《三角函數(shù)和反三角函數(shù)公式》由會(huì)員分享,可在線閱讀,更多相關(guān)《三角函數(shù)和反三角函數(shù)公式(3頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
1、一.三角函數(shù)公式
1.誘導(dǎo)公式
sin(-a) = - sin(a)
cos(-a) = cos(a)
sin(π/2(90度) - a) = cos(a)
cos(π/2(90度) - a) = sin(a)
sin(π/2 (90度)+ a) = cos(a)
cos(π/2 (90度)+ a) = - sin(a)
sin(π(180度)- a) = sin(a)
cos(π(180度) - a) = - cos(a)
sin(π(180度)+ a) = - sin(a)
cos(π(180度)+ a) = - cos(a)
2.兩角和與差的三角函數(shù)
sin(
2、a + b) = sin(a)cos(b) + cos(α)sin(b)
cos(a + b) = cos(a)cos(b) - sin(a)sin(b)
sin(a - b) = sin(a)cos(b) - cos(a)sin(b)
cos(a - b) = cos(a)cos(b) + sin(a)sin(b)
tan(a + b) = [tan(a) + tan(b)] / [1 - tan(a)tan(b)]
tan(a - b) = [tan(a) - tan(b)] / [1 + tan(a)tan(b)]
3.和差化積公式
sin(a) + sin(b) =
3、2sin[(a + b)/2]cos[(a - b)/2]
sin(a) sin(b) = 2cos[(a + b)/2]sin[(a - b)/2]
cos(a) + cos(b) = 2cos[(a + b)/2]cos[(a - b)/2]
cos(a) - cos(b) = - 2sin[(a + b)/2]sin[(a - b)/2]
4.積化和差公式
sin(a)sin(b) = - 1/2[cos(a + b) - cos(a - b)]
cos(a)cos(b) = 1/2[cos(a + b) + cos(a -b)]
sin(a)cos(b
4、) = 1/2[sin(a + b) + sin(a - b)]
5.二倍角公式
sin(2a) = 2sin(a)cos(b)
cos(2a) = cos2(a) - sin2(a) = 2cos2(a) -1=1 - 2sin2(a)
6.半角公式
sin2(a/2) = [1 - cos(a)] / 2
cos2(a/2) = [1 + cos(a)] / 2
tan(a/2) = [1 - cos(a)] /sin(a) = sina / [1 + cos(a)]
7.萬能公式
sin(a) = 2tan(a/2) / [1+tan2(a/2)]
cos(
5、a) = [1-tan2(a/2)] / [1+tan2(a/2)]
tan(a) = 2tan(a/2) / [1-tan2(a/2)
二.反三角函數(shù)公式
反三角函數(shù)其他公式:
cos(arcsinx)=√(1-x^2)
arcsin(-x)=-arcsinx
arccos(-x)=π-arccosx
arctan(-x)=-arctanx
arccot(-x)=π-arccotx
arcsinx+arccosx=π/2=arctanx+arccotx
sin(arcsinx)=cos(arccosx)=tan(arctanx)=cot(arc
6、cotx)=x
arcsin x = x + x^3/(2*3) + (1*3)x^5/(2*4*5) + 1*3*5(x^7)/(2*4*6*7)……+(2k+1)!!*x^(2k-1)/(2k!!*(2k+1))+……(|x|<1) !!表示雙階乘
arccos x = π -(x + x^3/(2*3) + (1*3)x^5/(2*4*5) + 1*3*5(x^7)/(2*4*6*7)……)(|x|<1)
arctan x = x - x^3/3 + x^5/5 -……
舉例
當(dāng) x∈[-π/2,π/2] 有arcsin(sinx)=x
x∈[0,π]
7、, arccos(cosx)=x
x∈(-π/2,π/2), arctan(tanx)=x
x∈(0,π), arccot(cotx)=x
x>0,arctanx=π/2-arctan1/x,arccotx類似
若 (arctanx+arctany)∈(-π/2,π/2),則 arctanx+arctany=arctan((x+y)/(1-xy))
例如,arcsinχ表示角α,滿足α∈[-π/2,π/2]且sinα=χ;arccos(-4/5)表示角β,滿足β∈[0,π]且cosβ=-4/5;arctan2表示角φ,滿足φ∈(-π/2,π/2)且tanφ=2