結(jié)構(gòu)動(dòng)力學(xué)英文Part6.pdf
《結(jié)構(gòu)動(dòng)力學(xué)英文Part6.pdf》由會(huì)員分享,可在線閱讀,更多相關(guān)《結(jié)構(gòu)動(dòng)力學(xué)英文Part6.pdf(55頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、1 MDOF Systems Introduction: Why MDOF? General Form of Equation of Motion Undamped Free Vibrations Modal Frequencies and Mode Shapes Dynamic Response of MDOF Systems Normal Coordinates and Mode Superposition method Modal Participation; EQ Response; Vibration Mitigation 2006/2007 CE4258: Structural S
2、tability magnitudes of the two masses are determined simply by statics For uniform mass distribution, each node will take half the element mass This leads to (a) diagonal mass matrix and (b) zero masses for rotational DOFs memd mf mcmbma ed f cba 10 2006/2007 CE4258: Structural Stability s i n)( 21
3、 p(t) L/2 x 2m L/4 L/4 constant, EIm 2006/2007 CE4258: Structural Stability only the amplitude varies with time) and is a phase angle 22 2006/2007 CE4258: Structural Stability the mode with the next higher frequency is the 2nd mode, etc. 2006/2007 CE4258: Structural Stability 0 ; 0 ; 0 ; ; 0 ; 0 ; 0
4、 ; ; T T T T T T T T T k K k k k k K k k k k K For example, a 3-DOF system with 3 mode shapes 1, 2, 3, where each is a 3 x 1 column vector. Then, 112 1 2 3 2 33 00 00 00 K kK K Alternatively, we write 28 2006/2007 CE425
5、8: Structural Stability thus When the first orthogonality condition is applied to the RHS, it is clear that which shows that vibrating shapes are orthogonal with respect to the stiffness and mass matrices 2nnnku mu 2 TTnm n m nu k u u m u 0 T mnmnu k u 0 T mnmnu m u if Orthogonality Conditi
6、ons thus 0 0 TTm n m nm k m n 30 2006/2007 CE4258: Structural Stability equations uncoupled 2006/2007 CE4258: Structural Stability equations uncoupled 2006/2007 CE4258: Structural Stability 2 4 . 2 r a d /s 0 . 9 1 3 0 . 4 0 2 0 . 0 6 8 7 7 . 7 u2u1 u3 m m m1 2 3 L 2L 2L 2006/
7、2007 CE4258: Structural Stability thus higher modes of structure have very little damping. (So what?) Natural frequency, n Rayleigh damping Stiffness proportional damping (a0 = 0) Mass proportional damping (a1 = 0)Da mp ing rat io, n 1 12iia 02 i ia When damping is proportional to stiffness matrix,
8、 the damping ratio is directly proportional to frequency of vibration; thus higher modes will be very heavily damped. 2006/2007 CE4258: Structural Stability General response expression given by Duhamel integral for each mode is 01 s i nnnt tn n D nn D nY t P e t dM 6. MODAL FREE VIBRA
9、TIONS If initial conditions are not zero, the following free vibration response must be added to Duhamel integral for each mode: 2006/2007 CE4258: Structural Stability Other secondary response parameters such as stress or forces developed can be determined once the primary response has been found
10、2006/2007 CE4258: Structural Stability & Dynamics 92 Elastic forces fS which resist deformation of structure are given directly by Alternatively, ()Sf t k u t k Y t 1 2 31 2 3()Sf t k Y t k Y t k Y t 2 2 21 1 2 2 3 31 2 3()Sf t m Y t m Y t m Y t ()Sf t m Z t 211
11、222 Yt Z t Y t Since each modal contribution is multiplied by the square of modal frequency, it is evident that higher modes are of greater significance in evaluating forces than displacements. Consequently, it is necessary to include more modal components to define forces 46 2006/2007 CE4258:
12、 Structural Stability & Dynamics 93 Example Determine the dynamic response of a 3-storey shear building (previously discussed) subjected to a sine- pulse loading (kN). Neglect damping effects. 0 0.100.05-0.05-0.10 12 3 50 100 100 pt p t f t pt cos / pf t t t 0 .0 2 / 2 / 2p p
13、 pt s t t t 1000 kg 1500 kg 2000 kg 600 kN/m 1200 kN/m 1800 kN/m 3u 2u 1u 1pt 2pt 3pt 2006/2007 CE4258: Structural Stability & Dynamics 94 Solution Stiffness Matrix: k33 = 3000 k11 = 600 u1=1 k21 = -600 k31 = 0 k12 = 0 u3=1 k23 = -1200 k12 = -600 u2=1 k22 = 1800 k32 = -1200 5 1 1 0 1 3 2 6 1 0 /
14、0 2 5 k N m 3 100 0 1 .5 0 1 0 0 0 2 m 2 1 1 0 1 3 1 .5 2 0 2 5 2 km 2600 47 2006/2007 CE4258: Structural Stability & Dynamics 95 325 .5 7 .5 2 0 1 2 31 4 . 5 2 2 , 3 1 . 0 4 8 , 4 6 . 1 0 0 r a d / s Modal Periods (Descending Order): 1 2 30 . 4 3 3 s , 0 . 2 0 2 s , 0
15、. 1 3 6 sT T T Roots of Frequency Equation and Modal Frequencies: 1 2 30 . 3 5 1 5 , 1 . 6 0 6 6 , 3 . 5 4 2 0 Frequency Equation: 2 0km First Mode Shape (n=1): 1 0.3515 21 1 2 1 1 1 3 1 e q u a ti o n n o t u s e d s e t to 1 0 1 3 1 . 5 2 0 0 2 5 2 0 km 2 1 3 10
16、 . 6 4 8 6 0 . 3 0 1 8 2006/2007 CE4258: Structural Stability & Dynamics 96 1.0000 0.6486 0.3018 2.4382 Mode 1 1=14.522 rad/s -0.6790 -0.6066 1.0000 -2.5405 1.0000 Mode 2 2=31.048 rad/s Mode 3 3=46.100 rad/s 1 1 1 0 .6 4 8 6 0 .6 0 6 6 2 .5 4 0 5 0 .3 0 1 8 0 .6 7 9 0 2 .4 3 8 2 Modal Mass (
17、kg): Tn nnMm 2 2 31 1 1 . 5 0 . 6 4 8 6 2 0 . 3 0 1 8 1 0 1 8 1 3M 2 2 32 1 1 . 5 0 . 6 0 6 6 2 0 . 6 7 9 0 1 0 2 4 7 4M 2 2 33 1 1 . 5 2 . 5 4 0 5 2 2 . 4 3 8 2 1 0 2 2 5 7 1M 48 2006/2007 CE4258: Structural Stability & Dynamics 97 Modal Stiffness (kN/m) and Load (kN): Tn nn
18、Kk 1 2 33 8 2 . 4 , 2 3 8 5 , 4 8 0 2 0 K K K 12 3 50 100 100 pt p t p t f t k N pt Tn nP p t 1 145.0Pf 2 78.56Pf 3 39.78Pf Modal Equation of Motion (damping Cn = 0): 1 , 2 , 3n n n n nM Y K Y P t n Since pulse duration is short (tp/Tn < 0.25), free vibration solution c
19、an be used as an approximation. cos / pf t t t 0 .0 2 / 2 / 2p p pt s t t t 13/ 0 . 0 2 / 0 . 4 3 3 0 . 0 4 6 8 , / 0 . 0 2 / 0 . 1 3 6 0 . 1 4 7 ppt T t T 2006/2007 CE4258: Structural Stability & Dynamics 98 The initial velocity due to the pulse can be obtained from If the initial displace
20、ment = 0, then Normal coordinate solutions (m): 0.01 1 0.02 0.01 0.01 2 0.02 0.01 0.01 3 0.02 0.01 () ( 0) 14 5 , 00 0 ( 0) c os 1. 01 8 1813 78560 ( 0) c os 0. 40 42 2474 39780 ( 0) c os 0. 02 25 22571 n n n P t dtim pu ls e Y m ass M Y t dt Y t dt Y t dt 0 s in 0 c o sYY t t Y
21、 t 1 2 2 1.018 sin 14. 522 0.0 701 2 sin 14. 522 14.522 0.4042 sin 31. 048 0.0 130 2 sin 31. 048 31.048 0.0225 sin 46. 100 0.0 004 9 sin 46. 1 46.1 Y t t t Y t t t Y t t t 49 2006/2007 CE4258: Structural Stability & Dynamics 99 Physical solutions (m): 1 2 31 2 3u t Y Y Y 1 1 2 30 . 0
22、7 0 1 2 s i n 0 . 0 1 3 0 2 s i n 0 . 0 0 0 4 9 s i nu t t t 2 1 2 30 . 0 4 5 4 8 s i n 0 . 0 0 7 9 0 s i n 0 . 0 0 1 2 4 s i nu t t t 3 1 2 30 . 0 2 1 1 6 s i n 0 . 0 0 8 8 4 s i n 0 . 0 0 1 1 9 s i nu t t t 1 2 3 0 .0 7 0 1 2 sin 1 4 .5 2 2 0 .0 1 3 0 2 sin 3 1 .0 4 8 0 .0 0 0 4 9
23、 sin 4 6 .1 0 0 Y t t Y t t Y t t 1 2 3 1 1 1 ( ) 0 . 6 4 8 6 ( ) 0 . 6 0 6 6 ( ) 2 . 5 4 0 5 ( ) 0 . 3 0 1 8 0 . 6 7 9 0 2 . 4 3 8 2 u t Y t Y t Y t 1 1 1 0 .6 4 8 6 0 .6 0 6 6 2 .5 4 0 5 0 .3 0 1 8 0 .6 7 9 0 2 .4 3 8 2 1 2 3 0 . 0 7 0 1 2 0 . 0 1 3 0 2 0 .
24、 0 0 0 4 9 ( ) 0 . 0 4 5 4 8 s in 0 . 0 0 7 9 0 s in 0 . 0 0 1 2 4 s in 0 . 0 2 1 1 6 0 . 0 0 8 8 4 0 . 0 0 1 1 9 u t t t t 2006/2007 CE4258: Structural Stability & Dynamics 100 D i s p l a c e m e n t ( m ) - - A l l m o d e s i n c l u d e d -0 . 1 -0 . 0 5 0 0
25、. 0 5 0 . 1 0 0 . 5 1 1 . 5 2 Ti m e ( s ) u1 u2 u3 D i s p l a c e m e n t ( m ) - - F i r s t m o d e o n l y -0 . 1 -0 . 0 5 0 0 . 0 5 0 . 1 0 0 . 5 1 1 . 5 2 Ti m e ( s ) Displacement (m) first mode onlyu 1 u 2 u3 50 2006/2007 CE4258: Structural Stability & Dynamics 101 Question 4-3 2006/20
26、07 CE4258: Structural Stability & Dynamics 102 Question 4-3 gu gu Fixe d Re fer enc e Figure Q3(a) Area = 1.6 m/s 200 ms Figure Q3(b) t 1u 2u 3u 51 2006/2007 CE4258: Structural Stability & Dynamics 103 Example For the same 3-storey shear building, an explicit damping matrix is to be defined such tha
27、t the damping ratio in the first and third modes will be 5% critical. Assume Rayleigh damping. 1000 kg 1500 kg 2000 kg 600 kN/m 1200 kN/m 1800 kN/m 3u 2u 1u 2006/2007 CE4258: Structural Stability & Dynamics 104 Solution 1 bb b bbc m a m k c 212 bn b nn b a 1 11 0 3 13 3 1 1 12 a a For
28、 Rayleigh damping, let b = 0 and 1 in above equation: 0 1 1 1 4 .5 2 2 0 .0 5 1 1 4 .5 2 2 0 .0 5 12 4 6 .1 4 6 .1 a a 0 1 1 .1 0 40 .0 0 1 6 5aa 01 1 . 1 0 4 0 . 0 0 1 6 5 c a m a k m k 5 1 1 0 1 3 2 6 1 0 / 0 2 5 k N m 3 100 0 1 .5 0 1 0 0 0 2 m kg 1 2 31 4 . 5 2 2 , 3 1
29、. 0 4 8 , 4 6 . 1 0 0 r a d / s 52 2006/2007 CE4258: Structural Stability & Dynamics 105 2 0 9 4 9 9 0 0 9 9 0 4 6 2 6 1 9 8 0 / 0 1 9 8 0 7 1 5 8 c N s m Now, it is of interest to determine what damping ratio this matrix will yield in the second mode 022 12 1 . 1 0 41 1 1 1 3 1 . 0 4 8
30、0 . 0 0 1 6 52 2 3 1 . 0 4 8aa 2 0 .0 4 3 4 4 .3 4 % 1 1 0 4 0 0 9 9 0 9 9 0 0 0 1 6 5 6 0 9 9 0 2 9 7 0 1 9 8 0 0 0 2 2 0 8 0 1 9 8 0 4 9 5 0 c 2006/2007 CE4258: Structural Stability & Dynamics 106 Solution Natural frequency, n Rayleigh damping Da mp ing rat io, n
31、1 2 3 0.05 0.0434 53 2006/2007 CE4258: Structural Stability & Dynamics 107 2DOF structure under base acceleration: 11 1 1 2 2 1 1 2 2 2 2 2 22 00 100 1 g g g mum u k k k u m u m u k k u mmu e ff gm u c u k u p t m I u t Modal Participation Factors n-DOF str
32、ucture: uY T T T T gm Y k Y p t m I u Giving n uncoupled eqns: ith equation of motion: T gM Y KY m I u ()01 ( ) s i n t Tii g iii iY t m I u t dMith modal response: () () 2 i Ti ii i ii i g Ti i i g i g ii M Y K Y m I u mI Y Y u uM 2006/2007 CE4258: Struc
33、tural Stability & Dynamics 108 e ff gm u c u k u p t m I u t Modal Participation Factors, i n-DOF structure: ith modal response: ith equation of motion: ()2 i Ti i i g i gii mIY Y u u M () 0 1( ) ( ) sin Ti i ii t i i g i i mI M Y t u t d Total response:
34、 ( ) ( ) 11 0 0 () 1 0 1 ( ) ( ) ( ) sin 1 m a x ( ) m a x ( ) si 1 m n a x ( ) sin t g tnn ii i i g i iii n i i i t gi i i i u t Y t u t d u t d is e stim ate u t u t d re spo n se spe cd f rom tru m ith modal participation factor: 54 2006/2007 CE4258: Structural
35、Stability & Dynamics 109 SDOF system under earthquake excitation ()01 ( ) s in ( ) t tgDDu t u e t d m u 2k 2k c 2006/2007 CE4258: Structural Stability & Dynamics 110 2 ( ) ( ) 11 0 m a x ( ) 1m a x ( ) sin nnii i i i i ii t i g i i u t o r u t d ()01 ( ) s in ( ) t t
36、gDDu t u e t d Earthquake displacement response spectrumGet max u(t) for each SDOF system to plot response spectrum For MDOF system, estimate max u(t) from max of each mode using some combination rule, e.g. 55 2006/2007 CE4258: Structural Stability & Dynamics 111 Course Overview Overview and Basic Concepts SDOF Systems Free-Vibration Response Forced-Vibration Response MDOF Systems Introduction to Advanced Topics CE4258 Structural Stability and Dynamics End of Lectures
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 6.煤礦安全生產(chǎn)科普知識(shí)競(jìng)賽題含答案
- 2.煤礦爆破工技能鑒定試題含答案
- 3.爆破工培訓(xùn)考試試題含答案
- 2.煤礦安全監(jiān)察人員模擬考試題庫(kù)試卷含答案
- 3.金屬非金屬礦山安全管理人員(地下礦山)安全生產(chǎn)模擬考試題庫(kù)試卷含答案
- 4.煤礦特種作業(yè)人員井下電鉗工模擬考試題庫(kù)試卷含答案
- 1 煤礦安全生產(chǎn)及管理知識(shí)測(cè)試題庫(kù)及答案
- 2 各種煤礦安全考試試題含答案
- 1 煤礦安全檢查考試題
- 1 井下放炮員練習(xí)題含答案
- 2煤礦安全監(jiān)測(cè)工種技術(shù)比武題庫(kù)含解析
- 1 礦山應(yīng)急救援安全知識(shí)競(jìng)賽試題
- 1 礦井泵工考試練習(xí)題含答案
- 2煤礦爆破工考試復(fù)習(xí)題含答案
- 1 各種煤礦安全考試試題含答案