P360塔式起重機(jī)旋轉(zhuǎn)機(jī)構(gòu)設(shè)計(jì)【含CAD圖紙、說(shuō)明書(shū)】
P360塔式起重機(jī)旋轉(zhuǎn)機(jī)構(gòu)設(shè)計(jì)【含CAD圖紙、說(shuō)明書(shū)】,含CAD圖紙、說(shuō)明書(shū),p360,塔式起重機(jī),旋轉(zhuǎn),機(jī)構(gòu),設(shè)計(jì),cad,圖紙,說(shuō)明書(shū),仿單
本科生畢業(yè)設(shè)計(jì)(論文)
題 目:
P360塔式起重機(jī)回轉(zhuǎn)機(jī)構(gòu)設(shè)計(jì)
學(xué)院(系):
專業(yè)班級(jí):
學(xué)生姓名:
指導(dǎo)教師:
評(píng) 閱 人:
完成時(shí)間:
33
P360塔式起重機(jī)回轉(zhuǎn)機(jī)構(gòu)設(shè)計(jì)
摘 要
回轉(zhuǎn)機(jī)構(gòu)作為塔式起重機(jī)的中樞神經(jīng),對(duì)塔機(jī)水平任意方向完成360度自由旋轉(zhuǎn)起著十分重要的作用。它主要由回轉(zhuǎn)驅(qū)動(dòng)系統(tǒng)、回轉(zhuǎn)支承系統(tǒng)以及上下支座組成。一旦其任何部件出現(xiàn)故障,則塔機(jī)都將無(wú)法正常工作。因此,對(duì)回轉(zhuǎn)機(jī)構(gòu)進(jìn)行合理的設(shè)計(jì)是塔式起重機(jī)機(jī)的關(guān)鍵環(huán)節(jié)。
在本次畢業(yè)設(shè)計(jì)中。第一,完成了關(guān)于塔機(jī)回轉(zhuǎn)機(jī)構(gòu)的開(kāi)題報(bào)告和外文文獻(xiàn)翻譯。第二,對(duì)回轉(zhuǎn)機(jī)構(gòu)總體傳動(dòng)方案進(jìn)行設(shè)計(jì)、合理選擇的電動(dòng)機(jī)及行星減速器型號(hào)。第三,通過(guò)學(xué)習(xí)Proe軟件繪制了回轉(zhuǎn)機(jī)構(gòu)各零部件的三維模型圖,在此基礎(chǔ)上進(jìn)行組裝并導(dǎo)出回轉(zhuǎn)機(jī)構(gòu)CAD二維圖。第四,完成對(duì)回轉(zhuǎn)機(jī)構(gòu)受力校核。第五,完成了說(shuō)明書(shū)的編寫。第六,修好圖紙與說(shuō)明書(shū)并完成畢業(yè)答辯。
經(jīng)過(guò)大量的校核與驗(yàn)算。所設(shè)計(jì)的回轉(zhuǎn)機(jī)構(gòu)在驅(qū)動(dòng)及承受載荷上均滿足要求。其次,驅(qū)動(dòng)系統(tǒng)及回轉(zhuǎn)內(nèi)齒圈與上支座固定,繞回轉(zhuǎn)中心相對(duì)于下支座同步轉(zhuǎn)動(dòng),宏觀上就完成了塔機(jī)的旋轉(zhuǎn)。且該回轉(zhuǎn)機(jī)構(gòu)的驅(qū)動(dòng)性能十分優(yōu)越。
關(guān)鍵詞:塔式起重機(jī);回轉(zhuǎn)機(jī)構(gòu);三維模型圖;驅(qū)動(dòng)系統(tǒng)
V
Slewing Mechanism Design of 360 Tower Crane
ABSTRACT
As the central nerve of the tower crane, the slewing mechanism plays an important role in completing 360-degree free rotation in any horizontal direction. It is mainly composed of slewing drive system, slewing support system and upper and lower supports. Once any of its components fail, the tower crane will not be able to work normally. Therefore, the reasonable design of the rotary mechanism is the key link of the tower crane.
In this graduation project. First, I completed the opening report on the tower crane rotary mechanism and the translation of foreign literature. Second, the rotary mechanism for the overall transmission scheme design, reasonable selection of the motor and planetary reducer model. Thirdly, by learning Proe software, the 3D model diagram of each part of the rotary mechanism is drawn. On this basis, the CAD 2D diagram of the rotary mechanism is assembled and derived. Fourth, to complete the rotary mechanism stress check. Fifth, completed the preparation of the specification. Sixth, repair the drawings and specifications and complete the graduation thesis defense.
After a lot of checking and checking. The rotary mechanism can meet the requirements of driving and bearing load. Secondly, the driving system and the rotary inner tooth ring are fixed with the upper support, and the rotary center is rotated synchronously relative to the lower support, thus completing the tower crane's rotation on the macro level. And the driving performance of the rotary mechanism is very superior.
Keywords:?tower?crane;slewing?mechanism;3D?model?diagram;driving system
目 錄
主要符號(hào)表
V 垂直力
H 水平力
M 力矩
T 回轉(zhuǎn)阻力矩
N 塔式起重機(jī)的回轉(zhuǎn)速度
Tm 摩擦阻力矩
Te 回轉(zhuǎn)機(jī)構(gòu)等效靜阻力
Tpe 等效坡度阻力矩
Twe 等效風(fēng)阻力矩
Z 齒輪齒數(shù)
m 模數(shù)
i 傳動(dòng)比
a 中心距
b 齒寬
d 分度圓直徑
η 傳動(dòng)效率
目 錄
1 緒論 1
1.1 前言 1
1.2 選題的目的和意義 1
1.3 國(guó)內(nèi)外研究現(xiàn)狀 2
1.3.1 國(guó)內(nèi)研究現(xiàn)狀 2
1.3.2 國(guó)外研究現(xiàn)狀 3
1.3.3 國(guó)內(nèi)外研究現(xiàn)狀 3
1.4 畢業(yè)設(shè)計(jì)(論文)的主要內(nèi)容 4
1.4.1 主要設(shè)計(jì)參數(shù) 4
1.5 所采用的方法、手段以及步驟等 4
1.5.1 所采用的方法和手段 4
1.5.2 所采用的步驟 4
2 回轉(zhuǎn)機(jī)構(gòu)方案設(shè)計(jì) 5
2.1 回轉(zhuǎn)機(jī)構(gòu)組成 5
2.2 回轉(zhuǎn)驅(qū)動(dòng)裝置 5
2.2.1 驅(qū)動(dòng)方案分類 5
2.2.2 回轉(zhuǎn)機(jī)機(jī)構(gòu)驅(qū)動(dòng)方案選擇 5
2.3 回轉(zhuǎn)支承裝置 6
2.3.1 柱式回轉(zhuǎn)支承 6
2.3.2 滾動(dòng)軸承式回轉(zhuǎn)支承 7
2.3.3 回轉(zhuǎn)支承裝置的選擇 7
2.4 上下回轉(zhuǎn)支承座 9
2.5 總裝三維模型圖 11
2.6 工作原理 11
3 回轉(zhuǎn)支承裝置結(jié)構(gòu)設(shè)計(jì) 13
3.1 滾動(dòng)軸承式回轉(zhuǎn)支承的受力計(jì)算 13
3.2 回轉(zhuǎn)驅(qū)動(dòng)裝置的計(jì)算 15
3.2.1 回轉(zhuǎn)阻力矩的計(jì)算 15
3.3 驅(qū)動(dòng)電機(jī)功率的計(jì)算與選擇 19
4 行星減速器設(shè)計(jì) 21
4.1 行星減速器的選擇 21
5 制動(dòng)器選取 23
6 回轉(zhuǎn)支承校核計(jì)算 24
6.1 回轉(zhuǎn)支承齒輪副強(qiáng)度校核 24
6.2 傳動(dòng)比校核計(jì)算 26
6.3 連接回轉(zhuǎn)支承與上下支座的螺栓強(qiáng)度校核 26
方案評(píng)價(jià) 28
結(jié)論 30
參考文獻(xiàn) 32
致謝 33
1 緒論
1 緒論
1.1 前言
塔式起重機(jī)在我們現(xiàn)代工業(yè)基礎(chǔ)建設(shè)中作為起吊鋼筋,混凝土等大型機(jī)械設(shè)備,有著十分重要的作用。特別是伴隨中國(guó)房地產(chǎn)事業(yè)的突飛猛進(jìn)。它更是與大型高層建筑息息相關(guān)。生活中,我們隨便去一個(gè)高層建筑工地,都能發(fā)現(xiàn)它的身影?,F(xiàn)在,由于建筑物的高度不斷升高,那么對(duì)塔式起重機(jī)的各方面要求也越來(lái)越高。這里面就包括對(duì)塔機(jī)的經(jīng)濟(jì)性,穩(wěn)定性,耐用性,安全性,最大起升載荷等等一系列的性能要求。因此,塔機(jī)的制造也隨之向更高的水平發(fā)展,以此來(lái)應(yīng)對(duì)市場(chǎng)多元化的需求。下面是參考各種資料,對(duì)塔式起重機(jī)一些特點(diǎn)的總結(jié):
(1)按照工作的需求有固定式和移動(dòng)式塔機(jī);
(2)和早期的塔機(jī)相比較,塔機(jī)起重物品的高度越來(lái)越大;
(3)塔機(jī)的平衡臂加長(zhǎng),使它在旋轉(zhuǎn)轉(zhuǎn)過(guò)程中覆蓋的范圍更加廣泛。更加適合高層建筑各種起吊要求;
(4)回轉(zhuǎn)速度適中,在起升,運(yùn)行,停放重物的過(guò)程中運(yùn)行更加平穩(wěn);
(5)塔機(jī)零部件之間的拆裝很簡(jiǎn)潔。省時(shí)省力,這樣就十分方便汽車裝運(yùn)。
隨著科學(xué)技術(shù)的不斷發(fā)展進(jìn)步,建筑物高度不斷的增加,對(duì)塔機(jī)起開(kāi)高度,回轉(zhuǎn)覆蓋范圍、工作效率和安全性要求日益增高。通過(guò)長(zhǎng)期的使用經(jīng)驗(yàn)表示,國(guó)產(chǎn)塔式起重機(jī)工作時(shí),回轉(zhuǎn)運(yùn)行系統(tǒng)最容易出現(xiàn)故障[1]。
1.2 選題的目的和意義
隨著建設(shè)施工速度的不斷提升,平頭式塔式起重機(jī)因?yàn)樗陨愍?dú)有的效率高,速度快,回轉(zhuǎn)范圍廣泛等等特點(diǎn)逐漸占領(lǐng)了現(xiàn)在的基建行業(yè)大部分市場(chǎng),并且隨著工程建筑大型化的發(fā)展,對(duì)塔機(jī)回轉(zhuǎn)半徑的范圍要求越來(lái)越大。特別是平頭式塔機(jī)起重臂的加長(zhǎng)增大了吊裝范圍,給施工工作帶來(lái)了便利性。同時(shí),由于其起重臂的加長(zhǎng),引起塔機(jī)起重臂質(zhì)量的增加,從而導(dǎo)致回轉(zhuǎn)運(yùn)行時(shí)運(yùn)動(dòng)慣性的加大,在塔機(jī)回轉(zhuǎn)過(guò)程中容易對(duì)吊臂和塔身造成較大的沖擊和扭曲,長(zhǎng)期反復(fù)沖擊不但會(huì)造成鋼體的疲勞,影響塔機(jī)的使用壽命,還會(huì)引起連接部件松動(dòng),積累安全隱患。因此,回轉(zhuǎn)機(jī)構(gòu)的穩(wěn)定運(yùn)行,對(duì)塔式起重機(jī),尤其是平頭式塔機(jī)極為重要?;谏厦娴囊恍┰颍尯芏鄧?guó)內(nèi)和國(guó)外的塔式起重機(jī)制造傷商都十分深入的認(rèn)識(shí)到塔機(jī)在回轉(zhuǎn)運(yùn)行方面的重要意義。并且針對(duì)回轉(zhuǎn)機(jī)構(gòu)的驅(qū)動(dòng)和控制系統(tǒng)進(jìn)行了一定程度的研究,不斷進(jìn)行優(yōu)化設(shè)計(jì),近年來(lái)在這些方面取得了很大的進(jìn)展[2-3]。
其次,回轉(zhuǎn)支承系統(tǒng)它是連接塔身和塔帽的中間機(jī)構(gòu),是塔式起重機(jī)的神經(jīng)中樞。動(dòng)力系統(tǒng)帶動(dòng)塔機(jī)回轉(zhuǎn)支承以上部分相對(duì)于回轉(zhuǎn)下支承座和塔身作360°自由旋轉(zhuǎn),以完成各種起重作業(yè)要求?;剞D(zhuǎn)支承系統(tǒng)在結(jié)構(gòu)連接上起到了承上啟下的作用。,平衡臂、配重塊、起重臂、塔帽和回轉(zhuǎn)部分將塔機(jī)在不同的工況下引起的受力載荷全部通過(guò)回轉(zhuǎn)支承機(jī)構(gòu)傳遞到了塔身上,與此同時(shí),回轉(zhuǎn)支承系統(tǒng)中的上、下支承座所承受的載荷也是十分復(fù)雜的。所以,我們對(duì)回轉(zhuǎn)機(jī)構(gòu)的上、下支承座進(jìn)行合理細(xì)致的設(shè)計(jì)與計(jì)算,對(duì)于保證塔式起重機(jī)的常規(guī)的安全工作特別重要[4-7]。
1.3 國(guó)內(nèi)外研究現(xiàn)狀
1.3.1 國(guó)內(nèi)研究現(xiàn)狀
我國(guó)在塔式起重機(jī)的設(shè)計(jì)研制方面起步較晚。建國(guó)初期,我國(guó)主要的方式是引進(jìn)其他國(guó)家的現(xiàn)有塔機(jī)來(lái)滿足工業(yè)建設(shè)上的需求。隨著塔機(jī)使用的需求量越來(lái)越大,我國(guó)漸漸開(kāi)始仿制引進(jìn)的塔機(jī),并且積極學(xué)習(xí)其中的技術(shù),能夠自行設(shè)計(jì)出起重機(jī),盡管它們存在著規(guī)模較小的問(wèn)題,但是也代表我國(guó)在塔機(jī)行業(yè)的巨大進(jìn)步。隨著國(guó)內(nèi)塔機(jī)設(shè)計(jì)水平和經(jīng)驗(yàn)的逐漸累積,到70 年代,我們國(guó)家已經(jīng)能夠進(jìn)行塔機(jī)的衍生設(shè)計(jì)了,制造出大量使用性能優(yōu)良的起重機(jī)并且銷往國(guó)外。不過(guò)由于設(shè)計(jì)的技術(shù)不足,技術(shù)人員使用的研究塔機(jī)的方式手段仍較為落后,引進(jìn)的第一批塔機(jī)基本都是基于靜態(tài)設(shè)計(jì)的方式,因此國(guó)內(nèi)的技術(shù)人員在很長(zhǎng)的一段時(shí)間里一直沿用這樣的方式。直到80年代才有研究人員把有限元技術(shù)運(yùn)用到塔機(jī)的設(shè)計(jì)當(dāng)中來(lái)。第一批研究人員主要以陳瑋璋為代表,他們?cè)谒C(jī)的動(dòng)態(tài)響應(yīng)方面遇到巨大困難[8],因此嘗試將有限元的方法運(yùn)用起來(lái)分析研究。而吳天行在其發(fā)表的論文中,通過(guò)其在研究中遇到的困難以及采取的解決措施發(fā)現(xiàn)有限元法在塔機(jī)設(shè)計(jì)過(guò)程中應(yīng)用必不可少[9]。到了21世紀(jì)二十年代,我國(guó)塔式起重機(jī)已經(jīng)有了將近60年的發(fā)展歷程,逐漸實(shí)現(xiàn)了從無(wú)到有、從低質(zhì)量到高質(zhì)量,形成了一套較為完整的體系和自主設(shè)計(jì)方案。 目前,由于我國(guó)在塔機(jī)設(shè)計(jì)上成熟的經(jīng)驗(yàn)與高質(zhì)量制造技術(shù),已經(jīng)成為了全球塔機(jī)制造大國(guó)和需求大國(guó)的佼佼者,得到了國(guó)內(nèi)外許多商家的青睞。并且,國(guó)產(chǎn)塔式起重機(jī)已經(jīng)批量走進(jìn)國(guó)際市場(chǎng)[10]。這不僅對(duì)我國(guó)的基建行業(yè)提供了向外擴(kuò)張的市場(chǎng),同時(shí)也為我國(guó)在塔式起重機(jī)方面進(jìn)一步的研究帶來(lái)了巨大的挑戰(zhàn)和機(jī)遇。然而,盡管我國(guó)在塔式起重機(jī)方面的研究已經(jīng)有了很大的突破,并且行業(yè)技術(shù)水平與發(fā)達(dá)國(guó)家之間的差距已經(jīng)大大縮小,但是在性能、質(zhì)量、總體結(jié)構(gòu)等方面還存在一些問(wèn)題, 特別是在制造質(zhì)量及可靠性方面差距較大。其次,塔式起重機(jī)制造廠家很多,但具備雄厚實(shí)力的并不多。目前,我國(guó)生產(chǎn)的塔式起重機(jī)主要存在以下三方面問(wèn)題:
(1)擁有先進(jìn)制造技術(shù)、高科技人才以及資本雄厚的世界前500百?gòu)?qiáng)生產(chǎn)的塔機(jī)在綜合性能上面表現(xiàn)較好,其對(duì)質(zhì)量有一定的保障。相反,對(duì)于一些中小型且制造技術(shù)一般的企業(yè)。由于資金有限,為節(jié)省一定的生產(chǎn)成本,因而生產(chǎn)的塔式起重機(jī)存在很多問(wèn)題,質(zhì)量沒(méi)有保證,售后服務(wù)也不夠健全。。
(2)各個(gè)企業(yè)所生產(chǎn)的塔式起重機(jī)在結(jié)構(gòu)上有一定的局限性。不是特別的合理。其次對(duì)于高層建筑所需要的重型起重機(jī),國(guó)內(nèi)能生產(chǎn)的廠家寥寥無(wú)幾。恰恰是中小型號(hào)的塔機(jī)生產(chǎn)過(guò)剩,其企業(yè)彼此之間的技術(shù)差距也很大。導(dǎo)致相同型號(hào)的塔機(jī)在零部件互換上有很大的尺寸偏差。
(3)塔機(jī)在生產(chǎn)過(guò)程中,很多企業(yè)都是各自為政。山頭較多,不能形成有效的協(xié)同作用。這樣就不能使我國(guó)的塔機(jī)形成一定的規(guī)模。反而在管理上,給政府增添了負(fù)擔(dān)。
1.3.2 國(guó)外研究現(xiàn)狀
國(guó)外很早就設(shè)計(jì)和使用起重機(jī),它的發(fā)展時(shí)間較長(zhǎng)。在起重機(jī)發(fā)展的初期,國(guó)外往往是通過(guò)理論力學(xué)、材料力學(xué)等理論依據(jù)來(lái)設(shè)計(jì)起重機(jī),并且進(jìn)行相應(yīng)的分析,就是說(shuō)起重機(jī)的設(shè)計(jì)需要在結(jié)構(gòu)強(qiáng)度、靜態(tài)剛性等方面達(dá)到良好的標(biāo)準(zhǔn)[11]。在第二次世界大戰(zhàn)以后,起重機(jī)得到了充分的發(fā)展,在這一時(shí)期,各個(gè)國(guó)家急需要恢復(fù)生產(chǎn)、大量建設(shè),這就對(duì)起重機(jī)有很大的大需求量和較高的工作要求。60年代,國(guó)外設(shè)計(jì)人員開(kāi)始將有限元法分析法引入到工程機(jī)械當(dāng)中來(lái)運(yùn)用,他們發(fā)現(xiàn)通過(guò)這樣的方式會(huì)對(duì)設(shè)計(jì)產(chǎn)生巨大的幫助,并且由于電腦處理數(shù)據(jù)能力的不斷加強(qiáng),越來(lái)越多的塔機(jī)制造強(qiáng)國(guó)開(kāi)始將有限元法作為一種主要的技術(shù)手段來(lái)設(shè)計(jì)研究塔機(jī)的結(jié)構(gòu)。具體的技術(shù)措施有很多,包括有限元、虛擬樣機(jī)等。在70年代,起重機(jī)的發(fā)展達(dá)到最鼎盛的時(shí)期。西德、法國(guó)、日本等國(guó)家均對(duì)起重機(jī)制訂了相應(yīng)的規(guī)范。從靜剛性、撓度等方面對(duì)起重機(jī)進(jìn)行了嚴(yán)格的限制[12]。到了21世紀(jì),國(guó)外對(duì)塔機(jī)已經(jīng)基本上完成了從設(shè)計(jì)、優(yōu)化到維護(hù)的整個(gè)過(guò)程的研究分析[13]。 近些年來(lái)塔機(jī)的快速發(fā)展和研究的領(lǐng)域也更加的廣泛和深入,國(guó)外學(xué)者開(kāi)始著重研究塔機(jī)的運(yùn)行安全,其實(shí)際安全監(jiān)控系統(tǒng)便開(kāi)始成為研究熱門。
根據(jù)查找相關(guān)的外國(guó)文獻(xiàn),對(duì)現(xiàn)在幾個(gè)特別出名的塔式起重機(jī)制造廠家進(jìn)行了一定的了解。例如德馬格公司,神戶制鋼公司,利勃海爾公司等等。相對(duì)來(lái)說(shuō),利勃海爾公司生產(chǎn)的塔式起重機(jī)在國(guó)際市場(chǎng)的銷量很大。其生產(chǎn)技術(shù)水平在全球排名前列,且不斷在研發(fā)新產(chǎn)品。像其出品的LR履帶式特大型起重機(jī)所能起升的最大起重載荷已經(jīng)達(dá)到了1200t,這在國(guó)內(nèi)是不敢想象的,畢竟我們現(xiàn)在的生產(chǎn)技術(shù)還沒(méi)有達(dá)到這種水平。同等而言,日本神戶制鋼公司開(kāi)發(fā)的履帶起重機(jī)有由于產(chǎn)品系列化程度高、性價(jià)比高,十分受中國(guó)企業(yè)的追捧。也因此在全球范圍內(nèi)占有一定比例。近兩年神戶制鋼公司在中國(guó)市場(chǎng)上不斷發(fā)力,尤其是中噸位的履帶式起重機(jī)的銷售業(yè)績(jī)較好[14]。
1.3.3 國(guó)內(nèi)外研究現(xiàn)狀
綜合國(guó)內(nèi)、國(guó)外塔機(jī)的研究現(xiàn)狀分析,中國(guó)在塔式起重機(jī)方面的研究起步比國(guó)外晚,但是發(fā)展速度很快,僅用50多年的飛速發(fā)展就縮小了與發(fā)達(dá)國(guó)家之間的差距,并且在某些技術(shù)方面達(dá)到頂尖水平。目前,在各方面全球化的背景下,世界各國(guó)在制造技術(shù)上為了占據(jù)塔式起重機(jī)市場(chǎng)的制高點(diǎn),都在競(jìng)相開(kāi)發(fā)具有功能完善,性價(jià)比合理的新產(chǎn)品[15-16]。由此,塔式起重機(jī)在國(guó)內(nèi)外總的發(fā)展趨勢(shì)如下:
(1)向大型化和超重型方向發(fā)展,起吊重量與工作半徑同步增大
(2)向多功能發(fā)展。
(3)向更高精度的方向發(fā)展,操作性能,起吊方位準(zhǔn)確性,回轉(zhuǎn)穩(wěn)定性都不斷提高。
(4)向多種組合的方向發(fā)展。
1.4 畢業(yè)設(shè)計(jì)(論文)的主要內(nèi)容
1.4.1 主要設(shè)計(jì)參數(shù)
1.起重機(jī)最大起重量12t(30m吊重,四繩),工作幅度44m,端部吊重7.6t固定式最大起升高度73.44m。
2.回轉(zhuǎn)機(jī)構(gòu)速度0~0.7r/min,電動(dòng)機(jī)功率2×9kW。
1.5 所采用的方法、手段以及步驟等
1.5.1 所采用的方法和手段
查閱相關(guān)資料,首先,對(duì)平頭式塔式起重機(jī)的總體傳動(dòng)方案進(jìn)行設(shè)計(jì),接著選擇合理的電動(dòng)機(jī)型號(hào)和行星減速器型號(hào),再采用PROE繪圖軟件設(shè)計(jì)回轉(zhuǎn)支承等主要零件結(jié)構(gòu)。其次,通過(guò)相關(guān)計(jì)算公式對(duì)回轉(zhuǎn)載荷進(jìn)行力學(xué)分析與計(jì)算。然后采用傳統(tǒng)方法對(duì)回轉(zhuǎn)機(jī)構(gòu)進(jìn)行力學(xué)分析及強(qiáng)度校核。最后,再通過(guò)PROE軟件繪制回轉(zhuǎn)機(jī)構(gòu)三維圖,由PROE軟件中的三維模型圖導(dǎo)出二維圖CAD圖,并對(duì)CAD圖進(jìn)行修改。
1.5.2 所采用的步驟
(1)查閱手冊(cè)、文獻(xiàn)等相關(guān)資料了解起重機(jī)回轉(zhuǎn)機(jī)構(gòu)相關(guān)知識(shí);
(2)初定回轉(zhuǎn)機(jī)構(gòu)上下支承座結(jié)構(gòu)、小齒輪與外齒圈的模數(shù)及齒數(shù),根據(jù)尺寸設(shè)計(jì),繪制三維模型圖圖;
(3)對(duì)回轉(zhuǎn)機(jī)構(gòu)進(jìn)行力學(xué)分析、計(jì)算回轉(zhuǎn)力矩。并選擇電機(jī)和減速器型號(hào)。
(4)對(duì)回轉(zhuǎn)支承進(jìn)行校核驗(yàn)算,針對(duì)不足的地方提出改進(jìn)措施或方案,對(duì)設(shè)計(jì)方案進(jìn)行優(yōu)化;
(5)繪制設(shè)計(jì)任務(wù)圖紙;
(6)撰寫設(shè)計(jì)說(shuō)明書(shū);
(7)對(duì)所有設(shè)計(jì)資料進(jìn)行整理。
42
2 回轉(zhuǎn)機(jī)構(gòu)方案設(shè)計(jì)
2 回轉(zhuǎn)機(jī)構(gòu)方案設(shè)計(jì)
2.1 回轉(zhuǎn)機(jī)構(gòu)組成
它由回轉(zhuǎn)驅(qū)動(dòng)系統(tǒng)和回轉(zhuǎn)支承系統(tǒng)這兩部分組成。在功能上驅(qū)動(dòng)系統(tǒng)主要是通過(guò)電動(dòng)機(jī)提供動(dòng)力,將逐步傳遞的回轉(zhuǎn)力矩最終作用在給回轉(zhuǎn)支承系統(tǒng)上。
2.2 回轉(zhuǎn)驅(qū)動(dòng)裝置
2.2.1 驅(qū)動(dòng)方案分類
回轉(zhuǎn)驅(qū)動(dòng)裝置我們按照驅(qū)動(dòng)的方式分類,在大體上可以分為電力驅(qū)動(dòng)和液壓驅(qū)動(dòng)。在大多數(shù)的情況下,塔式起重機(jī)常常使用電動(dòng)機(jī)驅(qū)動(dòng)的方式。它在設(shè)計(jì)上往往都是和回轉(zhuǎn)上支座固定在一塊的,電動(dòng)機(jī)所連接減速器的另一端軸與回轉(zhuǎn)小齒輪通過(guò)鍵連接。這樣,小齒輪就能和固定在下支座的的回轉(zhuǎn)大齒圈相互嚙合,圍繞大齒圈轉(zhuǎn)動(dòng)。下面是塔機(jī)常用的三種傳動(dòng)的方式:
(1)臥式電動(dòng)機(jī)、蝸輪減速器組合傳動(dòng)方案
在結(jié)構(gòu)上,這種傳動(dòng)方式,把極限力矩減速器安裝在了驅(qū)動(dòng)軸和蝸輪上面。這樣做的好處就是可以在很大成都程度上避免回轉(zhuǎn)機(jī)構(gòu)過(guò)載的現(xiàn)象。其次,蝸桿在傳動(dòng)過(guò)程中,如果出現(xiàn)了自鎖的現(xiàn)象,或者選擇常開(kāi)式制動(dòng)器制動(dòng)時(shí),該聯(lián)軸器還能起到安全保護(hù)的作用。
傳動(dòng)方案優(yōu)缺點(diǎn):它的減速器傳動(dòng)效率就很低,如果沒(méi)有大的傳動(dòng)比,就很難應(yīng)用在塔機(jī)上,特別是大型的起重機(jī)。也因此,這種方案在中小型起重機(jī)中比較常見(jiàn)。
(2)立式電動(dòng)機(jī)與立式圓柱齒輪臧速器傳動(dòng)
傳動(dòng)方案的優(yōu)缺點(diǎn);與上面的第一種傳動(dòng)方案比較,它在傳動(dòng)效率上較高。其次在平面的結(jié)構(gòu)布置上也十分規(guī)范。對(duì)于維修人員來(lái)說(shuō),維護(hù)起來(lái)也很容易啦。
(3)立式電動(dòng)機(jī)與行星減速器傳動(dòng)按照這樣的傳動(dòng)方案??梢怨┪覀冞x擇的行星減速器在大體上有很多種型號(hào)。例如3Z,2Z—X型、漸開(kāi)線少齒差型等等。
傳動(dòng)方案優(yōu)缺點(diǎn):在這種傳動(dòng)方式上,所選取的行星減速器都有特別高的傳動(dòng)比大.內(nèi)部結(jié)構(gòu)在布置上相對(duì)來(lái)說(shuō)也比較緊湊,節(jié)省空間。
2.2.2 回轉(zhuǎn)機(jī)機(jī)構(gòu)驅(qū)動(dòng)方案選擇
在比較和分析上面的三種傳動(dòng)方案的優(yōu)點(diǎn)和缺點(diǎn)后,結(jié)合本次畢業(yè)設(shè)計(jì)P360塔式起重機(jī)基本參數(shù)要求,可行性分析和自己的能力。故而選擇立式電動(dòng)機(jī)與行星齒輪減速器組合,認(rèn)為不管從那個(gè)角度考慮,該方案都比較占優(yōu)勢(shì),對(duì)于大學(xué)生在專業(yè)能力范圍內(nèi)的難度系數(shù)適中。下面是我根據(jù)選擇的傳動(dòng)方案,繪制的驅(qū)動(dòng)系統(tǒng)結(jié)構(gòu)草圖,如圖2.2所示。
圖2.2 回轉(zhuǎn)驅(qū)動(dòng)結(jié)構(gòu)圖
2.3 回轉(zhuǎn)支承裝置
按照結(jié)構(gòu)形式的不同,我們主要可以將其可分為柱式和轉(zhuǎn)盤式兩大類,其中轉(zhuǎn)盤式回轉(zhuǎn)支承又稱為滾動(dòng)軸承式回轉(zhuǎn)支承。回轉(zhuǎn)支承的主要功能是實(shí)現(xiàn)上下支座繞回轉(zhuǎn)中心相對(duì)回轉(zhuǎn)。在受力上,主要是承受塔機(jī)施加給它的三種載荷。分別是水平載荷、垂直載荷以及傾覆力矩載荷。
2.3.1 柱式回轉(zhuǎn)支承
(1)定柱式回轉(zhuǎn)支承裝置
在結(jié)構(gòu)上,定柱下部的直徑一般情況下都比較大,而且在設(shè)計(jì)的時(shí)候,往往將下水平支座加工成滾輪。它有以下四個(gè)優(yōu)點(diǎn):
a.回轉(zhuǎn)部分的轉(zhuǎn)動(dòng)慣量都很小。
b.自身的重量與驅(qū)動(dòng)功率也不是特別大。
c.可降低塔機(jī)重心。
d.結(jié)構(gòu)上十分簡(jiǎn)單,工藝制造也十分方便。
(2)轉(zhuǎn)柱式回轉(zhuǎn)支承裝置
在結(jié)構(gòu)上,一般采用有自動(dòng)調(diào)位作用的推力軸承。并且上支座的滾輪和滾道之間的距離可以通過(guò)轉(zhuǎn)動(dòng)心軸來(lái)進(jìn)行自由調(diào)整。它有下面的四個(gè)優(yōu)點(diǎn)如下:
a.起升的高度高
b.適合用于載荷較大的塔機(jī)
c.工作的幅度大
d.制造工藝十分簡(jiǎn)潔
2.3.2 滾動(dòng)軸承式回轉(zhuǎn)支承
起重機(jī)常用的滾動(dòng)軸承式回轉(zhuǎn)支承裝置按滾動(dòng)體形狀和排列方式可分為下面四種結(jié)構(gòu):
(1)單排四點(diǎn)接觸球式回轉(zhuǎn)支承
它由兩個(gè)底座圈組成,其滾動(dòng)體為圓球形,每個(gè)滾動(dòng)體與滾道間呈四點(diǎn)接觸,能同時(shí)承受軸向,徑向力和傾覆力矩。適用于中小型塔式起重機(jī)。
(2)雙排球式回轉(zhuǎn)支承
它在結(jié)構(gòu)組成上往往都有三個(gè)地圈,一共安裝了兩排鋼球,然而上排和下排的鋼球直徑卻是完全不同的。這樣設(shè)計(jì)的目的是為了在實(shí)際工作中適應(yīng)受力的差異。而且滾道的接觸壓力角一般都在60度到90度之間,所以和其他相轉(zhuǎn)盤式回轉(zhuǎn)支承相比就顯得很大。
(3)單排交叉滾柱式回轉(zhuǎn)支承
與雙排式不同的是它由兩個(gè)底圈組成。滾動(dòng)體的形狀是圓柱形的。在他們的排列上兩個(gè)都是呈交叉樣式的。因?yàn)榻佑|壓力角很小,一般都在45度左右,所以它承受載荷的能力就明顯比單排鋼球式高了。在安裝上,這種回轉(zhuǎn)支承要求的精度都很高。
(4)三排滾柱式回轉(zhuǎn)支承
在結(jié)構(gòu)上是由三個(gè)底圈組成的,滾道中的兩排滾柱都是相互平行并且水平排列的。滾動(dòng)體承受載荷的能力比上面三種都要強(qiáng)。
2.3.3 回轉(zhuǎn)支承裝置的選擇
根據(jù)上面幾種回轉(zhuǎn)支承裝置的介紹,我結(jié)合各類支承裝置的優(yōu)缺點(diǎn),以及回轉(zhuǎn)支承剛度,硬度等需要所滿足的要求。其次,由于塔式起重機(jī)在回轉(zhuǎn)過(guò)程中會(huì)產(chǎn)生軸向、徑向力和回轉(zhuǎn)力矩。因此,綜合考慮上訴幾點(diǎn)因素,選擇單排四點(diǎn)接觸球式回轉(zhuǎn)支承。并且初步確定外齒圈齒輪模數(shù)和齒數(shù)。利用ProE繪圖軟件,按照標(biāo)準(zhǔn)的尺寸,下圖(a)、(b)、(c)分別是我畫的回轉(zhuǎn)支承系統(tǒng)內(nèi)齒圈、外齒圈以及他們的裝配圖。
圖2.3 (a)回轉(zhuǎn)內(nèi)齒圈
圖2.3 (b)回轉(zhuǎn)外齒圈
圖2..3 (c)回轉(zhuǎn)外齒圈
2.4 上下回轉(zhuǎn)支承座
結(jié)構(gòu)上內(nèi)圓外方,設(shè)計(jì)上遵循科學(xué)性,合理性,安全性以及輕質(zhì)量原則。其上有許多螺栓孔,分別用來(lái)連接內(nèi)外齒圈,以達(dá)到穩(wěn)定性要求。其次,在下支承座和上支承座上分別設(shè)計(jì)有支承腿。同樣采用螺栓連接,用來(lái)連接塔身標(biāo)準(zhǔn)節(jié)與塔頂。從而完成整個(gè)塔式起重機(jī)回轉(zhuǎn)部分的上下連接。下圖2.4(a)、2.4(b)分別為根據(jù)ProE繪圖軟件設(shè)計(jì)的上下支承座。
圖2.4 (a)上支承座
圖2.4 (b)下支承座
2.5 總裝三維模型圖
如下圖2.5所示,藍(lán)色部分是整個(gè)回轉(zhuǎn)機(jī)構(gòu)的驅(qū)動(dòng)裝置,在模型繪制上,由上到下上依次是電動(dòng)機(jī),固定架及其內(nèi)部的聯(lián)軸器,減速器,小齒輪。
紅色的部分從上到下依次是上支座和下支座。在他們的矩形平面的四周都設(shè)計(jì)有同等型號(hào)支承腿,共計(jì)有八個(gè)這樣的支承腿。每一個(gè)支承腿上都設(shè)有三個(gè)直徑均為36mm的螺栓孔。其中上支承座上相鄰兩個(gè)支承腿中心線的距離是2m,下支承座上相鄰兩個(gè)支承腿的中心線之間的距離是2.5m。這樣就可以讓回轉(zhuǎn)機(jī)構(gòu)按照尺寸與同組的兩個(gè)同學(xué)所設(shè)計(jì)的塔身結(jié)構(gòu)、塔頂結(jié)構(gòu)分別用螺栓完成連接。
黃色部分是回轉(zhuǎn)外齒圈,綠色部分則是回轉(zhuǎn)內(nèi)齒圈。
總共所需要M36×300的螺栓為40個(gè)。
圖2.5 總裝三維圖
2.6 工作原理
根據(jù)自己設(shè)計(jì)的回轉(zhuǎn)機(jī)構(gòu),對(duì)它的工作原理分析是:在回轉(zhuǎn)驅(qū)動(dòng)系統(tǒng)上,立式電動(dòng)機(jī)輸出軸通過(guò)聯(lián)軸器和行星減速器的輸入軸連接,實(shí)現(xiàn)減速效果,然后減速器的輸出軸通過(guò)平鍵與小齒輪連接。最后都通過(guò)螺栓連接固定在上支座上面。在回轉(zhuǎn)支承上,回轉(zhuǎn)外齒圈上設(shè)有許多的螺栓孔,因此通過(guò)螺栓連接與下支座完成緊密固定,同時(shí),回轉(zhuǎn)外齒圈與內(nèi)圈之間裝有滾動(dòng)體。這樣就能完成他們之間相互繞回轉(zhuǎn)中心轉(zhuǎn)動(dòng)。所選用的軸承是單排四點(diǎn)接觸式滾動(dòng)軸承,這種軸承在制造工藝十分方便。同樣,在內(nèi)圈上也設(shè)計(jì)有分布均勻、與外齒圈同樣多的螺栓孔。以此完成內(nèi)圈與上支座的螺栓連接。最后,小齒輪與外齒圈采用漸開(kāi)線式圓柱直齒輪齒合,故而在齒輪設(shè)計(jì)上選擇相同的模數(shù)。
簡(jiǎn)單來(lái)說(shuō),就是電動(dòng)機(jī)通過(guò)減速器帶動(dòng)小齒輪繞回轉(zhuǎn)支承的外齒圈轉(zhuǎn)動(dòng),同時(shí)給內(nèi)圈一個(gè)回轉(zhuǎn)力矩,這樣就能使上支承座及其所固定的驅(qū)動(dòng)裝置相對(duì)于下支承座所固定的外齒圈轉(zhuǎn)動(dòng)。宏觀上就實(shí)現(xiàn)了塔式起重機(jī)回轉(zhuǎn)支承以上所有部分相對(duì)于其一下所有部分旋轉(zhuǎn)。這便是本次設(shè)計(jì)的P360塔式起重機(jī)的基本工作原理。
另外,在設(shè)計(jì)上有兩點(diǎn)注意事項(xiàng)。首先,回轉(zhuǎn)支承內(nèi)圈要略高于外齒圈,這樣設(shè)計(jì)的好處是,防止上支座與外齒圈在繞回轉(zhuǎn)中心相對(duì)旋轉(zhuǎn)的過(guò)程中產(chǎn)生摩擦阻力,從而降低了使用性能和壽命。其次小齒輪的寬度要比外齒圈略小一些,即小齒輪與下支座相對(duì)的兩個(gè)面留有一定的空隙。這樣既是為了方便螺栓的安裝與拆卸,也是為了防止小齒輪在繞外齒圈轉(zhuǎn)動(dòng)過(guò)程中與下支座面產(chǎn)生摩擦阻力。
3 回轉(zhuǎn)支承裝置結(jié)構(gòu)設(shè)計(jì)
3 回轉(zhuǎn)支承裝置結(jié)構(gòu)設(shè)計(jì)
3.1 滾動(dòng)軸承式回轉(zhuǎn)支承的受力計(jì)算
塔式起重機(jī)回轉(zhuǎn)部件承受的載荷主要來(lái)自于平衡塊重、平衡臂架、回轉(zhuǎn)機(jī)構(gòu)自重、起重臂架、最大額定載荷,風(fēng)載荷,摩擦阻力和回轉(zhuǎn)慣性載荷[17]。為了方便計(jì)算回轉(zhuǎn)支承的載荷垂直力,水平力和力矩。將各處受力都等效到一點(diǎn)即質(zhì)量中心點(diǎn)。以質(zhì)心到回轉(zhuǎn)中心線的距離作為計(jì)算力矩的標(biāo)準(zhǔn)。具體臂力各部分的受力情況見(jiàn)下表3.1
表3.1 塔機(jī)部件參數(shù)
部件名稱
參數(shù)
起升載荷
120KN
起重臂的臂架重量
183.28KN
起重臂的臂架寬度
2m
起重臂的臂架長(zhǎng)度
45.82m
平衡臂的臂架重量
81.6KN
平衡臂的臂架長(zhǎng)度
20.4m
配重塊的重量
258.5KN
小車的重量
0.7KN
塔帽重量
14KN
起升繩重量
1KN
回轉(zhuǎn)機(jī)構(gòu)重量
84.78KN
起升機(jī)構(gòu)重量
17.6KN
變幅機(jī)構(gòu)重量
3.9KN
塔身重量(單節(jié))
26.41KN
最大幅度
45.82m
起重臂重心距離
20.91m
平衡臂重心距離
10.2m
配重塊的重心距離
2m
起升機(jī)構(gòu)的重心距離
20.8m
根據(jù)表3.1塔機(jī)臂架件參數(shù),繪制塔機(jī)結(jié)構(gòu)簡(jiǎn)圖及受力分析如下圖3.1(a)、(b)
圖3.1 塔機(jī)結(jié)構(gòu)外形尺寸
圖3.1 (b)回轉(zhuǎn)支承的載荷分布
據(jù)相關(guān)計(jì)算公式,計(jì)算如下:
以此來(lái)計(jì)算載荷垂直力V,水平力H和力矩M
(1)FQ----最大額定起重載荷
FQ=12000×10=120000N
其中 -----起升的動(dòng)載荷系數(shù):取=1
(2)F1-----作用在重物上的離心力
F1=12000×0.0.062832×30=1421.14N
(3)Gb-----起重臂所受重力
Gb=18328×10=183280N
(4) G1-----回轉(zhuǎn)機(jī)構(gòu)所受重力
G1 =8478×1084780N
(5)G3平衡重
G3=8160×10=81600N
(6)FL1---G1質(zhì)量引起的回轉(zhuǎn)離心力
FL1=8470×0.06×0.95=31.792832N
(7)FL3---G3質(zhì)量引起的回轉(zhuǎn)離心力
FL3=8160×0.062832×10.2=328.57N
(8)FLb---起重臂架的回轉(zhuǎn)離心力
FLb=18328×0.062832×20.91=1512.88N
(9)Fw2---作用在塔機(jī)回轉(zhuǎn)機(jī)構(gòu)平面上的最大風(fēng)力載荷,以20m/s風(fēng)速為標(biāo)準(zhǔn),則風(fēng)壓q=240N/m2,假設(shè)最大迎風(fēng)面積為20m2。C=1.2則
Fw2=q×A×C=240×20×1.2=6000N
(10)FWQ作用在重物上的風(fēng)力負(fù)載
FWQ=12000×3%=360N FWQ=12000×3%=360N
則
載荷垂直力V=1×12000+183280+84780+81600=469660N
載荷水平力H=1421.14+1521.88+360+6000-31.79-328.57=8942.66N
載荷力矩M=1×120000×30+183280×20.91+ (1421.14+360)×30+6000×4.78-84780×1.4-31.79×1.75-81600×10.2-328.57×3.5=6562281.37N。
3.2 回轉(zhuǎn)驅(qū)動(dòng)裝置的計(jì)算
主要分為回轉(zhuǎn)阻力矩與電動(dòng)機(jī)功率計(jì)算。
3.2.1 回轉(zhuǎn)阻力矩的計(jì)算
塔式起重機(jī)在回轉(zhuǎn)工程中,主要克服來(lái)自于自身零部件之間阻力引起的摩擦阻力矩Tm、風(fēng)載荷引起的風(fēng)力阻力矩Tw、由于慣性引起的回轉(zhuǎn)慣性阻力矩Tg和坡道阻力矩Tp,計(jì)算公式如下:
(3.1)
----回轉(zhuǎn)阻力矩,N.m;
----摩擦阻力距,N.m;
----風(fēng)力阻力矩,N.m;
----慣性阻力矩,僅出現(xiàn)在回轉(zhuǎn)啟動(dòng)和制動(dòng)時(shí),N.m;
----坡度阻力矩,N.m;
(1)摩擦阻力矩計(jì)算
滾動(dòng)軸承式的回轉(zhuǎn)支承裝置在回轉(zhuǎn)起動(dòng)時(shí)產(chǎn)生的摩擦阻力矩按下式計(jì)算:
(3.2)
以上公式中----當(dāng)量摩擦系數(shù), D0-----回轉(zhuǎn)支承滾道中心圓的直徑取1.9m
工況
球式回轉(zhuǎn)支撐
交叉滾珠式回轉(zhuǎn)支撐
回轉(zhuǎn)啟動(dòng)
正?;剞D(zhuǎn)
0.012
0.008
0.015
0.01
表2.1 當(dāng)量摩擦系數(shù)
---垂直力和力矩在回轉(zhuǎn)支承滾動(dòng)體上產(chǎn)生的法向壓力絕對(duì)值總和,N;
當(dāng)e=(交叉滾珠式)和e=(滾球式)時(shí)
當(dāng)e=(交叉滾珠式)和(滾球式)時(shí)
因?yàn)?
Nvm=2.828VeD0ke (3.3)
式中----系數(shù),滾球式=1.5,可根據(jù)從圖上查得。
-----水平力H在回轉(zhuǎn)支承的滾動(dòng)體上產(chǎn)生的法向壓力絕對(duì)值總和,N;
(3.4)
=1.72×8942.66=15381.38N
式中KH---系數(shù)值,與滾動(dòng)體的形狀和滾動(dòng)體與滾道的接觸角等因素有關(guān)。當(dāng)接觸角為45度時(shí),對(duì)滾球式取KH=1.72。
則Tm=0.012×1.9/2×(1048577.75+15381.38)=12129.13N
(2)風(fēng)阻力矩TW
風(fēng)阻力矩的計(jì)算公式:
(a)以上公式中----作用在起吊物上的風(fēng)載荷
假設(shè)?。篈=3m2 ,C=1.2
=1.2×3×240=864 N;
(b)----作用在起重臂架上的風(fēng)載荷,
迎風(fēng)面積:A=33.85×2=67.7 m2
φ漏=0.25, η重=0.25, C=1.3
Kn=1, qⅡ=250N/m2
A實(shí)=φ(1+η)A=0.25×1.25×68.73=21.47 m2
=1.3×240×21.47=6698.64 N
(c)----作用在平衡重上的風(fēng)載荷
A=4m2
=1.2×250×4=1200N
(d) ----作用在平衡臂架上的風(fēng)載荷,;
A實(shí)=φ(1+η)A=0.25×1.25×(20.4×1.5)=9.56 m2
=1.2×250×9.56=2868N
----起吊物品到回轉(zhuǎn)中心的距離,m;
取 R=30m
----起重臂架風(fēng)力作用線到回轉(zhuǎn)中心的距離,m;
取=20.91m
----平衡重風(fēng)力作用線到回轉(zhuǎn)中心的距離,m;
取 R3=20.4m
----平衡臂架力作用線到回轉(zhuǎn)中心的距離,m;
取 R4=10.2m
----起重臂與風(fēng)向的夾角,(°)。
當(dāng)=90時(shí),起重臂架和風(fēng)向垂直,則最大的風(fēng)阻力矩按下式計(jì)算:
=864×30+6698.64×20.91-1200×20.4-2868×10.2=112254.96 N;
假定起重機(jī)在回轉(zhuǎn)時(shí)風(fēng)向不變,當(dāng)從變化到90o的過(guò)程中,風(fēng)阻力矩也隨著變化,其等效風(fēng)阻力矩按下式計(jì)算:
=0.7×112254.96=78578.47N.m;
(3)回轉(zhuǎn)慣性阻力矩
回轉(zhuǎn)慣性阻力矩是由繞塔機(jī)回轉(zhuǎn)中心線回轉(zhuǎn)的物品慣性阻力矩,塔機(jī)回轉(zhuǎn)部分的慣性阻力矩,及傳動(dòng)部分旋轉(zhuǎn)零件的慣性阻力矩 。
---塔機(jī)在運(yùn)行過(guò)程中受到的回轉(zhuǎn)慣性阻力矩,N.m;
----塔機(jī)起吊的重物繞回轉(zhuǎn)中心運(yùn)轉(zhuǎn)所受到的回轉(zhuǎn)慣性阻力矩,N.m;
----塔機(jī)回轉(zhuǎn)機(jī)構(gòu)由于自身重力所受到的慣性阻力矩,N.m;
----電機(jī)軸及減速器軸受到的慣性阻力矩,N.m;
(a)計(jì)算塔機(jī)起吊的重物繞回轉(zhuǎn)中心運(yùn)轉(zhuǎn)所受到的回轉(zhuǎn)慣性阻力矩
TgQ=(MQ+q)R2n9.55t
MQ----塔機(jī)在最大載荷起重量之下所吊起的重物的質(zhì)量;
MQ =12000Kg
q----吊具自身質(zhì)量;
q=300kg;
R—重物的質(zhì)量中心到塔機(jī)回轉(zhuǎn)機(jī)構(gòu)中心線的回轉(zhuǎn)半徑,m;
由P360塔機(jī)的結(jié)構(gòu)設(shè)計(jì)中可得出R為30m
n----塔機(jī)的回轉(zhuǎn)速度,r/min;
取n=0.6m/min
----回轉(zhuǎn)機(jī)構(gòu)開(kāi)始起動(dòng)到正常運(yùn)轉(zhuǎn)所需要的時(shí)間,s;一般情況下可計(jì)為t=3~6s。為了方便計(jì)算我們?nèi)=5s
=(12000+300)×32×0.6/(9.55×5)=139099.48 N.m;
(b)計(jì)算塔機(jī)回轉(zhuǎn)機(jī)構(gòu)由于自身重力所受到的慣性阻力矩
=25850×12.22+8160×10.22+8470×0.952+18328×20.912=1.27×107 N.m ----塔機(jī)回轉(zhuǎn)機(jī)構(gòu)及其以上所有旋轉(zhuǎn)的部分繞回轉(zhuǎn)機(jī)構(gòu)中心軸線的轉(zhuǎn)動(dòng)慣量kg.m2,總共為配重塊的轉(zhuǎn)動(dòng)慣量,平衡臂的轉(zhuǎn)動(dòng)慣量,回轉(zhuǎn)機(jī)構(gòu)的轉(zhuǎn)動(dòng)慣量和起重臂的轉(zhuǎn)動(dòng)慣量四部分組成。
作用在電機(jī)軸上的機(jī)構(gòu)傳動(dòng)部分的慣性阻力矩,
因?yàn)樽饔迷陔姍C(jī)軸上的機(jī)構(gòu)的轉(zhuǎn)動(dòng)慣量很小,可以忽略不計(jì),所以這部分不詳細(xì)考慮,但是在實(shí)際中這部分是要計(jì)算在內(nèi)的。
(4)坡度阻力矩Tp
塔式起重機(jī)由于軌道鋪設(shè)的不平或者土壤地基的沉陷,導(dǎo)致其回轉(zhuǎn)中心線與鉛垂線成一夾角,而產(chǎn)生坡度阻力矩。一般回轉(zhuǎn)中心線與鉛垂線的夾角很小,可以忽略不計(jì),當(dāng)夾角很大時(shí),應(yīng)考慮坡度阻力矩。在本次設(shè)計(jì)中不詳細(xì)考慮坡道阻力矩[18]。
(5)回轉(zhuǎn)阻力矩T
根據(jù)上述四個(gè)力矩的計(jì)算,則總的回轉(zhuǎn)阻力矩
T=12129.13+78578.47+298902.30+0=389609.9 N.m
3.3 驅(qū)動(dòng)電機(jī)功率的計(jì)算與選擇
初選電動(dòng)機(jī)時(shí),等效功率安下面的公式計(jì)算
=389609.9×0.6/(9550×0.80)
=30.59 kw
在上述公式中
T=Tm+Tpe+Twe+Tge=389609.9 N.M
T----回轉(zhuǎn)機(jī)構(gòu)等效靜阻力矩,N.m;
Tm----摩擦阻力矩,N.m;
Tpe----等效坡度阻力矩,N.m;
Twe----等效風(fēng)阻力矩,N.m;
Pe----電機(jī)等效功率,kw;
----代表回轉(zhuǎn)機(jī)構(gòu)的總效率,采用行星齒輪傳動(dòng)機(jī)構(gòu)時(shí)通常取0.8~0.85;根據(jù)設(shè)計(jì)要求取=0.81
n----塔式起重機(jī)的回轉(zhuǎn)速度,r/min;
取n=0.6 r/min;
總結(jié):從上面所計(jì)算的電動(dòng)機(jī)等效功率結(jié)果為30.59kw。查閱機(jī)械零件手冊(cè),從中選擇電動(dòng)機(jī)機(jī)座號(hào)為225S,凸緣號(hào)為FF400,轉(zhuǎn)速為750r/min,輸出功率為18.5kw的三相異步電動(dòng)機(jī)兩個(gè)作為回轉(zhuǎn)驅(qū)動(dòng)原。下圖3.1為根據(jù)所選電機(jī)尺寸繪制的三維模型圖。
圖3.1 三相異步電動(dòng)機(jī)
Error! Reference source not found.
4 行星減速器設(shè)計(jì)
行星減速器通過(guò)與相匹配的電動(dòng)機(jī)組合,目前被廣泛應(yīng)用于塔式起重機(jī)中。其最大的功能就是起到減速作用。與普通減速器相比較,它最顯著的特點(diǎn)是把定軸傳動(dòng)改變?yōu)榱藙?dòng)軸傳動(dòng)。在本次設(shè)計(jì)中,減速器與電機(jī)通過(guò)聯(lián)軸器連接,減速器另外一端的軸與回轉(zhuǎn)小齒輪連接,小齒輪與回轉(zhuǎn)外齒圈齒合。這樣就實(shí)現(xiàn)了驅(qū)動(dòng),減速,和帶動(dòng)上支承座相對(duì)于下支承座回轉(zhuǎn)的目的[20]。
4.1 行星減速器的選擇
在電動(dòng)機(jī)的選擇與計(jì)算中,依據(jù)行星齒輪減速器的電機(jī)輸入的功率為P=18.5kw,輸入的轉(zhuǎn)速n=750r/min,以及題目所要求的塔機(jī)回轉(zhuǎn)速度為0.6 r/min,工作時(shí)間較短而且不連續(xù)工作,以及需滿足行星減速器齒輪傳動(dòng)結(jié)構(gòu)緊湊、整體外形尺寸較小和傳遞運(yùn)動(dòng)的效率較高。
這樣我們就可以計(jì)算出塔式起重機(jī)回轉(zhuǎn)機(jī)構(gòu)總的傳動(dòng)比i=750/0.6=1250。又因?yàn)樵诨剞D(zhuǎn)驅(qū)動(dòng)中的運(yùn)動(dòng)傳遞是單極齒輪傳動(dòng)。那么我們查閱機(jī)械零件手冊(cè)和大學(xué)課本機(jī)械原理??梢院侠淼膶⑿↓X輪與回轉(zhuǎn)大齒圈的傳動(dòng)比定為5。因此,減速器的傳動(dòng)比就可根據(jù)計(jì)算得出。i=1250/5=250??梢栽试S的傳動(dòng)比偏差為0.01齒輪傳動(dòng)。由此我們可以按照這個(gè)傳動(dòng)比選擇3Z(‖)行星齒輪減速器。
經(jīng)過(guò)分析,此方案滿足題目提供的設(shè)計(jì)要求:工作短期間斷、傳動(dòng)比大、結(jié)構(gòu)緊湊、外輪廓尺寸較小。根據(jù)相關(guān)設(shè)計(jì)手冊(cè)可知,3Z型由三個(gè)中心輪,轉(zhuǎn)臂以及行星齒輪組成[19-20]。適用于短期間斷的工作方式,結(jié)構(gòu)緊湊,傳動(dòng)比大。根據(jù)3Z型行星減速器的特點(diǎn),此設(shè)計(jì)中選用3Z(‖)型行星傳動(dòng)較合理。行星減速器的運(yùn)動(dòng)簡(jiǎn)圖及三維模型圖如圖4.1(a)、(b)所示:
圖4.1 (a)3Z(II)型減速器傳動(dòng)簡(jiǎn)圖
圖4.2 (b)行星齒輪減速器模型圖
5 制動(dòng)器選取
制動(dòng)器在回轉(zhuǎn)機(jī)構(gòu)中起到制動(dòng)和定位的作用,使回轉(zhuǎn)機(jī)構(gòu)克服轉(zhuǎn)動(dòng)慣性停車保持現(xiàn)有位置。制動(dòng)器的選取根據(jù)提供的制動(dòng)力矩等參數(shù)進(jìn)行選取。
(1)電磁制動(dòng)器的相關(guān)結(jié)構(gòu)尺寸:
DZ = 0.2 m
松閘彈簧:l1 = 35 mm, Ps1 = 64 N
l2 = 31 mm, Ps2 = 92 N
彈簧工作長(zhǎng)度 31 mm, 彈簧拉力 Ps = 87 N
電磁鐵型號(hào) MQ1-111 電磁吸力 Pm = 55 N
杠桿放大比 ig = 190/20 = 9.5
(2) 制動(dòng)力矩的計(jì)算工況:保證在最不利工況和最大風(fēng)力作用下塔機(jī)不自行轉(zhuǎn)動(dòng),此時(shí)慣性阻力和軸承阻力矩有利于制動(dòng)[21]。
(3) 制動(dòng)器力矩計(jì)算
MZ = Mη2η3/(i2.i3)
式中
M-制動(dòng)時(shí)所需施加的制動(dòng)力矩;
M = Mh+Mw-Mf-Mp
= 5800+80525-12854-13350-22922 = 37199 N·m
η2-減速器傳動(dòng)效率;η2=0.96
η3-開(kāi)式齒輪傳動(dòng)效率;η3=0.98
i2-行星減速器傳動(dòng)比,i2 =130.88
i3實(shí)-開(kāi)式齒輪實(shí)際傳動(dòng)比,i3實(shí)=5
MZ = M.η2.η3/(i2。i3)=37199×0.96×0.98/(5×130.88) = 27.99N·m
6.3 連接回轉(zhuǎn)支承與上下支座的螺栓強(qiáng)度校核
6 回轉(zhuǎn)支承校核計(jì)算
6.1 回轉(zhuǎn)支承齒輪副強(qiáng)度校核
電動(dòng)機(jī)通過(guò)行星減速器驅(qū)動(dòng)回轉(zhuǎn)支承進(jìn)行回轉(zhuǎn),行星減速器與回轉(zhuǎn)支撐的齒輪副設(shè)計(jì)校核過(guò)程如下:
(a)已知傳動(dòng)功率,傳動(dòng)比,回轉(zhuǎn)速度。
(b)選材熱處理,熱處理硬度值、許用應(yīng)力值的計(jì)算。
(c)開(kāi)式傳動(dòng)根據(jù)彎曲疲勞強(qiáng)度設(shè)計(jì),根據(jù)傳遞轉(zhuǎn)矩計(jì)算出模數(shù),再根據(jù)公式計(jì)算其余尺寸。
(d)小輪直徑乘以齒寬系數(shù)并圓整,作為大輪齒寬,再加上5-10mm作為小輪齒寬。
(e)根據(jù)相關(guān)公式校核兩齒輪的相應(yīng)的輪齒彎曲強(qiáng)度。
(1)齒輪相關(guān)尺寸參數(shù)如表6.1所示:
表6.1 大齒輪與小齒輪參數(shù)
參數(shù)
小齒輪
大齒輪
Z
m
d
b
18
25
450
150
90
25
2250
200
材料選用42CrMoT,淬火處理,淬火硬度在HRC50~60。
(2)載荷計(jì)算
小齒輪傳遞的功率:
P=P電η1=18.5×0.77=14.25kw
T=9550×(P/n)=9550×14.25=27217.5N
圓周力:Ft1 =T/r = 2000×27217.5/450 =120966.67 N
(3)校核齒輪彎曲疲勞強(qiáng)度
σF1=Ft1b1m ×kA×kV×kFa×kβ×YF×YS×Yβ (6.1)
式中
b1—小齒輪寬度 b1 = 150mm
M—模數(shù) m = 25
kA—齒輪工況系數(shù) kA = 1.15
kV—齒輪動(dòng)載系數(shù) kV = 1.2
kFa—彎曲強(qiáng)度端面載荷分配不均系數(shù) kFa =1/ YS =1.0
kβ—齒向載荷分配不均系數(shù) kβ =1.126
YF—齒輪齒形修正系數(shù)
YF1—小齒輪齒形修正系數(shù) YF1 =2.03
YF2—回轉(zhuǎn)機(jī)構(gòu)外齒圈齒形修正系數(shù) YF2 =2.07
YS—齒輪彎曲強(qiáng)度重合度系數(shù) YS =1.1
Yβ—螺旋角系數(shù) Yβ = 1
將上面的各個(gè)數(shù)據(jù)帶入公式,然后通過(guò)計(jì)算得:
σF1=120966.67÷(150×25)×1.15×1.2×1.126×2.03×1.1×1=101.75N/mm2
(4)齒輪彎曲疲勞極限的強(qiáng)度校核
σFlim1=σFlim1×YN1×YS1×YX1 (6.2)
YN1—壽命系數(shù) YN1 = 1.75
YS1—齒輪的應(yīng)力集中系數(shù) YS1 =1.2
YX1—齒輪的尺寸系數(shù) YX1= 0.97
σFlim1=σFlim1×YN1×YS1×YX1
=520×1.75×1.2×0.97
=848.6N/mm2
(5)計(jì)算彎曲強(qiáng)度安全系數(shù)
SF1 =σFlim1/σF1=848.6/101.75 = 8.34 > 1 合格。
(6)校核齒輪接觸疲勞強(qiáng)度
σH=Ftd.b×u±1u×kA×kv×kβ×kHa×ZH×ZE×ZS (6.3)
在公式中
ZH—節(jié)點(diǎn)區(qū)域系數(shù),大多數(shù)情況下,我們往往都取ZH = 2.22
ZE—齒輪的彈性系數(shù) ZE = 60.3
ZS—接觸強(qiáng)度重合系數(shù) ZS =1.0
kHa—端面載荷分配系數(shù) kHa = 1/ ZS2=1.0
代入公式,我們通過(guò)計(jì)算可以得到:
σH=535.68 N/mm2
(7)計(jì)算接觸疲勞極限
σHlim=σHlim×ZN×ZL×ZV×ZR×ZW (6.4)
式中
ZN—接觸強(qiáng)度壽命系數(shù) ZN= 1.1
ZL—潤(rùn)滑劑系數(shù) ZL = 1.0
ZV—速度系數(shù) ZV = 1.0
ZR—光潔度系數(shù) ZR = 0.98
ZW—工作硬化系數(shù) ZW = 1.14
σHlim=1120×1.11.0×1.0×0.98×1.14=1376 N/mm2
(8)計(jì)算接觸疲勞強(qiáng)度安全系數(shù)
SH =σHlim/ σH=1376/535.69 = 2.57> 1
因此,校核滿足要求。
6.2 傳動(dòng)比校核計(jì)算
回轉(zhuǎn)機(jī)構(gòu)總傳動(dòng)比:i總 = n1/n
式中 n1-電動(dòng)機(jī)轉(zhuǎn)速,n1 = 750 r/min;
n-工作回轉(zhuǎn)速度, n = 0.6r/min;
η液-系統(tǒng)損耗系數(shù),取系數(shù)η液=0.9;
i總 = n1×0.9/n =750×0.9/0.6 = 1125
i液=1/η液 =1.11
行星減速器傳動(dòng)比 ,i2 = 250
開(kāi)式齒輪副傳動(dòng)比
i3=(750/0.6)×(0.9×250)=4.504
Z1 = 18 Z2 = 90
i3實(shí) = Z2/Z1 = 90/18 = 5
回轉(zhuǎn)機(jī)構(gòu)實(shí)際回轉(zhuǎn)轉(zhuǎn)速
n = n1 /(i2×i3)=750/(250×4.504×1111)= 0.6006
回轉(zhuǎn)速度設(shè)計(jì)誤差:
(0.6-0.60061)/0.6×100%=1.02%
因此,校核計(jì)算滿足要求
6.3 連接回轉(zhuǎn)支承與上下支座的螺栓強(qiáng)度校核
在連接回轉(zhuǎn)支承與上下支座時(shí)選用的螺栓為M36X300的標(biāo)準(zhǔn)件。由螺栓連接的受力分析可知,螺栓所受的載荷包括軸向載荷、徑向載荷、彎矩和轉(zhuǎn)矩等。但是對(duì)其每一個(gè)具體的螺栓而言,其受的載荷形式是軸向受力或徑向力。在軸向力的作用下,螺栓可能發(fā)生塑形變形或斷裂;而在徑向力的作用下,當(dāng)采用鉸制孔用螺栓時(shí),螺栓桿和孔壁的鐵盒面可能發(fā)生壓潰或螺栓桿本剪斷等[22]。
對(duì)于受剪螺栓,其主要破環(huán)形式是螺栓桿和孔壁的貼合面上出現(xiàn)壓潰或螺栓桿被剪斷,其設(shè)計(jì)準(zhǔn)則是保證螺栓連接的擠壓強(qiáng)度和剪切強(qiáng)度,其中連接的擠壓強(qiáng)度對(duì)連接的可靠性起決定性作用。
螺栓的材料品種很多,常用的材料有低碳鋼(Q215,10鋼)和中碳鋼(Q235,35剛,45鋼)等材料。此次選用的螺栓M36X200材料為45號(hào)鋼,選用的螺栓承受工作剪力的螺栓連接。
每一個(gè)螺栓在連接上所受到的水平力公式: 其中Z表示為螺栓的數(shù)目;在整個(gè)上下支座與螺栓連接中共用了40個(gè)。
同時(shí)我們?cè)谠O(shè)計(jì)上保證螺栓在預(yù)緊后,在其兩個(gè)接合面所產(chǎn)生的最大摩擦力必須大于或等于橫向載荷。
即:
以上公式中--防滑系數(shù) =1.1~1.3。取 =1.2
i—接合面數(shù) i=2
f—接合面的摩擦系數(shù) 查表取f=0.06
FΣ=H=8942.66N
F0=1.2×8942.660.06×40×2=2235.665N
那么每一個(gè)螺栓需要的預(yù)緊力應(yīng)該滿足下列公式中的條件:
以上公式中
f--接合面的摩擦系數(shù)
r--螺栓的軸線到回轉(zhuǎn)機(jī)構(gòu)中心線的距離
Z--螺栓的數(shù)目
KS--防滑系數(shù)
T—總的回轉(zhuǎn)力矩
經(jīng)計(jì)算:F0≥KsTfi=1zri=1.2×3896.090.06×40×2=205.058N
按螺栓危險(xiǎn)截面的拉伸強(qiáng)度是
計(jì)算的=55.
收藏
編號(hào):20226456
類型:共享資源
大小:1.95MB
格式:ZIP
上傳時(shí)間:2021-02-26
150
積分
- 關(guān) 鍵 詞:
-
含CAD圖紙、說(shuō)明書(shū)
p360
塔式起重機(jī)
旋轉(zhuǎn)
機(jī)構(gòu)
設(shè)計(jì)
cad
圖紙
說(shuō)明書(shū)
仿單
- 資源描述:
-
P360塔式起重機(jī)旋轉(zhuǎn)機(jī)構(gòu)設(shè)計(jì)【含CAD圖紙、說(shuō)明書(shū)】,含CAD圖紙、說(shuō)明書(shū),p360,塔式起重機(jī),旋轉(zhuǎn),機(jī)構(gòu),設(shè)計(jì),cad,圖紙,說(shuō)明書(shū),仿單
展開(kāi)閱讀全文
- 溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學(xué)習(xí)交流,未經(jīng)上傳用戶書(shū)面授權(quán),請(qǐng)勿作他用。