傾卸車提升機(jī)構(gòu)設(shè)計(jì)優(yōu)化外文翻譯、中英文翻譯、外文文獻(xiàn)翻譯
傾卸車提升機(jī)構(gòu)設(shè)計(jì)優(yōu)化外文翻譯、中英文翻譯、外文文獻(xiàn)翻譯,傾卸,提升,機(jī)構(gòu),設(shè)計(jì),優(yōu)化,外文,翻譯,中英文,文獻(xiàn)
Mine design and optimization of lifting mechanism of dumping truck Li-Ronghao1,a,Yang-Jue2,b and Peng-Lilong3,c 1,2,3School of Mechanical Engineering,University of Science and Technology Beijing Beijing,China ,, keywords:Mining equipments,Lifting mechanism,Ground protection,Matlab.Abstract.Lifting mechanism is one of the most important work system.Its design quality directly influences the using performance of mining dump truck.The dissertation takes large dump truck as research object,with the knowledge of the mechanism dynamics for the top rear lifting mechanism of dump truck for innovative design,using the optimization function of MATLAB make the lifting mechanism optimal,to articulated point lifting mechanism the reasonable optimally lay out,and improves the lifting organization performance fundamentally.1.Introduction The old design of lifting mechanism of dump truck,when building a mathematical model,on the hypothesis premise of the total mass in the the goods in carriage and center of mass position invariance.The stress of the lifting mechanism will increase because of packing case forward center of mass during lifting uninstall,this point is rarely considered,but it has a great influence on.Common carriage and bucket type car unloading is presented in this paper mathematical model of center of mass in the process of change,it lays the foundation for lift unloading process of lifting mechanism design.Large dump trucks for vehicle,Schematic Fig 1.1:Fig 1.1 Large dump truck vehicle figure Fig 1.2 Three-dimensional containerstowage way 1.1 The basic parameters of the selected Structure is mining shovel car of the train,the goods rest Angle of choice for 30/30-45,stow cargo car adopts 1/2 stowage method,the specific shape as shown in figure 1.2 the pink area.1.2 Mathematical model of bucket type hopper car process Establish a car as the origin of coordinates,hinge pin point O level to the left for the X axis is left hand,right Angle coordinate system As shown in figure 1.3.It can be easily to find the lifting process at any time in the car innage quality and center of mass position.In the process of dumping,carriage of goods by full quality decrease to 0,increasing from 0 to the maximum lift Angle demotion Anglem.Between the car demotion Angle and the quality of innage is nonlinear relationship,can be segmented analysis.Interface of goodsDZ1 in the process of lifting,andZZ32,ZZ43,ZZ54,ZZ65 the edge of the intersection D for a floating point,when the point D to pointZ6,namely all unload goods.Carriage when the initial position coordinates of each point)i(),y,x(ZZiZii6100=,with crate on both sides of the side plate plane intersection)j(),y,x(Wwjwjj6100=,both ends of container vertex coordinates,),),(k,y(xHHkHkk2100=Carriage barycentric coordinates G(gx,gy),Carriage weight W,Carriage width L.Advanced Materials Research Vols.760-762(2013)pp 1274-1277Online available since 2013/Sep/18 at (2013)Trans Tech Publications,Switzerlanddoi:10.4028/ rights reserved.No part of contents of this paper may be reproduced or transmitted in any form or by any means without the written permission of TTP,.(ID:140.116.207.56,National Cheng Kung University,Tainan,Taiwan-14/04/14,17:10:31)Fig 1.3 Lift unloading process 2 The lifting mechanism design 2.1 Mechanical model of lifting mechanism Lifting process,assuming the plane parallel to the horizontal plane on the frame,wheel in the ground level completely,oil cylinder force around the same in the process of lifting.Under ground contact A connected to the frame,on the ground are connected to the crate contact B,point O for crate and frame on the coordinate system of ground contact.point C is point B for rotating lifting Angle,point M is crate has not lifting the centroid position,the point G is not lifting the centroid position of goods,and N is the barycentric position of the container the lifting Angle.Point A,B,M,G coordinates are(ax,ay),(bx,by),(mx,my),(gx,gy).Fig 2.1 Lifting coordinates 2.2 The size of the lifting mechanism design In order to guarantee the vehicle structure is compact,simple process,low failure rate,make the geometry size of each components in the lifting mechanism and institutions in the initial state position occupied a very small space,does not appear in the process of exercise intervention into consideration at the same time,so as to guarantee the mechanism motion coordination.First of all,according to the cargo rest Angle of lifting mechanism of selecting maximum demotion Angle.Through the above parameters,the installation of the lifting oil cylinder can be determined the length of AB and largest demotion Angle.)y(y)x(xABbaba+=there is a formulaAOBcosOBOAOBOAAB+=222 obtain a result AOB Lifting is determined to the greatest extent:AOCcosOBOAOBOAAC+=222 (1)The lifting cylinder stroke:ABACL=The first level of cylinder bore Advanced Materials Research Vols.760-7621275222112)yy()xx(yxyxp)xgmxgmK(dbabaabbamg+=(2)And the roundness result shall be according to the provisions of the state standard,after work back calculation of hydraulic pressure.Determination of lifting the first class I cylinder inner diameter:When lifting the first level will be stretched out,crate corner.Point B to point C,Point M to point N 22212)yy()xx(yxyxp)xgmxgmK(dcacaaccangi+=(3)This can be determined,when lifting the first class the first level will be out of the lift cylinder bore size.Fig2.2 The lifting cylinder 3.The ground contact location optimization Elongation before and after the optimization with the lifting Angle contrast figure(solid line is optimized,the dotted line in order to optimize the former)Lifting force before and after the optimization with the lifting Angle contrast figure(solid line is optimized,the dotted line in order to optimize the former)Fig 3.1 Lifting cylinder contrast figure Fig 3.2 Lifting force contrast figure Lifting hydraulic cylinder with the lifting Angle variation before and after optimization Fig 3.3 Before the optimization Fig 3.4 After the optimization(1)After optimization,the lifting cylinder elongation curve and offset a lifting force curve,the maximum lifting thrust and lift elongation reduced 3.6%and 4%respectively,lifting performance is greatly improved.1276Optoelectronics Engineering and Information Technologies in Industry(2)After optimization,the initial position is 875 kn lifting force,reduced by 6%than before optimization,lifting oil pressure 19.4 MPa,reduced by 4.3%than before optimization,Obviously,the optimized for hydraulic lifting mechanism at the initial position is low,gradually with the increase of turn Angle increases,the turning Angle is about 30 degrees when maximum,maximum oil pressure is higher than the initial value,and in the process of the dump,oil pressure curve flat,oil pressure fluctuation coefficient is small,accord with the requirement of hydraulic characteristic curve(3)After optimization,the initial position of lifting force,the lift is better than the before optimization and lifting hydraulic,even during the second half of the lifting process has reached levels before optimization.Optimization design based on MATLAB parameter coordinates,it can map out the lifting installation location after optimized design,as shown below:Fig 3.4 The optimized lifting location map Summary Based on studies of lifting system on the basis of both domestic and overseas,according to the bucket type car dumping process mathematical model of the mining machinery parts of innovative design of lifting mechanism of tipper,and MATLAB optimization theory is applied to the mining equipments in the design of the lifting mechanism,a mathematic model of the mine lifting mechanism of dump truck,lifting capacity and the lift as the objective function to optimize design,considered the boundary constraints,the lifting cylinder maximum pendulum Angle,installation length constraints,not to interfere in constraints such as constraint conditions,realize the optimal design of lifting mechanism References 1 Wei Xiang,Sai Cheong Fok,Georg Thimm.Agent-based Composable Simulation for Virtual Prototyping of Fluid Power System.Computers in Industry.2004,54(3):237251.2 Peter Beater,Martin Otter.Multi-Domain simulation:Mechanics and Hydraulics of an Excavator.Proceedings of the 3rd International Modelica Conference,2003 3 Kong Xiaowu,Qiu Minxiu,Wei Jianhua.A Atudy of the Influences of Pipe on Valve Control Hydraulics System.Proceedings of the 15th Internation Conference on Fluid Power Transmission and Control(ICFP2001),2001.4 Michael Decken,Hubertus Murrenhoff.Simulation of Fluid Power Components Using DSHplus and ADAMS.2001 ASME International Mechanical Engineering Congress and Exposition.2001.5 Nong Zhang,Wade Smith,Jeku Jeyakumaran.Hydraulically interconnected vehicle suspension:background and modeling J.Vehicle System Dynamics:2010,(1):17-40.Funded project number:Z101103055010004.Beijing science and technology committee Advanced Materials Research Vols.760-7621277Optoelectronics Engineering and Information Technologies in Industry 10.4028/ Mine Design and Optimization of Lifting Mechanism of Dumping Truck 10.4028/ 5
外文資料翻譯
傾卸車提升機(jī)構(gòu)設(shè)計(jì)優(yōu)化
起重機(jī)構(gòu)是最重要的工作體系之一。 其設(shè)計(jì)質(zhì)量直接影響礦山自卸車的使用性能。 本論文以大型自卸車為研究對象,借助于自卸車頂部后提升機(jī)構(gòu)的創(chuàng)新設(shè)計(jì)機(jī)理動力學(xué)知識,利用MATLAB的優(yōu)化功能,提升機(jī)構(gòu)優(yōu)化,鉸接點(diǎn)提升機(jī)構(gòu)合理最優(yōu)化 布置,從根本上提高提升組織績效
關(guān)鍵詞:采礦設(shè)備,起重機(jī)構(gòu),地面保護(hù),Matlab。
1.介紹
自卸車提升機(jī)構(gòu)的舊設(shè)計(jì),建立數(shù)學(xué)模型時(shí),對貨物總體質(zhì)量和質(zhì)量中心位置不變性的假設(shè)前提。提升機(jī)構(gòu)的應(yīng)力將因包裝箱向前而增加 提升卸載時(shí)的質(zhì)心,這一點(diǎn)很少考慮,但對本文的影響較大。本文提出了在本文中的質(zhì)量中心數(shù)學(xué)模型在變化過程中的載體和鏟斗式車輛卸載,為 升降機(jī)卸載過程提升機(jī)構(gòu)設(shè)計(jì)。大型自卸車用于車輛,結(jié)構(gòu)是挖掘鏟車的列車,30 / 30 - 45的貨物的休息角,stow貨車采用1 / 2的積載法,摘要桶式料斗式料斗車的數(shù)學(xué)模型建立了一輛車作為坐標(biāo)的原點(diǎn),鉸鏈銷點(diǎn)O水平在左邊的X軸是左手。在汽車的質(zhì)量和質(zhì)量中心的任何時(shí)間都可以很容易地找到提升過程。在傾倒過程中,貨物運(yùn)輸全面質(zhì)量降低為0,從0增加到最大升力角降級角α。汽車降級角β和剩余貨物的質(zhì)量是非線性關(guān)系,可以分段分析。
2 提升機(jī)構(gòu)設(shè)計(jì)
2.1 提升機(jī)構(gòu)的機(jī)械模型提升過程中,假設(shè)平面平行于框架上的水平面,車輪在地面完全完整,油缸在提升過程中大致相同。 接地觸點(diǎn)A連接到框架上,在地面上連接到板條接觸點(diǎn)B,將點(diǎn)O連接到地面接觸坐標(biāo)系上的箱體和框架。 點(diǎn)C為點(diǎn)B,用于旋轉(zhuǎn)提升角β,點(diǎn)M為箱體未提升重心位置,點(diǎn)G不提升貨物的重心位置,而N為集裝箱重心位置的提升角度θ。 點(diǎn)A,B,M,G坐標(biāo)是(a x,a y),(b x,b y),(m x,m y),(g x,g y)。
2.2 起重機(jī)構(gòu)設(shè)計(jì)尺寸為保證車輛結(jié)構(gòu)緊湊,過程簡單,故障率低,使起重機(jī)構(gòu)各部件的幾何尺寸和初始狀態(tài)下的機(jī)構(gòu)占用非常小的空間, 同時(shí)不考慮運(yùn)動干預(yù)的過程,以保證機(jī)構(gòu)運(yùn)動協(xié)調(diào)。 首先,根據(jù)貨物的仰角提升機(jī)構(gòu)選擇最大降級角度。θ 通過上述參數(shù),提升油缸的安裝可以確定AB的長度和最大的降級角度θ
這里是一個(gè)公式
起重是最大程度上決定的.
升降缸行程:
第一級氣缸孔
圓度結(jié)果應(yīng)按照國家標(biāo)準(zhǔn)的規(guī)定,倒車后計(jì)算液壓。
? 確定提升第一級I缸內(nèi)徑:
當(dāng)提升第一級時(shí)將被拉伸出來,將角點(diǎn)θ。點(diǎn)B到點(diǎn)C,點(diǎn)M指向N點(diǎn)
這可以確定,當(dāng)提升第一級時(shí),第一級將脫離提升缸內(nèi)徑。
3 地面接觸位置優(yōu)化
拉伸前后優(yōu)化提升角度對比圖(實(shí)線優(yōu)化,虛線以優(yōu)化前者)提升力前后優(yōu)化提升角度對比圖(實(shí)線優(yōu)化,虛線為了優(yōu)化前者)
(1)優(yōu)化后,提升缸伸長曲線偏移提升力曲線,最大提升推力和升力伸長分別降低了3.6%和4%,提升性能大大提高。
(2)優(yōu)化后,初始位置為875 kn提升力,比優(yōu)化前降低6%,提升油壓19.4 MPa,比優(yōu)化前降低4.3%,顯然,初始位置液壓提升機(jī)構(gòu)優(yōu)化低,逐漸隨著轉(zhuǎn)角的增加而增加,轉(zhuǎn)角大約在30度時(shí)最大值,最大油壓高于初始值,而在過渡過程中,油壓曲線平坦,油壓波動系數(shù)小符合液壓特性曲線要求
(3)優(yōu)化后,提升力的初始位置,升力優(yōu)于前優(yōu)化提升液壓,即使在下半年提升過程中達(dá)到優(yōu)化前的水平?;贛ATLAB參數(shù)坐標(biāo)的優(yōu)化設(shè)計(jì),優(yōu)化設(shè)計(jì)后可繪出起重安裝位置,如下圖所示:
總結(jié)
根據(jù)國內(nèi)外起重系統(tǒng)研究,根據(jù)挖掘機(jī)鏟斗式傾倒過程數(shù)學(xué)模型挖掘機(jī)提升機(jī)構(gòu)創(chuàng)新設(shè)計(jì),MATLAB優(yōu)化理論應(yīng)用于采礦設(shè)備 提升機(jī)構(gòu)的設(shè)計(jì),自卸車礦山提升機(jī)構(gòu)的數(shù)學(xué)模型,起重能力和電梯作為優(yōu)化設(shè)計(jì)的目標(biāo)函數(shù),考慮了邊界約束,提升缸最大擺角度,安裝長度限制,不 干擾約束條件等約束條件,實(shí)現(xiàn)提升機(jī)構(gòu)的優(yōu)化設(shè)計(jì)
參考文獻(xiàn)
[1] Wei Xiang, Sai Cheong Fok, Georg Thimm. Agent-based Composable Simulation for Virtual Prototyping of Fluid Power System. Computers in Industry. 2004, 54(3):237~251. [2] Peter Beater,Martin Otter. Multi-Domain simulation: Mechanics and Hydraulics of an Excavator. Proceedings of the 3rd International Modelica Conference,2003 [3] Kong Xiaowu,Qiu Minxiu, Wei Jianhua. A Atudy of the Influences of Pipe on Valve Control Hydraulics System. Proceedings of the 15th Internation Conference on Fluid Power Transmission and Control (ICFP2001), 2001. [4] Michael Decken, Hubertus Murrenhoff. Simulation of Fluid Power Components Using DSHplus and ADAMS. 2001 ASME International Mechanical Engineering Congress and Exposition. 2001. [5] Nong Zhang, Wade Smith, Jeku Jeyakumaran. Hydraulically interconnected vehicle suspension: background and modeling [J]. Vehicle System Dynamics: 2010, (1): 17-40. Funded project number: Z101103055010004.Beijing science and technology committee
第 5 頁 共 5 頁
收藏