九九热最新网址,777奇米四色米奇影院在线播放,国产精品18久久久久久久久久,中文有码视频,亚洲一区在线免费观看,国产91精品在线,婷婷丁香六月天

常系數(shù)非齊次線性方程

上傳人:san****019 文檔編號(hào):21141599 上傳時(shí)間:2021-04-24 格式:PPT 頁數(shù):23 大小:244.25KB
收藏 版權(quán)申訴 舉報(bào) 下載
常系數(shù)非齊次線性方程_第1頁
第1頁 / 共23頁
常系數(shù)非齊次線性方程_第2頁
第2頁 / 共23頁
常系數(shù)非齊次線性方程_第3頁
第3頁 / 共23頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《常系數(shù)非齊次線性方程》由會(huì)員分享,可在線閱讀,更多相關(guān)《常系數(shù)非齊次線性方程(23頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、第 九 節(jié) 常 系 數(shù) 非 齊 次 線 性 微 分 方 程 一 、 型 二 、 型 三 、 小 結(jié) )()( xPexf mx xxPxxPexf nlx sin)(cos)()( )(xfqyypy 二 階 常 系 數(shù) 非 齊 次 線 性 方 程對(duì) 應(yīng) 齊 次 方 程 ,0 qyypy通 解 結(jié) 構(gòu) ,yYy 常 見 類 型 ),(xPm ,)( xm exP ,cos)( xexP xm ,sin)( xexP xm 難 點(diǎn) : 如 何 求 特 解 ? 方 法 : 待 定 系 數(shù) 法 .)()( xPexf mx一 、 型 設(shè) 非 齊 方 程 特 解 為 xexQy )( 代 入 原 方

2、程 )()()()()2()( 2 xPxQqpxQpxQ m 不 是 特 征 方 程 的 根 ,若 )1( ,02 qp),()( xQxQ m可 設(shè) 是 特 征 方 程 的 單 根 ,若 )2( ,02 qp ,02 p),()( xxQxQ m可 設(shè) ;)( xm exQy ;)( xm exxQy 是 特 征 方 程 的 重 根 ,若 )3( ,02 qp ,02 p),()( 2 xQxxQ m可 設(shè)綜 上 討 論 ,)(xQexy mxk 設(shè) 是 重 根是 單 根不 是 根2 ,10k注 意 上 述 結(jié) 論 可 推 廣 到 n階 常 系 數(shù) 非 齊 次 線 性微 分 方 程 ( k

3、是 重 根 次 數(shù) ) . .)(2 xm exQxy 特 別 地 xAeqyypy 是 特 征 方 程 的 重 根是 特 征 方 程 的 單 根不 是 特 征 方 程 的 根 x x xexA xepA eqpAy 22 2 ,2 , .23 2 的 通 解求 方 程 xxeyyy 解對(duì) 應(yīng) 齊 次 方 程 通 解特 征 方 程 ,0232 rr特 征 根 , 21 21 rr ,221 xx eCeCY 是 單 根 ,2 ,)( 2xeBAxxy 設(shè)代 入 方 程 , 得 xABAx 22 ,121 BAxexxy 2)121( 于 是原 方 程 通 解 為 .)121( 2221 xxx

4、 exxeCeCy 例 1 型二 、 sin)(cos)()( xxPxxPexf nlx sincos)( xPxPexf nlx 22 ieePeePe xixinxixilx xinlxinl eiPPeiPP )()( )22()22( ,)()( )()( xixi exPexP ,)( )( xiexPqyypy 設(shè) ,)(1 ximk eQxy 利 用 歐 拉 公 式 ,)( )( xiexPqyypy 設(shè) ,)(2 ximk eQxy ximximxk eQeQexy ,sin)(cos)( )2()1( xxRxxRex mmxk 次 多 項(xiàng) 式 ,是其 中 mxRxR mm

5、 )(),( )2()1( nlm ,max,10 是 單 根不 是 根 iik注 意上 述 結(jié) 論 可 推 廣 到 n階 常 系 數(shù) 非 齊 次 線 性 微 分 方 程 . .sin4 的 通 解求 方 程 xyy 解 對(duì) 應(yīng) 齊 方 通 解 ,sincos 21 xCxCY 作 輔 助 方 程 ,4 ixeyy ,是 單 根i ,* ixAxey 故代 入 上 式 ,42 Ai ,2iA ,)cos2(sin22* ixxxxixey ix 所 求 非 齊 方 程 特 解 為 ,cos2 xxy 原 方 程 通 解 為 .cos2sincos 21 xxxCxCy ( 取 虛 部 )例 2

6、 .2cos 的 通 解求 方 程 xxyy 解 對(duì) 應(yīng) 齊 方 通 解 ,sincos 21 xCxCY 作 輔 助 方 程 ,2ixxeyy ,2 不 是 特 征 方 程 的 根i ,)( 2* ixeBAxy 設(shè) 代 入 輔 助 方 程 13 034 A BAi ,9431 iBA ,,)9431( 2* ixeixy 例 3 )2sin2)(cos9431( xixix 所 求 非 齊 方 程 特 解 為 ,2sin942cos31 xxxy 原 方 程 通 解 為 .2sin942cos31sincos 21 xxxxCxCy ,)2sin312cos94(2sin942cos31

7、ixxxxxx ( 取 實(shí) 部 )注 意 xAexAe xx sin,cos .)( 的 實(shí) 部 和 虛 部分 別 是 xiAe 例 4 一 鏈 條 懸 掛 在 一 釘 子 上 , 啟 動(dòng) 時(shí) 一 端 離 開 釘子 8m 另 一 端 離 開 釘 子 12m , 分 別 在 以 下 兩 種 情 況下 求 鏈 條 滑 下 來 所 需 要 的 時(shí) 間 : ( 1) 若 不 計(jì) 釘 子 對(duì) 鏈 條 所 產(chǎn) 生 的 摩 擦 力 ; ( 2) 若 摩 擦 力 為 1m長 的 鏈 條 的 重 量 .解 (1)以 釘 子 處 為 原 點(diǎn) , s 軸 豎 直 向 下 , 設(shè) 在 t 時(shí) 刻 , 鏈 條 較 長

8、一 段 下 垂 s m, 且 設(shè) 鏈 條 的 密 度 均勻 分 布 為 , 則 向 下 拉 鏈 條 下 滑 的 作 用 力 為 gsgsgsf )10(2)20( 得 微 分 方 程 初 始 問 題于 是 由 maf 0)0(,12)0( )10(220 22 ss sgdtsd 方 程 的 標(biāo) 準(zhǔn) 形 式 為 gsgdtsd 1022特 征 方 程 及 特 征 根 為 10,010 2,12 grgr tgtg eCeCs 1.021.01 10a,0* 代 入 原 方 程 得, 則設(shè) ssas 101.021.01 tgtg eCeCs代 入 初 始 條 件 得 101.01.0 tgtg

9、 ees 即 15252ln10 2ssgt當(dāng) s =20m 時(shí) , 鏈 條 全 部 滑 下 , 需 時(shí) )(625ln10 sgt ggsgsf )20()2( gsgs 05.110 同 理 可 解 得 )(3 22419ln10 sgt 例 5 設(shè) 函 數(shù) 連 續(xù) , 且 滿 足)(x xxx dttxdtttex 00 )()()( 求 )(x解 對(duì) 積 分 方 程 兩 邊 求 導(dǎo) xx dttex 0 )()( 再 求 導(dǎo) 得 xexx )()( 初 始 條 件 為 1)0(,1)0( 特 征 方 程 和 特 征 根 為 irr 2,12 ,01 xCxCx sincos)( 21

10、由 于 自 由 項(xiàng) 1,)( xexf 不 是 特 征 根 , 故 設(shè)xx aexxaex )()(,)( * 解 得 a =1/2 2/sincos)( 21 xexCxCx 再 代 入 初 始 條 件 可 得 )sin(cos21)( xexxx 三 、 小 結(jié) 可 以 是 復(fù) 數(shù) ) (),()()1( xPexf mx );(xQexy mxk ,sin)(cos)()()2( xxPxxPexf nlx ;sin)(cos)( )2()1( xxRxxRexy mmxk (待 定 系 數(shù) 法 )只 含 上 式 一 項(xiàng) 解 法 : 作 輔 助 方 程 ,求 特 解 , 取特 解 的 實(shí)

11、 部 或 虛 部 , 得 原 非 齊 方 程 特 解 . 思 考 題寫 出 微 分 方 程 xexyyy 22 8644 的 待 定 特 解 的 形 式 . 思 考 題 解 答設(shè) 的 特 解 為2644 xyyy *1yxeyyy 2844 的 特 解 為 *2y*2y*1* yy 則 所 求 特 解 為 0442 rr 特 征 根 22,1 rCBxAxy 2*1 xeDxy 22*2 ( 重 根 )*2y*1* yy CBxAx 2 .22 xeDx 一 、 求 下 列 微 分 方 程 的 通 解 : 1、 xeyay 2 ; 2、 xxeyyy 323 ; 3、 xxyy cos4 ;

12、4、 xyy 2sin . 二 、 求 下 列 各 微 分 方 程 滿 足 已 給 初 始 條 件 的 特 解 : 1、 0,1,54 00 xx yyyy ; 2、 xx exeyyy 2 , 1,1 11 xx yy ; 3、 )2cos(214 xxyy , 0,0 00 xx yy . 練 習(xí) 題 三 、 含 源在 CLR , 串 聯(lián) 電 路 中 ,電 動(dòng) E勢(shì) 為 的 電 源 對(duì)電 充 電容 器 C .已 20E知 伏 , 微 法2.0C ,亨1.0L , 歐1000R ,試 求 合 上 開 后關(guān) K 的 電及流 )(ti )(tuc電 壓 . 四 、 設(shè) )(x函 數(shù) 連 續(xù) ,且

13、 滿 足 xxx dttxdtttex 00 )()()( , )(x求 . 練 習(xí) 題 答 案 一 、 1、 221 1sincos aeaxCaxCy x ; 2、 )323( 2221 xxeeCeCy xxx ; 3、 xxxxCxCy sin92cos312sin2cos 21 ; 4、 212cos10121 xeCeCy xx . 二 、 1、 xey x 45)511(161 4 ; 2、 xxx exexexeey 26)121(612 23 ; 3、 )2sin1(812sin161 xxxy . 三 、 )105sin(104)( 31052 3 teti t (安 ), 105sin()105cos(2020)( 33105 3 ttetu tc (伏 ). 四 、 )sin(cos21)( xexxx .

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!