九九热最新网址,777奇米四色米奇影院在线播放,国产精品18久久久久久久久久,中文有码视频,亚洲一区在线免费观看,国产91精品在线,婷婷丁香六月天

判別分析-貝葉斯判別.ppt

上傳人:xt****7 文檔編號:15690083 上傳時間:2020-08-30 格式:PPT 頁數(shù):29 大?。?14KB
收藏 版權(quán)申訴 舉報 下載
判別分析-貝葉斯判別.ppt_第1頁
第1頁 / 共29頁
判別分析-貝葉斯判別.ppt_第2頁
第2頁 / 共29頁
判別分析-貝葉斯判別.ppt_第3頁
第3頁 / 共29頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《判別分析-貝葉斯判別.ppt》由會員分享,可在線閱讀,更多相關(guān)《判別分析-貝葉斯判別.ppt(29頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、第五章判別分析,判別分析是多元統(tǒng)計中用于判別樣品所屬類型的一種統(tǒng)計分析方法。是一種在一些已知研究對象用某種方法已經(jīng)分成若干類的情況下,確定新的樣品的觀測數(shù)據(jù)屬于那一類的統(tǒng)計分析方法。,判別準(zhǔn)則: 用于衡量新樣品與各已知組別接近程度的思路原則。,判別函數(shù): 基于一定的判別準(zhǔn)則計算出的用于衡量新樣品與各已知組別接近程度的描述指標(biāo)。,按照判別準(zhǔn)則來分有 距離判別、費希爾判別與貝葉斯判別。,距離判別法,判別準(zhǔn)則:對于任給一次觀測值,若它與第 類的重心距離最近,就認(rèn)為它來自于第 類。,馬氏距離,,,1、協(xié)方差相等,兩總體的距離判別,先考慮兩個總體的情況,設(shè)有兩個協(xié)差陣相同的p維正態(tài)總體 和 ,對給定

2、的樣本Y,判別一個樣本Y到底是來自哪一個總體,一個最直觀的想法是計算Y到兩個總體的距離。我們用馬氏距離來指定判別規(guī)則,有:,,,,因此有,判別函數(shù):,2、當(dāng)總體的協(xié)方差已知,但不相等,,3、當(dāng)總體的協(xié)方差未知時,用樣本的離差陣代替, 步驟如下: (1)分別計算各組的離差矩陣 和 ; (2)計算 (3)計算類的均值 (4)計算 (5)計算 (6)生成判別函數(shù),將檢驗樣本代入,判類。,多總體的距離判別法,,,,則,設(shè)有 個 元總體 ,分別有均值向量 和協(xié)方差陣 ,對任給的 元樣品 ,判斷它來自哪個總體,計算 到 個總體的馬氏距離,比較后,把 判歸給距離最小的那

3、個總體,若,錯判概率,,,,由上面的分析可以看出,馬氏距離判別法是合理的,但是這并不意謂著不會發(fā)生誤判。,設(shè)兩總體 , 分別服從 其線性判別函數(shù)為:,不妨設(shè) ,則當(dāng) 時,,當(dāng)兩總體靠得比較近時,即兩總體的均值差異較小時,無論用何種判別方法,判錯的概率都比較大,這時的判別分析也是沒有意義的,因此只有當(dāng)兩總體的均值有明顯差異時,進(jìn)行判別分析才有意義,為此,要對兩總體的均值差異性進(jìn)行檢驗.,練習(xí):P211:5-1,辦公室新來了一個雇員小王,小王是好人還是壞人大家都在猜測。按人們主觀意識,一個人是好人或壞人的概率均為0.5。壞人總是要做壞事,好人總是做好事,偶爾也會做一件壞事,一般好人做好事

4、的概率為0.9,壞人做好事的概率為0.2,一天,小王做了一件好事,小王是好人的概率有多大,你現(xiàn)在把小王判為何種人。,貝葉斯判別法,一 、標(biāo)準(zhǔn)的Bayes判別,一個好的判別方法,既要考慮到各個總體出現(xiàn)的先驗概率,又要考慮到錯判造成的損失,貝葉斯(Bayes)判別就具有這些優(yōu)點,其判別效果更加理想,應(yīng)用也更廣泛。,貝葉斯公式是一個我們熟知的公式,,距離判別簡單直觀,很實用,但是距離判別的方法把總體等同看待,沒有考慮到總體會以不同的概率(先驗概率)出現(xiàn),也沒有考慮誤判之后所造成的損失的差異。,則 判給 ,在正態(tài)的假定下, 為正態(tài)分布的 密度函數(shù)。,設(shè)有總體 , 具有概率密度函 數(shù) 。并且

5、根據(jù)以往的統(tǒng)計分析,知道 出現(xiàn)的概率為 。即當(dāng)樣本 發(fā)生時,求 屬于某類的概率。由貝葉斯公式計算后驗概率,有:,判別規(guī)則,則 判給 。,,上式兩邊取對數(shù),,,下面討論總體服從正態(tài)分布的情形,問題轉(zhuǎn)化為若 ,則判 。,當(dāng)協(xié)方差陣相等時,去掉與i無關(guān)的項,等價的判別函數(shù)為:,判別函數(shù)退化為,,,,,,令,問題轉(zhuǎn)化為若 ,則判 。,令,,,完全成為距離判別法 。,令,有,問題轉(zhuǎn)化為若 ,則判 。,當(dāng)先驗概率相等,即 時,二、 考慮錯判損失的Bayes判別分析,,設(shè)有總體 , 具有概率密度函 數(shù) 。并且根據(jù)以往的統(tǒng)計分析,知

6、道 出現(xiàn)的概率為 , 。,D1,D2, ,Dk是R(p)的一個分劃,判別法則為:,關(guān)鍵的問題是尋找D1,D2, ,Dk分劃,這個分劃應(yīng)該使平均錯判率最小。,當(dāng)樣品X落入Di時,判,【定義】(平均錯判損失),,,C(j/i)表示相應(yīng)錯判所造成的損失。,則平均錯判損失為:,使ECM最小的分劃,是Bayes判別分析的解。,用 表示將來自總體Gi的樣品錯判到總體Gj的條件概率。,【定理】,且相應(yīng)的密度函數(shù)為 ,損失為 時, 劃分的貝葉斯解為,若總體G1,G2,,Gk的先驗概率為,其中,含義是:當(dāng)抽取了一個未知總體的樣品值x,要判別它屬于哪個總體,只要先計算出k個按先驗概率加權(quán)的誤判平均損失 然后比較其大小,選取其中最小的,則判定樣品屬于該總體。,下面在k=2的情形下,計算作為例子,我們討論。,,,,,由此可見,被積函數(shù)在D1是負(fù)數(shù)時,可使ECM最小,則有分劃,,,,Bayes判別準(zhǔn)則為:,令,特別地,若,則 判給 。與標(biāo)準(zhǔn)Bayes判別等價,當(dāng)錯判概率,廣義平方距離法,,,其中,定義樣品X到總體Gi的廣義平方距離為:,判別準(zhǔn)則:,練習(xí):設(shè)三個總體 的分布分別為 按廣義平方距離準(zhǔn)則判斷樣品 應(yīng)判歸哪一類.,,,,

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔

相關(guān)搜索

關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!