常有意義的。以后想起這段時間一定是很難忘了,這是我們走向社會之前的一段磨練。
大學(xué)四年即將結(jié)束,畢業(yè)設(shè)計即將完成。在這里我非常感謝給我指導(dǎo)的老師。從開題到畢業(yè)設(shè)計結(jié)束,每當(dāng)我有不解之處,老師都會在百忙之中抽空見我們,給予我們指導(dǎo),毫不厭倦的解答我們的問題。我才得以一步一步的往下做,在此,我衷心感謝老師,在畢業(yè)設(shè)計這段時間給我的指導(dǎo)。
同時還非常感謝給我指點的各位同學(xué),在我有疑問的時候能給予我?guī)椭M瑫r也感謝學(xué)校提供了一個非常好的環(huán)境和各種資料幫助我們做畢業(yè)設(shè)計。
大學(xué)四年即將結(jié)束,我在母校度過了非??鞓返拇髮W(xué)時光,也學(xué)到了很多知識,感謝各位老師給我的幫助。對于學(xué)校我無以回報,只希望以后好好工作為學(xué)校爭光。
再次向他們表示我衷心的謝意。
參考文獻
[1] 陳家瑞.汽車構(gòu)造.第三版.下冊[M].北京:機械工業(yè)出版社,2009.2
[2] 過學(xué)迅,鄧亞東. 汽車設(shè)計.[M].北京:人民交通出版社,2005.8
[3] 黃華梁,彭文生.機械設(shè)計基礎(chǔ).第四版.[M].北京:高等教育出版社,2007.5
[4] 余志生.汽車理論.第五版.[M]北京:機械工業(yè)出版社,2009.3
[5] 王伯平.互換性與測量技術(shù)基礎(chǔ).第三版[M].北京:機械工業(yè)出版社,2008.12
[6] 黃茂林.機械原理.第二版[M].北京:機械工業(yè)出版社,2010.4
[7] 史新民.常用機構(gòu)與零件設(shè)計.[M].北京:清華大學(xué)出版社,2010.12
[8] 中國機械設(shè)計大典編委會.中國機械設(shè)計大典.第3卷[M].南昌:江西科學(xué)技術(shù)出版社,2008.2
[9] 秦大同,謝里陽. 現(xiàn)代機械設(shè)計手冊[M].北京:化學(xué)工業(yè)出版社,2011.1
[10] 毛昕,張秀艷,黃英,肖平陽. 畫法幾何及機械制圖.第三版[M].北京:高等教育出版社,2002.1
[11] 曾東建.汽車制造工藝學(xué)[M].北京:機械工業(yè)出版社,2005.9
[12] 劉鴻文.材料力學(xué).第四版[M].北京:高等教育出版社,2004.1
[13] 陶亦亦,潘玉嫻.工程材料與機械制造基礎(chǔ)[M].北京:化學(xué)工業(yè)出版社,2006
[14] 王望予. 汽車設(shè)計.第四版[M].北京:機械工業(yè)出版社,2008.8
[15] 劉冰.齒輪齒條轉(zhuǎn)向器的建模分析[J].上海工程技術(shù)大學(xué) 城市軌道交通學(xué)院
[16] 賀敬良,秦建旭.變速比轉(zhuǎn)向器齒扇副齒合理論研究[J] .北京信息科技大學(xué)機電工程學(xué)院
[17] 張敏中.齒輪-齒條式轉(zhuǎn)向器轉(zhuǎn)向梯形機構(gòu)優(yōu)化設(shè)計[J]
[18] 賈巨民,吳宏基,錢名海,唐天元,劉建.汽車循環(huán)球式轉(zhuǎn)向器側(cè)隙的研究1993年第10期
[19] 史建鵬.汽車轉(zhuǎn)向輪前束與車輪外傾角的設(shè)計匹配[J].東風(fēng)汽車公司技術(shù)中心
[20] 孫成玉,言夢林.汽車轉(zhuǎn)向梯形機構(gòu)最佳方案的設(shè)計[J].2002
[21] 齊淑范,何若天.轉(zhuǎn)向器實驗用的抗彎曲型扭矩傳感器[J].1991
[22] 吳文江,杜彥良.電動轉(zhuǎn)向系統(tǒng)助力性能研究[J].中國安全科學(xué)報.2003.7.第13卷
[23] Zhao Wangzhong,Lin Yi,Wei Jianwei,Shi Guobiao. Control strategy of novel electric power Steering systen integrated with active front steering function.2011.6:1515-1520
[24] Li Huimin,Gao Yingjie,Gu Yanpeng,Yang Zhiyu,Dang Qi.Design of an Electro-hydraulic Steering System for Wheeled Hydraulic Excavator.2007.6