喜歡就充值下載吧。。。資源目錄里展示的全都有,,下載后全都有,,請(qǐng)放心下載,原稿可自行編輯修改=====================喜歡就充值下載吧。。。資源目錄里展示的全都有,,下載后全都有,,請(qǐng)放心下載,原稿可自行編輯修改=====================喜歡就充值下載吧。。。資源目錄里展示的全都有,,下載后全都有,,請(qǐng)放心下載,原稿可自行編輯修改=====================
邵陽(yáng)學(xué)院畢業(yè)設(shè)計(jì)(論文)任務(wù)書(shū)
年級(jí)專業(yè)
04機(jī)制本科
學(xué)生姓名
李哲
學(xué) 號(hào)
0440816025
課題名稱
湘玉竹切片機(jī)的設(shè)計(jì)
設(shè)計(jì)(論文)
起止時(shí)間
2008年3月7日至2008年6月2日
課題類型
工程設(shè)計(jì)
課題性質(zhì)
真實(shí)
一、 課題設(shè)計(jì)(研究)的目的和主要內(nèi)容
研究的目的:
本設(shè)計(jì)用于湘玉竹的切片,其主要特點(diǎn)為旋切式切片,在平帶上裝了八把刀片,使得其效率比同類產(chǎn)品要高,從而提高生產(chǎn)效益。由于本設(shè)計(jì)從經(jīng)濟(jì)性、實(shí)用性出發(fā),盡量與一般工廠的實(shí)際相吻合,故能達(dá)到預(yù)期設(shè)想的效果。
主要內(nèi)容:
1. 熟悉切片機(jī)械的結(jié)構(gòu),工作原理,以及了解切片機(jī)械的發(fā)展方向。
2. 完成對(duì)中等復(fù)雜程度機(jī)械的計(jì)算、結(jié)構(gòu)設(shè)計(jì)等工作。
3. 以湘玉竹切片機(jī)為對(duì)象進(jìn)行機(jī)械的設(shè)計(jì),完成湘玉竹切片機(jī)裝配圖的設(shè)計(jì)和所有非標(biāo)零件圖設(shè)計(jì)和所有非標(biāo)零件圖設(shè)計(jì)工作,并編寫(xiě)說(shuō)明書(shū)。
二、 基本要求
1. 學(xué)生應(yīng)在教師的指導(dǎo)下按時(shí)完成所規(guī)定的內(nèi)容和工作量,編寫(xiě)符合要求的設(shè)計(jì)計(jì)算說(shuō)明書(shū),并正確繪制整套機(jī)械圖表。
2. 學(xué)生依據(jù)課題任務(wù),認(rèn)真收集有關(guān)資料,熟悉有關(guān)切片機(jī)的加工工藝,正確使用各類工具書(shū);掌握有關(guān)工程設(shè)計(jì)的程序、方法和技術(shù)規(guī)范;鍛煉分析與解決工程實(shí)際問(wèn)題的能力。
3. 在設(shè)計(jì)中應(yīng)樹(shù)立正確的設(shè)計(jì)思想,培養(yǎng)嚴(yán)肅認(rèn)真的科學(xué)態(tài)度,嚴(yán)謹(jǐn)求實(shí)的工作作風(fēng)。
4. 畢業(yè)設(shè)計(jì)說(shuō)明書(shū)應(yīng)包括與設(shè)計(jì)題目有關(guān)的闡述說(shuō)明及計(jì)算,內(nèi)容完整,文字流暢,符合畢業(yè)設(shè)計(jì)規(guī)范。
5. 熟練運(yùn)用CAD繪制機(jī)械圖表。
注:1、此表由指導(dǎo)教師填寫(xiě),經(jīng)各系、教研室主任審批,指導(dǎo)教師、學(xué)生簽字后生效;
2、此表1式3份,學(xué)生、指導(dǎo)教師、教研室各1份。
三、課題研究已具備的條件(包括實(shí)驗(yàn)室、主要儀器設(shè)備、參考資料)
該產(chǎn)品在全國(guó)有著廣泛的市場(chǎng),全國(guó)很多公司已開(kāi)始研制,并取得一定的效果,某工廠給予了一定的技術(shù)支持。
參考資料:
1. 孫桓,陳作模﹒機(jī)械原理第六版[M] .高等教育出版社 ,2000年 150-152
2. 王昆,何小柏,汪信遠(yuǎn).機(jī)械設(shè)計(jì)課程設(shè)計(jì)[M].高等教育出版社,1996年 121-123
3. 方大千.電動(dòng)機(jī)速查速算手冊(cè)[M] .中國(guó)水利水電出版社 ,2004年 99-101
三、 設(shè)計(jì)(論文)進(jìn)度安排
進(jìn)度安排:
3月初-3月30日:搜集資料,實(shí)地考察,確定設(shè)計(jì)方案
3月21日-4月21日:結(jié)構(gòu)和功能分析,初步確定傳動(dòng)方式、結(jié)構(gòu)、材料
4月22日-5月22日:傳動(dòng)系統(tǒng)等設(shè)計(jì)計(jì)算,圖紙繪制,編寫(xiě)說(shuō)明書(shū)
5月22日-6月10日:設(shè)計(jì)修改,答辯
五、教研室審批意見(jiàn)
教研室主任(簽字) 年 月 日
六、系審批意見(jiàn)
系主任(簽字) 單位(公章) 年 月 日
指導(dǎo)教師(簽字): 學(xué)生(簽字):
·2·
畢業(yè)設(shè)計(jì)(論文)
課 題 名 稱 湘玉竹切片機(jī)的設(shè)計(jì)
學(xué) 生 姓 名 李 哲
學(xué) 號(hào) 0440816025
系、年級(jí)專業(yè) 機(jī)械與能源工程系
04級(jí)機(jī)械設(shè)計(jì)制造及自動(dòng)化(CAD/CAM方向)
指 導(dǎo) 教 師 姜 宏 陽(yáng)
職 稱 高級(jí)工程師
2008年 6 月 1日
畢業(yè)設(shè)計(jì)(論文)附件
課 題 名 稱 湘玉竹切片機(jī)的設(shè)計(jì)
學(xué) 生 姓 名 李 哲
目 錄
1.畢業(yè)設(shè)計(jì)(論文)任務(wù)書(shū)
2.畢業(yè)設(shè)計(jì)(論文)開(kāi)題報(bào)告
3.畢業(yè)設(shè)計(jì)(論文)進(jìn)度考核表
4.畢業(yè)設(shè)計(jì)(論文)評(píng)閱表
2008年 6 月 1日
邵 陽(yáng) 學(xué) 院
畢業(yè)設(shè)計(jì)(論文)開(kāi)題報(bào)告書(shū)
課題名稱 湘玉竹切片機(jī)的設(shè)計(jì)
學(xué)生姓名 李 哲
學(xué) 號(hào) 0440816025
系 、 專 業(yè) 機(jī)械與能源工程系04機(jī)制本科
指導(dǎo)教師 姜宏陽(yáng)
2008 年 3 月 21 日
一、 課題的來(lái)源、目的意義(包括應(yīng)用前景)、國(guó)內(nèi)外現(xiàn)狀及水平
課題來(lái)源:本課題來(lái)源于某工廠,經(jīng)過(guò)仔細(xì)分析,結(jié)合自己所學(xué)的知識(shí)并和工人師傅共同討論研究其實(shí)際情況而開(kāi)始此設(shè)計(jì)的工作。
目的及意義:首先是為了讓我能更好的把四年所學(xué)的理論知識(shí)與生產(chǎn)實(shí)際相結(jié)合,其次本設(shè)計(jì)用于湘玉竹的切片,其主要特點(diǎn)為旋切式切片,在平帶上裝了八把刀片,使得其效率比同類產(chǎn)品要高,從而提高生產(chǎn)效益。由于本設(shè)計(jì)從經(jīng)濟(jì)性、實(shí)用性出發(fā),盡量與一般工廠的實(shí)際相吻合,故能達(dá)到預(yù)期設(shè)想的效果。
國(guó)內(nèi)外現(xiàn)狀及水平:
目前中、小型企業(yè)所使用的大部分竹片切片機(jī)設(shè)備為我國(guó)自行設(shè)計(jì)制造的。國(guó)產(chǎn)竹片切片機(jī)設(shè)備已經(jīng)比較成熟,大量占有國(guó)內(nèi)市場(chǎng);成套出口到國(guó)際市場(chǎng)上的項(xiàng)目也陸續(xù)投產(chǎn),贏得了顧客的一致好評(píng)。
二、課題研究的主要內(nèi)容、研究方法或工程技術(shù)方案和準(zhǔn)備采取的措施
課題研究的主要內(nèi)容:
1. 熟悉切片機(jī)械的結(jié)構(gòu),工作原理,以及了解切片機(jī)械的發(fā)展方向。
2. 完成對(duì)中等復(fù)雜程度機(jī)械的計(jì)算、結(jié)構(gòu)設(shè)計(jì)等工作。
3. 以湘玉竹切片機(jī)為對(duì)象進(jìn)行機(jī)械的設(shè)計(jì),完成湘玉竹切片機(jī)裝配圖的設(shè)計(jì)和所有非標(biāo)零件圖設(shè)計(jì)和所有非標(biāo)零件圖設(shè)計(jì)工作,并編寫(xiě)說(shuō)明書(shū)。
準(zhǔn)備采取的措施:
首先認(rèn)真查詢相關(guān)資料,初步掌握湘玉竹切片機(jī)的結(jié)構(gòu)及工作原理;然后分析供料器的材料及相應(yīng)參數(shù)的計(jì)算;接著制定其傳動(dòng)部件設(shè)計(jì)方案,這也是整個(gè)裝置最重要的部分,必須有充分的理論依據(jù)和經(jīng)過(guò)嚴(yán)格的計(jì)算得出;最后進(jìn)行刀具的設(shè)計(jì),從刀具的各個(gè)參數(shù)及材料入手進(jìn)行設(shè)計(jì)。
三、 現(xiàn)有基礎(chǔ)和具備的條件
通過(guò)大學(xué)四年的學(xué)習(xí),我掌握了基本的專業(yè)知識(shí),對(duì)本課題的相關(guān)學(xué)科有一定的了解,具有了一定的相關(guān)理論基礎(chǔ)。在校期間,學(xué)校還組織過(guò)各種課程設(shè)計(jì),因此積累了一定的經(jīng)驗(yàn),對(duì)本次設(shè)計(jì)有指導(dǎo)性的幫助。同時(shí)經(jīng)過(guò)幾個(gè)學(xué)習(xí)期間的一系列的設(shè)計(jì)與實(shí)習(xí),錘煉了我們綜合多門課程知識(shí)進(jìn)行創(chuàng)新的能力。
邵陽(yáng)學(xué)院的實(shí)習(xí)工廠提供了實(shí)際操作場(chǎng)地,具有各種加工工具(包括各種車床、刨床、銑床、磨床、數(shù)控加工中心等等),可以滿足本設(shè)計(jì)中實(shí)際操作的需要。
學(xué)院圖書(shū)館收藏了許多有關(guān)專業(yè)方面的知識(shí)書(shū)籍和周刊,并且提供了網(wǎng)絡(luò)化的機(jī)房,可以在中國(guó)期刊網(wǎng)、維普網(wǎng)、萬(wàn)方數(shù)據(jù)庫(kù)、超星數(shù)字圖書(shū)館等網(wǎng)站查閱有關(guān)資料。
現(xiàn)有相關(guān)的裝配圖紙及零件圖及相關(guān)的技術(shù)參數(shù)和要求、《機(jī)械設(shè)計(jì)手冊(cè)》、《機(jī)械制造技術(shù)基礎(chǔ)》、《機(jī)械制造裝備設(shè)計(jì)》、《零件設(shè)計(jì)手冊(cè)》等相關(guān)資料。除了以上的資料,還有AUTOCAD、PRO/E、UG、SOILDWORKS、OFFICE等相關(guān)的繪圖軟件和工作軟件。
在指導(dǎo)上面,除了姜宏陽(yáng)老師提供理論指導(dǎo)外, 技術(shù)中心及實(shí)驗(yàn)室的工程師和技術(shù)師傅們也給予了充分的指導(dǎo)。還有生產(chǎn)企業(yè)也給與了有關(guān)方面的參數(shù)支持。
四、 總的工作任務(wù),進(jìn)度安排以及預(yù)期結(jié)果
總的工作任務(wù):
繪制相關(guān)設(shè)計(jì)圖紙
編寫(xiě)說(shuō)明書(shū)(1~2萬(wàn)字)
翻譯相關(guān)英文資料1篇
進(jìn)度安排:
3月初-3月30日:搜集資料,實(shí)地考察,確定設(shè)計(jì)方案
3月21日-4月21日:結(jié)構(gòu)和功能分析,初步確定傳動(dòng)方式、結(jié)構(gòu)、材料
4月22日-5月22日:傳動(dòng)系統(tǒng)等設(shè)計(jì)計(jì)算,圖紙繪制,編寫(xiě)說(shuō)明書(shū)
5月22日-6月10日:設(shè)計(jì)修改,答辯
五、指導(dǎo)教師審查意見(jiàn)
指導(dǎo)教師(簽名)
年 月 日
六、教研室審查意見(jiàn)
教研室主任(簽名)
年 月 日
七、系審查意見(jiàn)
系主任(簽名)
年 月 日
備 注
·6·
畢業(yè)實(shí)習(xí)報(bào)告
學(xué) 生 姓 名 李 哲
實(shí) 習(xí) 時(shí) 間 2008年3月6日——2008年3月14號(hào)
學(xué) 號(hào) 0440816025
系、年級(jí)專業(yè) 機(jī)械與能源工程系
04級(jí)機(jī)械設(shè)計(jì)制造及其自動(dòng)化
2008年 3 月 20日
畢業(yè)實(shí)習(xí)報(bào)告
1:畢業(yè)實(shí)習(xí)的目的:
(1)加強(qiáng)實(shí)踐教學(xué),激發(fā)就業(yè)意識(shí)。在實(shí)踐教學(xué)中,應(yīng)以培養(yǎng)學(xué)生學(xué)習(xí)興趣為動(dòng)力,以積極參與為前提,以深入討論為手段,以校內(nèi)外實(shí)習(xí)基地為載體,加大實(shí)踐教學(xué)的份量,引導(dǎo)學(xué)生進(jìn)行創(chuàng)業(yè)實(shí)踐。通過(guò)具體的實(shí)踐活動(dòng),提高學(xué)生實(shí)際操作能力和解決問(wèn)題的能力。
(2)完善實(shí)踐教學(xué),傳授就業(yè)技能。只有通過(guò)具體的實(shí)踐,學(xué)生才能加深對(duì)所學(xué)基礎(chǔ)知識(shí)的理解,才能系統(tǒng)地掌握各個(gè)環(huán)節(jié)的基本技能。指導(dǎo)老師要有意識(shí)地組織學(xué)生進(jìn)行全過(guò)程的實(shí)踐,在實(shí)踐中發(fā)現(xiàn)不足并及時(shí)補(bǔ)救,更重要的是讓學(xué)生自己去體驗(yàn)每個(gè)環(huán)節(jié)完成的艱辛,這不僅有助于學(xué)生懂得各種知識(shí)的重要作用,也有利于培養(yǎng)學(xué)生從實(shí)際出發(fā),掌握解決問(wèn)題的能力和社會(huì)交往的能力。
(3)調(diào)動(dòng)學(xué)生的積極性,鍛煉和培養(yǎng)學(xué)生的獨(dú)立操作能力,強(qiáng)化技能訓(xùn)練。
本人在今年的三月份,在冷水江鋼鐵總公司參加了為期一周的畢業(yè)實(shí)習(xí)。
今天我們?cè)诶渌撹F公司職工培訓(xùn)大樓聽(tīng)了冷水江人力資源部的負(fù)責(zé)人介紹冷水江鋼鐵公司的概況的介紹。
冷水江鋼鐵總廠創(chuàng)建于1958年,現(xiàn)為湖南省國(guó)有資產(chǎn)監(jiān)督管理委員會(huì)下屬54家大型企業(yè)之一,擁有總資產(chǎn)16億元人民幣,職工5317人,其下有三個(gè)分廠,分別是煉鐵廠,軋鋼廠,動(dòng)力廠,年銷售收入24億元人民幣,是湖南省經(jīng)濟(jì)100強(qiáng)企業(yè)。冷鋼現(xiàn)已具備生產(chǎn)200萬(wàn)噸鐵、鋼,100萬(wàn)噸材的配套能力。主要生產(chǎn)裝備有煉鐵高爐4座、燒結(jié)機(jī)2臺(tái)、轉(zhuǎn)爐4座、連鑄機(jī)3臺(tái)、軋機(jī)2套。主要產(chǎn)品有鑄造生鐵、連鑄方坯(含碳素結(jié)構(gòu)鋼、鋼筋用鋼和低合金鋼),12~32mm鋼筋混凝土用熱軋帶肋鋼筋。
冷鋼始終堅(jiān)持走“質(zhì)量、品種、效益”的道路,積極實(shí)施“創(chuàng)名牌”的精品戰(zhàn)略,奉行“誠(chéng)信務(wù)實(shí),博采眾長(zhǎng),開(kāi)拓創(chuàng)新,做大做強(qiáng)”的經(jīng)營(yíng)理念,認(rèn)真貫徹“嚴(yán)格管理抓質(zhì)量,鋼澆鐵鑄塑品牌,持續(xù)改進(jìn)為顧客,博采眾長(zhǎng)求卓越”的質(zhì)量方針,圍繞著“為滿足顧客要求而達(dá)到顧客滿意”所設(shè)定的質(zhì)量承諾,依靠技術(shù)創(chuàng)新和強(qiáng)化管理,提高產(chǎn)品質(zhì)量,得到了廣大用戶和社會(huì)各界的信賴和好評(píng)。2004年“博長(zhǎng)牌”鋼筋混凝土用熱軋帶肋鋼筋榮獲“國(guó)家免檢產(chǎn)品”、“湖南省名牌產(chǎn)品”稱號(hào)。企業(yè)通過(guò)了ISO9001:2000質(zhì)量管理體系認(rèn)證,取得采用國(guó)際標(biāo)準(zhǔn)產(chǎn)品認(rèn)可證書(shū)。健全的組織機(jī)構(gòu),先進(jìn)的檢測(cè)設(shè)備,全過(guò)程的質(zhì)量控制,誠(chéng)信的售后服務(wù),使“博長(zhǎng)牌”熱軋帶肋鋼筋產(chǎn)品質(zhì)量?jī)?yōu)良,外形美觀,包裝齊整,能滿足工程的要求,深受用戶歡迎。產(chǎn)品暢銷上海、廣東、浙江、福建、廣西、重慶、湖南等省區(qū),是公路、橋梁、高層建筑的理想產(chǎn)品。
今天我們結(jié)束了安全教育的培訓(xùn),我們被分為三個(gè)小組,我被分到了扎鋼廠。在車間主任的帶領(lǐng)下,我們參觀了煉鋼車間。工作人員為我們講解了煉鋼的具體方法,轉(zhuǎn)爐煉鋼法:這種煉鋼法使用的氧化劑是氧氣。把空氣鼓入熔融的生鐵里,使雜質(zhì)硅、錳等氧化。在氧化的過(guò)程中放出大量的熱量(含1%的硅可使生鐵的溫度升高200攝氏度),可使?fàn)t內(nèi)達(dá)到足夠高的溫度。因此轉(zhuǎn)爐煉鋼不需要另外使用燃料。
轉(zhuǎn)爐煉鋼是在轉(zhuǎn)爐里進(jìn)行。轉(zhuǎn)爐的外形就像個(gè)梨,內(nèi)壁有耐火磚,爐側(cè)有許多小孔(風(fēng)口),壓縮空氣從這些小孔里吹爐內(nèi),又叫做側(cè)吹轉(zhuǎn)爐。開(kāi)始時(shí),轉(zhuǎn)爐處于水平,向內(nèi)注入1300攝氏度的液態(tài)生鐵,并加入一定量的生石灰,然后鼓入空氣并轉(zhuǎn)動(dòng)轉(zhuǎn)爐使它直立起來(lái)。這時(shí)液態(tài)生鐵表面劇烈的反應(yīng),使鐵、硅、錳氧化 (FeO,SiO2 , MnO,) 生成爐渣,利用熔化的鋼鐵和爐渣的對(duì)流作用,使反應(yīng)遍及整個(gè)爐內(nèi)。幾分鐘后,當(dāng)鋼液中只剩下少量的硅與錳時(shí),碳開(kāi)始氧化,生成一氧化碳(放熱)使鋼液劇烈沸騰。爐口由于溢出的一氧化炭的燃燒而出現(xiàn)巨大的火焰。最后,磷也發(fā)生氧化并進(jìn)一步生成磷酸亞鐵。磷酸亞鐵再跟生石灰反應(yīng)生成穩(wěn)定的磷酸鈣和硫化鈣,一起成為爐渣。
當(dāng)磷于硫逐漸減少,火焰退落,爐口出現(xiàn)四氧化三鐵的褐色蒸汽時(shí),表明鋼已煉成。這時(shí)應(yīng)立即停止鼓風(fēng),并把轉(zhuǎn)爐轉(zhuǎn)到水平位置,把鋼水傾至鋼水包里,再加脫氧劑進(jìn)行脫氧。整個(gè)過(guò)程只需15分鐘左右。如果空氣是從爐低吹入,那就是低吹轉(zhuǎn)爐。
隨著制氧技術(shù)的發(fā)展,現(xiàn)在已普遍使用氧氣頂吹轉(zhuǎn)爐 (也有側(cè)吹轉(zhuǎn)爐)。這種轉(zhuǎn)爐吹如的是高壓工業(yè)純氧,反應(yīng)更為劇烈,能進(jìn)一步提高生產(chǎn)效率和鋼的質(zhì)量。
實(shí)習(xí)總結(jié)
畢業(yè)實(shí)習(xí)雖然有些短暫,卻是充實(shí)的。我能感覺(jué)得到大家那種付出后得到收獲的喜悅。平日里,我們學(xué)到的都是一些書(shū)本上的理論知識(shí),有些甚至很抽象難以理解。通過(guò)這次的認(rèn)識(shí)實(shí)習(xí),不但大大的幫助了我們對(duì)書(shū)本知識(shí)的理解,更使我們知道了要如何的利用我們所掌握的知識(shí)。與此同時(shí),我們也開(kāi)闊了視野,相信這些對(duì)我們以后的學(xué)習(xí)會(huì)很有幫助的,讓我對(duì)原先在課本上許多不很明白的東西在實(shí)踐觀察中有了新的領(lǐng)悟和認(rèn)識(shí)。
在這個(gè)科技時(shí)代中,高技術(shù)產(chǎn)品品種類繁多,生產(chǎn)工藝、生產(chǎn)流程也各不相同,但不管何種產(chǎn)品,從原料加工到制成產(chǎn)品都是遵循一定的生產(chǎn)原理,通過(guò)一些主要設(shè)備及工藝流程來(lái)完成的。因此,在專業(yè)實(shí)習(xí)過(guò)程中,首先要了解其生產(chǎn)原理,弄清生產(chǎn)的工藝流程和主要設(shè)備的構(gòu)造及操作。其次,在專業(yè)人員指導(dǎo)下,通過(guò)實(shí)習(xí)過(guò)程實(shí)習(xí)產(chǎn)品的設(shè)計(jì)、生產(chǎn)及開(kāi)發(fā)等環(huán)節(jié),初步培養(yǎng)我們得知識(shí)運(yùn)用能力。概括起來(lái)有以下幾方面:
1.了解了當(dāng)代機(jī)械工業(yè)的發(fā)展概況,生產(chǎn)目的、生產(chǎn)程序及產(chǎn)品供求情況。
2.了解了機(jī)械產(chǎn)品生產(chǎn)方法和技術(shù)路線的選擇,工藝條件的確定以及流程的編制原則。
3.了解了機(jī)械產(chǎn)品的質(zhì)量標(biāo)準(zhǔn)、技術(shù)規(guī)格、包裝和使用要求。
4.在企業(yè)員工的指導(dǎo)下,實(shí)習(xí)生產(chǎn)流程及技術(shù)設(shè)計(jì)環(huán)節(jié),鍛煉自己觀察能力及知識(shí)運(yùn)用能力。
5.社會(huì)工作能力得到了相應(yīng)的提高,在實(shí)習(xí)過(guò)程中,我們不僅從企業(yè)職工身上學(xué)到了知識(shí)和技能,更使我們學(xué)會(huì)了企業(yè)中科學(xué)的管理方式和他們的敬業(yè)精神。感到了生活的充實(shí)和學(xué)習(xí)的快樂(lè),以及獲得知識(shí)的滿足。真正的接觸了社會(huì),使我們消除了走向社會(huì)的恐懼心里,使我們對(duì)未來(lái)充滿了信心,以良好的心態(tài)去面對(duì)社會(huì)。同時(shí),也使我們體驗(yàn)到了工作的艱辛,了解了當(dāng)前社會(huì)大學(xué)生所面臨的嚴(yán)峻問(wèn)題,促使自己努力學(xué)習(xí)更多的知識(shí),為自己今后的工作奠定良好的基礎(chǔ)。
6.增進(jìn)了我們的師生感情,從這次生產(chǎn)實(shí)習(xí)的全過(guò)程來(lái)看,自始至終我們都服從老師的安排,嚴(yán)格要求自己,按時(shí)報(bào)到,注重安全。
邵陽(yáng)學(xué)院畢業(yè)設(shè)計(jì)(論文)課題申報(bào)表
課題名稱
湘玉竹切片機(jī)的設(shè)計(jì)
適用專業(yè)
機(jī)械制造
課題來(lái)源
生活實(shí)際
指導(dǎo)教師
姓 名
姜宏陽(yáng)
職 稱
高級(jí)工程師
研究方向
產(chǎn)品設(shè)計(jì)
課題的主要設(shè)計(jì)(研究) 目的、內(nèi)容和要求,已具備的條件:
研究的目的:
本設(shè)計(jì)用于湘玉竹的切片,其主要特點(diǎn)為旋切式切片,在平帶上裝了八把刀片,使得其效率比同類產(chǎn)品要高,從而提高生產(chǎn)效益。由于本設(shè)計(jì)從經(jīng)濟(jì)性、實(shí)用性出發(fā),盡量與一般工廠的實(shí)際相吻合,故能達(dá)到預(yù)期設(shè)想的效果。
研究的內(nèi)容和要求:
1. 熟悉切片機(jī)械的結(jié)構(gòu),工作原理,以及了解切片機(jī)械的發(fā)展方向。
2. 完成對(duì)中等復(fù)雜程度機(jī)械的計(jì)算、結(jié)構(gòu)設(shè)計(jì)等工作。
3. 以湘玉竹切片機(jī)為對(duì)象進(jìn)行機(jī)械的設(shè)計(jì),完成湘玉竹切片機(jī)裝配圖的設(shè)計(jì)和所有非標(biāo)零件圖設(shè)計(jì)和所有非標(biāo)零件圖設(shè)計(jì)工作,并編寫(xiě)說(shuō)明書(shū)。
指導(dǎo)教師(簽字):
年 月 日
教研室審查意見(jiàn)
教研室主任(簽字):
年 月 日
專家審定意見(jiàn)
專家(簽字):
年 月 日
注:1.此表由申報(bào)畢業(yè)設(shè)計(jì)(論文)課題的老師填寫(xiě);
2.此表1式3份。教務(wù)處、學(xué)生所在系、專業(yè)教研室各1份。
·11·
邵陽(yáng)學(xué)院畢業(yè)設(shè)計(jì)(論文)
目錄
內(nèi)容提要 Ⅰ
Summary Ⅱ
1 前言 1
2 設(shè)計(jì)思路及整體方案 1
2.1 整體設(shè)計(jì)思路 1
2.2 設(shè)計(jì)方案 1
2.3 機(jī)構(gòu)示意圖 2
3 電動(dòng)機(jī)的選擇 2
4 聯(lián)軸器的選擇 4
4.1 小V帶軸和電動(dòng)機(jī)軸之間聯(lián)軸器的選擇 4
4.2 大V帶軸和小平帶軸之間聯(lián)軸器的選擇 4
4.3 壓緊裝置電動(dòng)機(jī)和傳動(dòng)軸之間聯(lián)軸器的選擇 4
5 平帶的設(shè)計(jì) 4
5.1 平帶及帶輪材料的選擇 4
5.2 平帶及帶輪的機(jī)構(gòu)示意圖 5
5.3 平帶及帶輪的一些基本尺寸及計(jì)算 5
5.4 平帶上的刀片的設(shè)計(jì) 7
5.5 帶輪軸的設(shè)計(jì)與校核 8
6 V帶的設(shè)計(jì) 13
6.1 選擇V帶的型號(hào) 13
6.2 確定帶輪基準(zhǔn)直徑 13
6.3 驗(yàn)算帶的速度 13
6.4 確定V帶長(zhǎng)及中心距 13
6.5 驗(yàn)算主動(dòng)輪上的包角 14
6.6 確定帶的根數(shù) 14
6.7 計(jì)算帶的張緊力和壓軸力 14
7 V帶輪的設(shè)計(jì) 14
7.1 小V帶輪軸的設(shè)計(jì) 14
7.2 大V帶輪軸的設(shè)計(jì) 18
7.3 小V帶輪的設(shè)計(jì) 21
7.4 大V帶輪的設(shè)計(jì) 22
7.5 V帶的張緊 22
8 物料箱的選擇 23
9 壓緊機(jī)構(gòu)的設(shè)計(jì) 24
9.1 壓緊機(jī)構(gòu)的結(jié)構(gòu)設(shè)計(jì) 24
9.2 齒輪齒條的設(shè)計(jì) 25
9.3 電動(dòng)機(jī)的選擇 27
10 機(jī)構(gòu)中彈簧的計(jì)算 27
10.1 彈簧材料的選定 27
10.2 彈簧尺寸的計(jì)算 27
10.3 壓縮彈簧的穩(wěn)定性 28
11 結(jié)束語(yǔ) 29
參考文獻(xiàn) 30
附錄 31
致 謝 32
On the profile design of transmission splines and keys
Daniel Z.Li
Abstract: Splines and keys are machinery components placed at the interface between shafts and hubs of power-transmitting elements. A spline (or key) is usually machined (or attached) onto the shaft of a power-transmitting pair, and the corresponding groove is cut into the hub. The influence of spline profiles on the performance of power transmission is investigated in this paper. The optimal design of spline profiles for three different design criteria is presented. The method of calculus of variation is used to determine profile functions for maximum value. Analytical results are successfully obtained. They show that the splines with involute profiles lead to uniform deformation on the hub, in addition they can carry the maximum transmission load capacity. On the other hand, radial straight profiles result in optimum transmission efficiency. We think that these findings are worthy reporting and also believe that this approach could be used for the spline design with other performance criteria imposed.
1 Introduction
A key is a machinery component placed at the interface between a shaft and the hub of a power-transmitting element such as gear and sprocket . A spline performs the same function as a key in transmitting torque from the shaft to the mating element . The main difference between splines and keys is that splines are integral with the shaft but keys are inserted between shaft and hub. As compared with one or two keys used for load transmission, there are usually four or more splines on a shaft. Therefore, the transmission torque is more uniform and the loading for each spline is lower. Splines play an important role in transmitting torque and their profiles do have the influence on the performance of power transmission. Unlike the conjugate profiles, the shaft with splines and hub have the same rotation axis and they are in surface contact without relative motion, they are connected together and have the same angular velocity. Therefore, it seems that any profiles except the shaft surface can be used for the design of splines. However, the load between the spline and hub is not evenly distributed over the entire contact surface in practice. The load may always concentrate on a small portion of contact surface and deformthe hub surface. This results in undesired clearance between the shaft and hub and will lead to serious damage of hub surface as the working cycles increase. To solve these problems, how the profiles of splines affect the torque transmission needs to be further investigated to find out the suitable design of spline profiles.
Currently there are two main types of splines used, namely, straight-sided and involute splines. The involute splines provide the mating element with self-centering and can be machined with standard hob cutter used to cut gear teeth. To date, the related research work focuses on conjugate profiles and gear design as well as the design of profile curvatures for reducing the wear of contact surfaces. However, none of them can be applied to the profiles of splines directly due to different working conditions. Also, there is no research work on how to design spline profiles under given requirements. In this paper, the basic equations for spline profiles are established and used to synthesize desired profiles for different design objectives. Three design objectives, uniform deformation, maximum torque transmission, and optimum efficiency, are used to determine spline profiles. Analytical solutions are successfully obtained.
2 Problem description and basic assumptions
As shown in fig .1, The hub is driven by the shaft and the spline is fixed on the shaft. The radius of the shaft, the height of the spline, and the number of spline teeth are determined by the design requirements and cannot be altered. Only the spline profile can be modified to improve the performance of transmission. To simplify the design problem for analysis, the following assumptions were made:
(1) The spline is a rigid body.
Compared with the hub, the spline is made of hard material and assumed no deformation after applying the load.
(2) The hub is under elastic deformation
The surface deformation of the hub is within the range of elasticity and the surface stress is proportional to the normal deformation.
(3) There is no beam deformation on the spline.
For spline keys, usually the height of tooth shape is small relative to its width. Therefore, we assume there is no accumulated deformation at the free end. The only deformation is the normal deformation on the hub surface.
(4) There is no clearance between the spline and hub when they are in contact. (Surface contact)
The profile of the spline is exactly the same as that of the hub without considering manufacturing errors. They are in surface contact without clearance.
3 Spline profile for uniform hub deformation
The first design objective is to have the uniform deformation on the surface of the hub, which also implies the uniform stress on the hub. This design can ensure the surface stress is evenly distributed and avoid the failure of material at some weak points. Referring to fig.2, Let denote the radius of shaft and denote a small rotation angle of spline. Since we assume that the spline is a rigid body, the change between two spline positions will be the deformation of the hub.
4 It’s simply to confirmed the dangerous sections
Prerequisite that traditional design method considered whether pair influence part design variable of working state, for instance stress , intensity , safety coefficient , load , environmental factor , material performance , part size and structural factor ,etc., deal with the single value variable confirmed. Describe part mathematical model of state , i.e. variable and relation of variable , to go on single value vary and win the dangerous section through deterministic function.
There are several methods that usually the dangerous sections are determined:
4.1 Minimum diameter of the spline
Spline dangerous sectional reliability very getting high, this to confirm according to traditional design experience because of diameter of spline. If require appropriate reliability value, then the diameter of the axle can select smaller value for use .
4.2 Safety coefficient law of dependability
While adopting the safety coefficient law design of dependability , must know the distribution types of stress and intensity and be distributed estimated value of the parameter . And the accumulation of dependability data is a long-term job, therefore we must utilize the existing data materials , it is (such as the terminal theorem in the centre and " 3 rules " to use relevant theorems and rule ), to confirm the distribution types of a lot of random variables involved of design process and is distributed the parameter. In the safety coefficient of dependability is calculated , deal with all design parameters involved a random variable, link the concept of safety coefficient to concept of dependability , thus set up corresponding probability model. Because of considering the uncertainty (randomness ) of the phenomenon taking place in project reality and sign parameter, therefore can announce the original appearances of the things even more. Theory analysis and practice indicate , the dependability design is designed more than traditional machinery , can punish some problem of the design , raise product quality , reduce part size effective, thus save the raw materials , lower costs .
5 Concluding remarks
The mechanical reliability design is one kind of modern design theory and the method which in the recent several dozens years develop, it take improves the product quality as the core, take the theory of probability, the mathematical statistic as the foundation, synthesizes using the engineering mechanics, the system engineering, the operations research and so on the multi-disciplinary knowledge studies the mechanical engineering most superior design question. At present, the reliability design theory tended to the consummation, but uses in the machine parts design project actual very being actually few truly. When uses the reliable security method of correlates design, must know the stress and the intensity distributed type and the distributed parameter estimated value. But the reliable data accumulation also is a long-term work, thus we must use the existing data material, the utilization related theorem and the principle, determined in the design process involves many random variable distributed types and distributed parameter. In this paper the optimal design of spline (or key) profiles for three different design criteria is presented. The method of calculus of variation is used to determine profile functions for maximum value. Analytical results are successfully obtained. It shows that the splines with involute profiles lead to uniform deformation on the hub, in addition they can carry the maximum transmission load capacity. On the other hand radial straight profiles result in optimum transmission efficiency. We believe similar approach could be used to determine other spline profiles when new performance criteria are imposed.
References
[1] Robert L. Mott, Machine Elements in Mechanical Design, third ed., Prentice-Hall Inc., 1999.
[2] M.F. Spotts, Design of Machine Elements, third ed., Prentice-Hall Inc., 1961.
[3] Joseph E. Shigley, Larry D. Mitchell, Mechanical Engineering Design, fourth ed., McGraw-Hill Inc., 1983.
[4] D.C.H. Yang, S.H. Tong, J. Lin, Deviation-function based pitch curve modification for conjugate pair design, Transaction of ASME Journal of Mechanical Design 121 (4) (1999) 579–586.
[5] S.H. Tong, New conjugate pair design—theory and application, PhD Dissertation, Mechanical and Aerospace Engineering Department, UCLA, 1998.
[6] F.L. Litvin, Gear Geometry and Applied Theory, Prentice-Hall Inc., 1994.
[7] D.B. Dooner, A.A. Seireg, The Kinematic Geometry of Gearing, John Wiley & Sons Inc., 1995, pp. 56–63.
[8] Y. Ariga, S. Nagata, Load capacity of a new W–N gear with basic rack of combined circular and involute profile, Transaction of ASME Journal of Mechanisms, Transmissions, and Automation in Design 107 (1985) 565–572.
[9] M.J. French, Gear conformity and load capacity, in: Proc Instn Mech Engrs, vol. 180(43), Pt 1, (1965–66), pp. 1013–1024.
[10] A.O. Lebeck, E.I. Radzimovsky, The synthesis of tooth profile shapes and spur gears of high load capacity, Transaction of ASME Journal of Engineering for Industry (1970) 543–553.
[11] H. Iyoi, S. Ishimura, v-Theory in gear geometry, Transaction of ASME Journal of Mechanisms, Transmissions, and Automation in Design 105 (1983) 286–290.
[12] J.E. Beard, D.W. Yannitell, G.R. Pennock, The effects of the generating pin size and placement on the curvature and displacement of epitrochoidal gerotors, Mechanism and Machine Theory 27 (4) (1992) 373–389.
[13] H.C. Liu, S.H. Tong, D.C.H. Yang, Trapping-free rotors for high sealing lobe pumps, Transaction of ASME Journal of Mechanical Design 122 (4) (2000) 536–542.
[14] Charles Fox, Calculus of Variations, Oxford University Press, 1954.
ARTICLE IN PRESS
7