九九热最新网址,777奇米四色米奇影院在线播放,国产精品18久久久久久久久久,中文有码视频,亚洲一区在线免费观看,国产91精品在线,婷婷丁香六月天

大學(xué)物理公式大全(大學(xué)物理所有的公式應(yīng)有盡有)

上傳人:文*** 文檔編號:23147538 上傳時(shí)間:2021-06-05 格式:DOCX 頁數(shù):23 大?。?36.86KB
收藏 版權(quán)申訴 舉報(bào) 下載
大學(xué)物理公式大全(大學(xué)物理所有的公式應(yīng)有盡有)_第1頁
第1頁 / 共23頁
大學(xué)物理公式大全(大學(xué)物理所有的公式應(yīng)有盡有)_第2頁
第2頁 / 共23頁
大學(xué)物理公式大全(大學(xué)物理所有的公式應(yīng)有盡有)_第3頁
第3頁 / 共23頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《大學(xué)物理公式大全(大學(xué)物理所有的公式應(yīng)有盡有)》由會員分享,可在線閱讀,更多相關(guān)《大學(xué)物理公式大全(大學(xué)物理所有的公式應(yīng)有盡有)(23頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。

1、 第一章 質(zhì)點(diǎn)運(yùn)動學(xué)和牛頓運(yùn)動定律 1.1 平均速度 v = △r  1.23 向心加速度 a=  v2 R △t 瞬時(shí)速度 v= lim △r dr 1.2 = △t 0 △t dt △r lim ds 1. 3 速度 v= lim dt △t 0 △t △t 0 1.6 平均加速度

2、 a = △v △t a= lim △v dv 1.7 瞬時(shí)加速度(加速度) = △t 0 △t dt 1.8 dv d 2 r 瞬時(shí)加速度 a= = dt dt 2 1.11 勻速直線運(yùn)動質(zhì)點(diǎn)坐標(biāo) x=x 0+vt 1.12 變速運(yùn)動速度 v=v 0+at

3、 1.13 變速運(yùn)動質(zhì)點(diǎn)坐標(biāo) x=x0+v0t+ 1 at 2 2 2 2 1.14 速度隨坐標(biāo)變化公式 :v -v 0 0 =2a(x-x ) 1.15 自由落體運(yùn)動 1.16 豎直上拋運(yùn)動 v gt v v0 gt y 1 at 2 y v0 t 1 gt 2 2 2

4、 v2 2gy v2 v0 2 2gy 1.17 拋體運(yùn)動速度分量 vx v0 cosa v y v0 sin a gt x v0 cos a ?t 1.18 拋體運(yùn)動距離分量 y v0 sin a ?t 1 gt 2 2 1.19 v02 sin 2a 射程 X=

5、 g 1.20 射高 Y= v02 sin 2a 2g  1.24 圓周運(yùn)動加速度等于切向加速度與法向加速度矢量 和 a=at +an 1.25 加速度數(shù)值 a= at2 an2 1.26 法向加速度和勻速圓周運(yùn)動的向心加速度相同 v2 an= R 1.27 切向加速度只改變速度的大小 at = dv ds R dΦ dt 1.28 v

6、 Rω dt dt 1.29 角速度 ω dφ dt 1.30 角加速度 α dω d 2φ dt dt 2 1.31 角加速度 a 與線加速度 a 、 a 間的關(guān)系 n t 2 ω 2 a t = dv ω an= v

7、 (R ) Rω2 Rα R d R R dt dt 牛頓第一定律: 任何物體都保持靜止或勻速直線運(yùn)動狀態(tài),除非它受到作用力而被迫改變這種狀態(tài)。 牛頓第二定律: 物體受到外力作用時(shí), 所獲得的加速 度 a 的大小與外力 F 的大小成正比, 與物體的質(zhì)量 m成反比;加速度的方向與外力的方向相同。 F=ma 牛頓第三定律:若物體 A 以力 F1 作用與物體 B,則同時(shí)物體 B 必以力 F2 作用與物體 A;這兩個(gè)力的大小相等、方向相反,而且沿同一直線。 萬有引力定律:自然界任何兩質(zhì)點(diǎn)間存在

8、著相互吸 引力,其大小與兩質(zhì)點(diǎn)質(zhì)量的乘積成正比, 與兩質(zhì)點(diǎn)間的距離的二次方成反比;引力的方向沿兩質(zhì)點(diǎn)的連線 1.39 F=G m1m2 G 為 萬 有 引 力 稱 量 =6.67 r 2 10 -11 22 N? m/kg 1.40 重力 P=mg (g 重力加速度 ) 1.41 重力 P=G Mm 2 1.21 飛行時(shí)間 y=xtga —  gx2 g  r 1.42 有上兩式重力加速度 g=GM2 ( 物體的重力加速度與

9、 1.22 軌跡方程 y=xtga —  gx2  r 物體本身的質(zhì)量無關(guān),而緊隨它到地心的距離而變 ) 2v02 cos2 a 1.43 胡克定律 F= — kx (k 是比例常數(shù),稱為彈簧的勁度 系數(shù) ) 1.44 最大靜摩擦力 f μ N (μ 靜摩擦系數(shù)) 最大 =0 0 1.45 滑動摩擦系數(shù) f= μN(yùn) ( μ滑動摩擦系數(shù)略小于μ )

10、 0 第二章 守恒定律 2.1 動量 P=mv 2.2 d (mv) dP 牛頓第二定律 F= dt dt 2.3 動 量 定 理 的 微 分 形 式 Fdt=mdv=d(mv) dv F=ma=m

11、 dt 2.4 t 2 v2 Fdt = d (mv) = mv2- mv1 t1 v1 2.5 沖量 I= t2 Fdt t1 2.6 動量定理 I=P2-P1

12、 2.7 平均沖力 F 與沖量 I= t2 Fdt = F (t -t ) t1 2 1 t2 Fdt 平均沖力 F = I t1 mv2 mv1 2.9 = t2 t1 = t1 t2 t1 t2 2.

13、12 質(zhì) 點(diǎn) 系 的 動 量 定 理 (F +F ) △ t=(m v +m v ) — 1 2 1 1 2 2 (m1v10+m2 v20) 左面為系統(tǒng)所受的外力的總動量,第一項(xiàng)為系統(tǒng)的末動量,二為初動量 n n n 2.13 質(zhì)點(diǎn)系的動量定理:Fi △ t mi vi mi vi 0 i 1 i 1 i 1 作用在系統(tǒng)上的外力的總沖量等于系統(tǒng)總動量的增 量 2.14 質(zhì)點(diǎn)系的動量守恒定律 (系統(tǒng)不受外力或外力矢量和 為零) n n mi

14、 vi = mi vi0 =常矢量 i 1 i 1 2.16 L p ? R mvR 圓周運(yùn)動角動量 R 為半徑 2.17 L p ? d mvd 非圓周運(yùn)動, d 為參考點(diǎn) o 到 p 點(diǎn)的垂直距離 2.18 L mvr sin 同上 2.21 M Fd Fr sinF 對參考點(diǎn)的力矩 2.22 M r ? F 力矩 2.24 M dL 作用在質(zhì)點(diǎn)上的合外力矩等于質(zhì)點(diǎn)角動 dt 量的時(shí)間變化率  dL 0 2.26dt 如果對于某一固定

15、參考點(diǎn), 質(zhì)點(diǎn)(系) L 常矢量 所受的外力矩的矢量和為零, 則此質(zhì)點(diǎn)對于該參考點(diǎn)的角動量保持不變。質(zhì)點(diǎn)系的角動量守恒定律 2.28 I mi ri 2 剛體對給定轉(zhuǎn)軸的轉(zhuǎn)動慣量 i 2.29 M I (剛體的合外力矩)剛體在外力矩 M 的 作用下所獲得的角加速度 a 與外合力矩的大小成正比, 并 于轉(zhuǎn)動慣量 I 成反比;這就是剛體的定軸轉(zhuǎn)動定律。 2.30 I r 2 dm r 2 dv 轉(zhuǎn)動慣量 ( dv 為相應(yīng)質(zhì)元 m v dm 的體積

16、元, p 為體積元 dv 處的密度) 2.31 L I 角動量 dL 2.32 M Ia 物體所受對某給定軸的合外力矩等 dt 于物體對該軸的角動量的變化量 2.33 Mdt dL 沖量距 t L 2.34 Mdt dL L L0 I I 0 t 0 L 0 2.35 L I 常量 2.36 W Fr cos 2.37 W F

17、 ? r 力的功等于力沿質(zhì)點(diǎn)位移方向的分量與 質(zhì)點(diǎn)位移大小的乘積 2.38 Wab b dW b F ? dr b F cos ds a a a ( L ) ( L ) ( L) 2.39 W ba F ? dr ba ( F1 F2 Fn ) ? dr W1 W2 ( L) (L ) 合力的功等于各分力功的代數(shù)和 2.40

18、 N W 功率等于功比上時(shí)間 t 2.41 N lim W dW t dt t 0 2.42 N lim F cos s v F ? v 瞬 時(shí) 功 率 t F cos t 0 等于力 F 與質(zhì)點(diǎn)瞬時(shí)速度 v

19、的標(biāo)乘積 2.43 W vv 0 mvdv 1 mv 2 1 mv0 2 功等于動能的增 2 2 量 2.44 Ek 1 mv2 物體的動能 2 2.45 W Ek Ek0 合力對物體所作的功等于物體動能的 增量(動能定理) 2.46 Wab mg (ha hb ) 重力做的功 2.47 Wab ab F

20、 ? dr ( GMm ) ( GMm ) 萬有引力 ra rb 做的功 2.48 Wab ab F ? dr 1 kxa 2 1 kxb 2 彈性力做的功 2 2 2.49 保 E p a Ep b E p 勢能定義 W ab 2.50 E p mgh 重力的勢能表達(dá)式 2.51 E p GMm r 萬有引力勢能

21、 2.52 E p 1 kx 2 彈性勢能表達(dá)式 2 2.53 W外 W內(nèi) Ek Ek0 質(zhì)點(diǎn)系動能的增量等于所有 外力的功和內(nèi)力的功的代數(shù)和(質(zhì)點(diǎn)系的動能定理) 2.54 W外 W保內(nèi) W非內(nèi) Ek Ek0 保守內(nèi)力和不保守 內(nèi)力 2.55 W保內(nèi) E p0 E p E p 系統(tǒng)中的保守內(nèi)力的功 等于系統(tǒng)勢能的減少量 2.56 W外 W非內(nèi) ( Ek

22、E p )(Ek0 E p 0 ) 2.57 E Ek E p 系統(tǒng)的動能 k 和勢能 p 之和稱為系統(tǒng) 的機(jī)械能 2.58 W外 W非內(nèi) E E0 質(zhì)點(diǎn)系在運(yùn)動過程中, 他的機(jī) 械能增量等于外力的功和非保守內(nèi)力的功的總和 (功能原理) 2.59 當(dāng) W外 0、 W非內(nèi) 0 時(shí),有 E Ek E p 常量 如 果在一個(gè)系統(tǒng)的運(yùn)動過程中的任意一小段時(shí)間內(nèi), 外力對系統(tǒng)所作總功都為零,系統(tǒng)內(nèi)部又沒有非保守內(nèi)力做功, 則在運(yùn)動過程中系統(tǒng)的動能與勢能之和保持不變, 即系統(tǒng)的機(jī)械能不隨時(shí)間改變,這就是機(jī)械能守恒定律。 2.6

23、0 1 mv 2 mgh 1 mv0 2 mgh0 重力作用下機(jī)械能 2 2 守恒的一個(gè)特例 2.61 1 mv 2 1 kx2 1 mv0 2 1 kx02 彈性力作用下的 2 2 2 2 機(jī)械能守恒 第三章 氣體動理論 1 毫米汞柱等于 133.3Pa 1mmHg=133.3Pa  1 標(biāo)準(zhǔn)大氣壓等戶 760 毫米汞柱 1atm=760mmHg=1.013 5 10 Pa 熱力學(xué)溫度 T=273.15+t 3.2 氣體定

24、律 P1V1 P2V2 常量 即 P V =常量 T1 T2 T 阿付伽德羅定律: 在相同的溫度和壓強(qiáng)下, 1 摩爾的 任何氣體所占據(jù)的體積都相同。在標(biāo)準(zhǔn)狀態(tài)下,即壓強(qiáng) P0=1atm、溫度 T0=273.15K 時(shí), 1 摩爾的任何氣體體積均 為 v0=22.41 L/mol 23 -1 3.3 羅常量 N a=6.022 10 mol 3.5 普適氣體常量 P0 v0 國際單位制為: 8.314 R T0 J

25、/(mol.K) 壓強(qiáng)用大氣壓,體積用升 8.206 10-2 atm.L/(mol.K) 3.7 理想氣體的狀態(tài)方程: PV= M RT v= M ( 質(zhì) M mol M mol 量為 M,摩爾質(zhì)量為 mol 的氣體中包含的摩爾數(shù) )(R M 為與氣體無關(guān)的普適常量,稱為普適氣體常量 ) 3.8 理想氣體壓強(qiáng)公式 P= 1 mnv 2 (n= N 為單位體積中 3

26、 V 的平均分字?jǐn)?shù),稱為分子數(shù)密度; m為每個(gè)分子的質(zhì) 量, v 為分子熱運(yùn)動的速率 ) 3.9 P= MRT NmRT N R T nkT (n N 為 M mol V N A mV V N A V 氣體分子密度, R 和 NA都是普適常量, 二者之比稱為 波爾 茲常量 k= R 1.38 10 23 J / K N A 3.12 氣體動理論溫度公

27、式:平均動能 t 3 kT ( 平均動 2 能只與溫度有關(guān) ) 完全確定一個(gè)物體在一個(gè)空間的位置所需的獨(dú)立坐 標(biāo)數(shù)目, 稱為這個(gè)物體運(yùn)動的自由度。 雙原子分子共有五 個(gè)自由度,其中三個(gè)是平動自由度,兩個(gè)適轉(zhuǎn)動自由度, 三原子或多原子分子,共有六個(gè)自由度) 分子自由度數(shù)越大,其熱運(yùn)動平均動能越大。每個(gè) 具有相同的品均動能 1 kT 2

28、 3.13 t i kT i 為自由度數(shù), 上面 3/2 為一個(gè)原子 2 分子自由度 3.14 1 摩 爾 理 想 氣 體 的 內(nèi) 能 為 : E = N A 1 N A kT i RT 0 2 2 3.15 質(zhì)量為 M,摩爾質(zhì)量為 M 的理想氣體能能為 mol E= E0 M E0 M i R

29、T M mol M mol 2 氣體分子熱運(yùn)動速率的三種統(tǒng)計(jì)平均值 3.20 最概然速率 ( 就是與速率分布曲線的極大值所對應(yīng) 哦速率,物理意義:速率在 p 附近的單位速率間隔 內(nèi)的分子數(shù)百分比最大) p 2kT 1.41 kT m m (溫度越高, p 越大,分子質(zhì)量 m 越大 p ) R 3.21 因?yàn)?k= N A 和 mNA=Mmol所以上式可表示為 2kT 2RT 2RT RT p mNA M mol 1.41 m M mol

30、8kT 8RT RT 3.22 平均速率 v M mol 1.60 m M mol 3.23 方均根速率 v 23RT 1.73 RT M mol M mol  4.3 dQ=dE+dW(系統(tǒng)從外界吸收微小熱量 dQ,內(nèi)能增加 微小兩 dE, 對外界做微量功 dW 4.4 平衡過程功的計(jì)算 dW=PSdl =PdV 4.5 V 2 W=PdV V1 4.6 平衡過程中熱量的計(jì)算 Q= M C (T2 T1 ) (C 為摩 M mol

31、 爾 熱 容 量, 1 摩 爾 物 質(zhì) 溫 度 改 變 1 度 所 吸 收 或 放 出 的熱量 ) 4.7 等壓過程: Q p M (T2 T1 ) 定壓摩爾熱容量 C p M mol 4.8 等容過程: Qv M (T2 T1 ) 定容摩爾熱容 C v M mol 量 4.9內(nèi) 能 增 量E2-E 1= M i R(T2 T1 ) M mol 2 dE  M i 三種速率, 方

32、均根速率最大, 平均速率次之, 最概速率最小; 在討論速率分布時(shí)用最概然速率, 計(jì)算分子運(yùn)動通過的平均距離時(shí)用平均速率, 計(jì)算分子的平均平動動能時(shí)用分均根 第四章 熱力學(xué)基礎(chǔ) 熱力學(xué)第一定律 :熱力學(xué)系統(tǒng)從平衡狀態(tài) 1 向狀態(tài) 2 的變化中,外界對系統(tǒng)所做的功 ’ 和外界傳給系統(tǒng) W 的熱量 Q 二者之和是恒定的,等于系統(tǒng)內(nèi)能的改變 E2-E 1 4.1 W ’ +Q= E2-E 1 4.2 Q= E 2-E 1+W 注意這里為 W同一過程中系統(tǒng)對外界所做的功( Q>0 系統(tǒng)從外界吸收熱量; Q<0表示系統(tǒng)向外界放

33、出熱量; W>0系統(tǒng)對外界做正功; W<0系統(tǒng)對外界做負(fù)功)  M mol 2 4.11 等容過程 P M R 常量 或 P1 P2 T M mol V T1 T2 M 4.12 4.13 Qv=E2 -E1= C v (T2 T1 ) 等容過程系統(tǒng)不對 M mol 外 界 做 功;等容 過 程 內(nèi) 能變化 4.14 等壓過程 V M R 常量 或 V1 V2 T M mol P T1 T2 4.15 W V2 M PdV P(

34、V2 V1 ) R(T2 T1 ) V1 M mol 4.16 QP E2 E1 W ( 等壓膨脹過程中,系統(tǒng)從外界 吸收的 熱量中 只有一 部分用 于增加 系統(tǒng) 的內(nèi)能,其余部分對于外部功) 4.17 C p C v R ( 1 摩爾理想氣體在等壓過程溫度升 高 1 度時(shí)比在等容過程中要多吸收 8.31 焦耳的熱量,用來轉(zhuǎn)化為體積膨脹時(shí)對外所做的功, 由此可見, 普適氣體常量 R 的物理意義: 1 摩爾理想氣體在等壓過程中升溫 1 度對外界所做的功。)

35、 4.18 泊松比 C p Cv 4.19 4.20 Cv i R C p i 2 R 2 2 4.21 C p i 2 Cv i 4.22 等 溫 變 化 PV M RT 常量 或 P1V1 P2V2 M mol

36、 4.23 4.24 W P1V1 ln V2 或 W M RT ln V2 V1 M mol V1 4.25 等溫過程熱容量計(jì)算: QT W M RT ln V2 M mol V1 (全部轉(zhuǎn)化為功) 4.26 絕 熱 過 程 三 個(gè) 參 數(shù) 都 變 化 PV 常量 或 P1V1 P2V2 絕熱過程的能量轉(zhuǎn)換關(guān)系 4.27 W

37、 P1V1 1 ( V1 ) r 1 1 V2  4.28 W M (T2 T1 ) 根據(jù)已知量求絕熱過程 C v M mol 的功 4.29 W 循環(huán) = Q1 Q2 Q2 為熱機(jī)循環(huán)中放給外界的熱量 4.30 熱機(jī)循環(huán)效率 W循環(huán) ( Q1 一個(gè)循環(huán)從高溫?zé)釒? Q1 吸收的熱量有多少轉(zhuǎn)化為有用的功) 4.31 Q1 Q2 1 Q2 (不可能把所有的 Q1 <

38、 1 Q1 熱量都轉(zhuǎn)化為功) 4.33 制冷系數(shù) Q2 Q2 ( Q2 為從低溫?zé)? W循 Q1 環(huán) Q2 庫中吸收的熱量 ) 第五章 靜電場 5.1 庫侖定律 :真空中兩個(gè)靜止的點(diǎn)電荷之間相互作用的 靜電力 F 的大小與它們的帶電量 q1、 q2 的乘積成正比, 與它們之間的距離 r 的二次方成反比, 作用力的方向沿著兩個(gè)點(diǎn)電 荷的連線。 F 1 q1 q2 4 0 r 2

39、 基元電荷: e=1.602 10 19 C ; 0 真空電容率 =8.85 10 12 ; 1 =8.99 109 4 0 5.2 F 1 q1 q2 r 庫侖定律的適量形式 r 2 ? 4 0 5.3 場強(qiáng) E F q0

40、5.4 F Q r r 為位矢 E 0r 3 q0 4 5.5 電場強(qiáng)度疊加原理(矢量和) 5.6 電偶極子(大小相等電荷相反)場強(qiáng) E 1 P 4 0 r 3 電偶極距 P=ql 5.7 電荷連續(xù)分布的任意帶電體 1 dq E dE ? 4 0 r 2 r

41、 均勻帶點(diǎn)細(xì)直棒 5.8 dE x dE cos dx cos 0 l 2 4 5.9 dE y dE sin dx 2 sin 4 0 l 5.10 E (sin sin a)i (cos a sos ) j 4 0 r 5.11 無限長直棒 E j 2 0 r 5.12 E d E 在電場中任一點(diǎn)附近穿過場強(qiáng)方向的 dS 單位面積的電場線數(shù) 5.13 電通量 d E EdS Ed

42、S cos 5.14 d E E ? dS 5.15 E d E E ? dS s 5.16 E E ? dS 封閉曲面 s 高斯定理: 在真空中的靜電場內(nèi), 通過任意封閉曲面的電通量等于該封閉曲面所包圍的電荷的電 量的代數(shù)和的 1 0 5.17 E ? dS 1 若 連 續(xù) 分 布 在 帶 電 體 上 S q 0 = 1 dq Q 0

43、 5.19 E 1 Q r?( r R) 均勻帶點(diǎn)球就像電荷都集 4 0 r 2 中在球心 5.20 E=0 (r

44、5.24 電勢差 U ab U a U b E ? dl a 5.25 電勢 U a 無限遠(yuǎn) E ?dl a 注意電勢零點(diǎn) 5.26 Aab q ?U ab q(U a U b ) 電場力所做的功 5.27 Q r U 0 r ? 帶點(diǎn)量為 Q 的點(diǎn)電荷的電場中的電 4 勢分布,很多電荷時(shí)代數(shù)疊加 , 注意為 r n qi 5.28 U a 電勢的疊加原

45、理 4 0ri i 1 5.29 U a dq 電荷連續(xù)分布的帶電體的 Q 4 0 r 電勢 5.30 U P 3 r? 電偶極子電勢分布, r 為位矢, 0 r 4 P=ql 5.31 U Q 半徑為 R 的均勻帶電 Q圓 0 ( R2 1 4 x2 ) 2 環(huán)軸線上各點(diǎn)的電勢分布 5.36 W=qU 一個(gè)電荷靜電勢能,電量與電勢的乘積

46、 5.37 E 或 0 E 靜電場中導(dǎo)體表面場強(qiáng) 0 5.38 C q 孤立導(dǎo)體的電容 U 5.39 U= Q 孤立導(dǎo)體球 4 0 R 5.40 C 4 0 R 孤立導(dǎo)體的電容 5.41 C q 兩個(gè)極板的電容器電容 U 1 U 2 5.42 C q 0 S U 1 U 2 平行板電容器電容 d 5.43 C Q 2 0 L R

47、2 是大 U ln( R2 圓柱形電容器電容 R1 ) 的 U 5.44 U 電介質(zhì)對電場的影響 r 5.45 C U r C 0 相對 電容率 U 0 5.46 C r C0 r 0 S d = r 0 叫這種電介質(zhì) d 的電容率(介電系數(shù)) (充滿電解質(zhì)后, 電容器的電容增大為真空時(shí)電容的 r 倍。)(平行板電容器) 5.

48、47 E E0 在平行板電容器的兩極板間充滿各項(xiàng)同性 r 均勻電解質(zhì)后,兩板間的電勢差和場強(qiáng)都 減小到板間為真空時(shí)的 1 r 5.49 E=E 0+E/ 電解質(zhì)內(nèi)的電場 (省去幾個(gè)) 5.60 D R3 半徑為 R 的均勻帶點(diǎn)球放在相 E 3 0 r r 2 對電容率 r 的油中,球外電場分布 5.61 W Q 2 1 QU 1 CU 2 電容器儲能

49、 2C 2 2 第六章 穩(wěn)恒電流的磁場 6.1 I dq 電流強(qiáng)度(單位時(shí)間內(nèi)通過導(dǎo)體任一橫截 dt 面的電量) 6.2 j dI ? 2 dS垂直 j 電流密度 (安 / 米 ) 6.4 I jd cos j ? dS 電流強(qiáng)度等于通過 S S S 的電流密度的通量 6.5 S j ?dS dq 電流的連續(xù)性方程

50、 dt 6.6 S j ?dS =0 電流密度 j 不與與時(shí)間無關(guān)稱穩(wěn)恒電 流,電場稱穩(wěn)恒電場。 6.7 EK ? dl 電源的電動勢(自負(fù)極經(jīng)電源內(nèi)部 到正極的方向?yàn)殡妱觿莸恼较颍? 6.8 EK ? dl 電動勢的大小等于單位正電荷繞閉合 L 回路移動一周時(shí)非靜電力所做的功。 在電 源外部 Ek=0 時(shí), 6.8 就成 6.7

51、了 6.9 B Fmax 磁感應(yīng)強(qiáng)度大小 qv  畢奧 - 薩伐爾定律:電流元 Idl 在空間某點(diǎn) P 產(chǎn)生的磁感 應(yīng)輕度 dB 的大小與電流元 Idl 的大小成 正比,與電流元和電流元到 P 電的位矢 r 之間的夾角 的正弦成正比, 與電流元到 P 點(diǎn)的距離 r 的二次方成反比。 6.10 dB 0 Idl sin 0 為 比 例 系 數(shù) , 4 r 2 4 0 4 10 7 T ? m A 為真空磁導(dǎo)率 6.14 B 0 Idl

52、sin 0 I (con 1 cos 2 ) 載 4 r 2 4 R 流直導(dǎo)線的磁場 ( R為點(diǎn)到導(dǎo)線的垂直距離) 6.15 B 0 I 點(diǎn)恰好在導(dǎo)線的一端且導(dǎo)線很長的情 4 R 況 6.16 B 0 I 導(dǎo)線很長,點(diǎn)正好在導(dǎo)線的中部 2 R 6.17 B 0 IR 2 圓形載流線圈軸線上的磁場 2(R2 2 ) 3 2 分布 6.18 B 0 I x=0 時(shí)磁

53、 在圓形載流線圈的圓心處,即 2R 場分布 6.20 B 0 IS 在很遠(yuǎn)處時(shí) 2 x3 平面載流線圈的磁場也常用磁矩 Pm,定義為線圈中的電流 I 與線圈所包圍的面積的乘積。磁矩的方向與線圈的平面的法線方向相同。 6.21 Pm ISn n 表示法線正方向的單位矢量。 6.22 Pm NISn 線圈有 N 匝 6.23 B 0 2Pm 4 x 3 圓形與非圓形平面載流線圈的磁 場(離線圈較遠(yuǎn)時(shí)才適用) 6.24 B 0

54、 I 4 扇 形 導(dǎo) 線 圓 心 處 的 磁 場 強(qiáng) 度 R L 為圓弧所對的圓心角(弧度) R 6.25 I Q nqvS 運(yùn)動電荷的電流強(qiáng)度 △ t 0 qv ? 6.26 B r 運(yùn)動電荷單個(gè)電荷在距離 r 處產(chǎn)生 4 r 2 的磁場 6.26 d B cos ds B ? dS 磁感應(yīng)強(qiáng)度,簡稱磁通量 (單位韋伯 Wb)

55、 6.27 m B ? dS 通過任一曲面 S 的總磁通量 S 6.28 B ? dS 0 通過閉合曲面的總磁通量等于零 S 6.29 B ? dl 0 I 磁感應(yīng)強(qiáng)度 B 沿任意閉合路徑 L L 的積分 6.30 B ? dl 0 I內(nèi) 在穩(wěn)恒電流的磁場中,磁感應(yīng) L 強(qiáng)度沿任意閉合路徑的環(huán)路積分, 等于這 個(gè)

56、閉合路徑所包圍的電流的代數(shù)和與真 空磁導(dǎo)率 0 的乘積(安培環(huán)路定理或磁 場環(huán)路定理) 6.31 B 0 nI 0 N I 螺線管內(nèi)的磁場 l 6.32 B 0 I 無限長載流直圓柱面的磁場 (長直圓柱面 2 r 外磁場分布與整個(gè)柱面電流集中到中心 軸線同) 6.33 B 0 NI 環(huán)形導(dǎo)管上繞 N 匝的線圈(大圈與小圈 2 r

57、 之間有磁場,之外之內(nèi)沒有) 6.34 dF BIdl sin 安培定律:放在磁場中某點(diǎn)處的電 流元 Idl ,將受到磁場力 dF,當(dāng)電流元 Idl 與所在處的磁感應(yīng)強(qiáng)度 B 成任意角度 時(shí),作用力的大小為: 6.35 dF Idl B B 是電流元 Idl 所在處的磁感應(yīng)強(qiáng)度。 6.36 F Idl B L 6.37 F IBL sin 方向垂直與導(dǎo)線和磁場方向組成的 平面,

58、右手螺旋確定 6.38 f2 0 I 1 I 2 平行無限長直載流導(dǎo)線間的相互作 2 a 用,電流方向相同作用力為引力, 大小相 等,方向相反作用力相斥。 a 為兩導(dǎo)線之 間的距離。  6.39 f 0 I 2 I 1 I 2 I 時(shí)的情況 2 a 6.40 M ISB sin Pm ? B sin 平面載流線圈力矩 6.41 M Pm B 力矩:如果

59、有 N 匝時(shí)就乘以 N 6. 42 F qvB sin (離子受磁場力的大小) (垂直與 速度方向,只改變方向不改變速度大?。? 6.43 F qv B ( F 的方向即垂直于 v 又垂直于 B, 當(dāng) q 為正時(shí)的情況) 6.44 F q( E v B) 洛倫茲力, 空間既有電場又有磁 場 6.44 R mv v 帶點(diǎn)離子速度與 B 垂直的情況 qB ( q m) B 做勻速圓周運(yùn)動

60、 6.45 T 2 R 2 m 周期 v qB 6.46 R mv sin 帶點(diǎn)離子 v 與 B 成角 時(shí)的情況。做 qB 螺旋線運(yùn)動 6.47 h 2 mv cos 螺距 qB 6.48 U H RH BI 霍爾效應(yīng)。導(dǎo)體板放在磁場中通入電 d 流在導(dǎo)體板兩側(cè)會產(chǎn)生電勢差

61、 6.49 U H vBl l 為導(dǎo)體板的寬度 6.50 U H 1 BI 1 由此得到 6.48 nq d 霍爾系數(shù) RH nq 公式 6.51 r B 相對磁導(dǎo)率 (加入磁介質(zhì)后磁場會發(fā)生改 B0 變)大于 1 順磁質(zhì)小于 1 抗磁質(zhì)遠(yuǎn)大于 1 鐵磁質(zhì) 6.52 B B0 B 說明順磁質(zhì)使磁場加強(qiáng) 6.54 B B0 B 抗磁質(zhì)使原

62、磁場減弱 6.55 B ? dl 0 (NI I S ) 有磁介質(zhì)時(shí)的安培環(huán)路定 L 理 I S 為介質(zhì)表面的電流 6.56 NI I S NI 0 r 稱為磁介質(zhì)的磁導(dǎo) 率 6.57 B ? dl I 內(nèi) L 6.58 B H H 成為磁場強(qiáng)度矢量 6.59 L H ? dl I 內(nèi) 磁場強(qiáng)度矢量 H 沿任一閉合路 徑的線積分, 等于該閉合路徑所包圍的傳導(dǎo)電流的代數(shù)和, 與磁化電流及閉合

63、路徑之外的傳導(dǎo)電流無關(guān) (有磁介質(zhì)時(shí)的安培環(huán)路定理) 6.60 H nI 無限長直螺線管磁場強(qiáng)度 6.61 B H nI 0 r nI 無限長直螺線管管內(nèi)磁 感應(yīng)強(qiáng)度大小 第七章 電磁感應(yīng)與電磁場 電磁感應(yīng)現(xiàn)象:當(dāng)穿過閉合導(dǎo)體回路的磁通量發(fā)生變化 時(shí),回路中就產(chǎn)生感應(yīng)電動勢。 楞次定律: 閉合回路中感應(yīng)電流的方向, 總是使得由它所激發(fā)的磁場來阻礙感應(yīng)電流的磁通量的 變化 任一給定回路的感應(yīng)電動勢ε的大小與穿過回路所圍面 積的磁通量的變化率 d m dt 成正比 d 7.1 dt d 7.2 dt 7.3 d N

64、d 叫做全磁通,又稱磁通匝 dt dt 鏈數(shù),簡稱磁鏈表示穿過過各匝線圈磁通 量的總和 7.4 d dx Blv 動生電動勢 dt Bl dt 7.5 f m v B 作用于導(dǎo)體內(nèi)部自由電子上的磁 Ek e 場力就是提供動生電動勢的非靜電力, 可用洛倫茲除以電子電荷 7.6 Ek ? dl (v B) ? dl _ _ 7.7 b Blv 導(dǎo)體棒產(chǎn)生的動生電動勢 ( v B) ? dl a

65、 7.8 Blv sin 導(dǎo)體棒 v 與 B 成一任一角度時(shí)的情況  7.9 (v B) ? dl 磁場中運(yùn)動的導(dǎo)體產(chǎn)生動生電動勢 的普遍公式 7.10 P ? I IBlv 感應(yīng)電動勢的功率 7.11 NBS sin t 交流發(fā)電機(jī)線圈的動生電動勢 7.12 m NBS 當(dāng) sin t =1 時(shí),電動勢有最大值 m 所以 7.11 可為 m sin t 7.14 dB ?dS 感生電動勢 s dt 7.15 E感

66、 ? dl L 感生電動勢與靜電場的區(qū)別在于一是感生電場不是由電荷激發(fā)的,而是由變化的磁場所激發(fā);二是描述感生電場的電場線是閉合 的,因而它不是保守場, 場強(qiáng)的環(huán)流不等于零,而靜電場的電場線是不閉合的, 他是保守場,場強(qiáng)的環(huán)流恒等于零。 7.18 2 M 21 I1 M 21 稱為回路 C1 對 C2 額互感系數(shù)。由 I1 產(chǎn)生的通過 C2 所圍面積的全磁通 7.19 1 M 12I 2 7.20 M 1 M 2 M 回路周圍的磁介質(zhì)是非鐵磁性的, 則互感系數(shù)與電流無關(guān)則相等 7.21 M 1 2 兩個(gè)回路間的互感系數(shù)(互感系 I 2 I 1 數(shù)在數(shù)值上等于一個(gè)回路中的電流為 1 安時(shí)在另一個(gè)回路中的全磁通) 7.22 2 M dI 1 1 M dI 2 互感電動勢 dt

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!