對價(jià)值流優(yōu)化方法應(yīng)用的公司在建筑行業(yè)的協(xié)作網(wǎng)絡(luò)【中文4800字】【PDF+中文WORD】
對價(jià)值流優(yōu)化方法應(yīng)用的公司在建筑行業(yè)的協(xié)作網(wǎng)絡(luò)【中文4800字】【PDF+中文WORD】,中文4800字,PDF+中文WORD,價(jià)值,優(yōu)化,方法,應(yīng)用,公司,建筑行業(yè),協(xié)作,網(wǎng)絡(luò),中文,4800,PDF,WORD
【中文4800字】
對價(jià)值流優(yōu)化方法應(yīng)用的公司在建筑行業(yè)的協(xié)作網(wǎng)絡(luò)
摘 要
盡管汽車和航空航天工業(yè)中使用自動化技術(shù)和工藝及應(yīng)用的精益制造方式是時(shí)下常見的,建筑行業(yè)的這些發(fā)展相對落后。
在此背景下,在價(jià)值流設(shè)計(jì)的幫助下,主要以大規(guī)模生產(chǎn)但最近也變密集的制造業(yè),該工藝流程在單個(gè)公司或者這樣的合作伙伴下,協(xié)作網(wǎng)絡(luò)可以在一個(gè)高度以客戶為導(dǎo)向的有效方式設(shè)計(jì)。因此,本文詳細(xì)介紹了一種方法來設(shè)計(jì)的集成和定制的價(jià)值流建筑業(yè)要求,該方法的開發(fā)和基于應(yīng)用研究與合作項(xiàng)目的驗(yàn)證.
關(guān)鍵詞:生產(chǎn)過程;定制。
1. 簡介
早在60年代初,該目標(biāo)的工業(yè)化建設(shè)價(jià)值鏈?zhǔn)窃跒榱藢乖诘透偁幜Φ臍W洲國家成本效率和施工成本大幅降低,通過理順施工過程中,施工預(yù)制元素和建設(shè)創(chuàng)新發(fā)展的機(jī)械鏈。
后來,隨著發(fā)展方法的精益求精,豐田的生產(chǎn)系統(tǒng)甚至是新的組織方法建筑業(yè)都是可以使用的。盡管這些優(yōu)化建筑活動在積極的推動和研究這個(gè)行業(yè),但是只有少數(shù)的項(xiàng)目是可以實(shí)現(xiàn)的。
在這樣的背景下,勞動力的生產(chǎn)率幅度可以檢測建筑工業(yè)的施工。這個(gè)幅度的量在1995到2007年意大利約為15%。在職業(yè)領(lǐng)域安全和供應(yīng)鏈的材料管理的重大缺陷可以被檢測到,這是勞動力市場的能力下降的原因。最近的研究已經(jīng)證明了顯示的建筑業(yè)潛在的成本和時(shí)間為最低可以節(jié)省約30%的工藝優(yōu)化。作為一個(gè)結(jié)果,超過30%的人是不奇怪的,但是這樣引起了正在工作過程中參與施工企業(yè)的不滿。
建筑業(yè)的另一個(gè)根本問題,就是行業(yè)間包括的項(xiàng)目:這需要競爭,而競爭中重要的則是成本集中,最低報(bào)價(jià)贏得話,在非常保守的行業(yè)投資時(shí)間、金錢或能源進(jìn)行創(chuàng)新,從而實(shí)現(xiàn)唯一的增量變化。上述原因的共同作用,導(dǎo)致了一個(gè)惡性循環(huán),產(chǎn)生了一個(gè)競爭的無形壓力,尤其是中小型企業(yè)在建設(shè)部門和建筑相關(guān)行業(yè)受到更大的影響。
由于這些問題,使合作的目的成為制定和實(shí)施合作項(xiàng)目平臺,對于一個(gè)工業(yè)化,集成化和智能化公司的建設(shè),創(chuàng)建4個(gè)未來財(cái)團(tuán)有限公司由意大利的博爾扎諾省和由意大利夫瑯和費(fèi)所協(xié)調(diào)一致的(IEC創(chuàng)新工程中心)。它涉及到的12個(gè)意大利負(fù)責(zé)建設(shè)、施工等相關(guān)產(chǎn)業(yè),由一個(gè)跨學(xué)科的研究團(tuán)隊(duì)—意大利得而夫瑯和費(fèi)、博爾扎諾大學(xué)的自由機(jī)構(gòu)和組織成的創(chuàng)新園。創(chuàng)建4個(gè)未來是重新思考和重新設(shè)計(jì)整個(gè)價(jià)值鏈,是從其他行業(yè)吸取所定制的建設(shè)涉及不同的選手的一個(gè)離散的數(shù)量,并達(dá)到一個(gè)水平的效率和產(chǎn)業(yè)化的目的。
2. 價(jià)值流的工程方法
價(jià)值流可以被定義為每一筆具體的行動在一定的的時(shí)間制造的產(chǎn)品。在這種情況下,原材料的物理轉(zhuǎn)化到成品以及因此所需信息管理必須被視為價(jià)值流。為了能夠看到,特別是理解價(jià)值流,一個(gè)精益的生產(chǎn)的方法稱為價(jià)值流設(shè)計(jì),并建立了描述和優(yōu)化了生產(chǎn)過程。價(jià)值流設(shè)計(jì)支持工藝工程師把價(jià)值流比作精益求精的眼睛,十分喜歡戴,因?yàn)樵诓痪弥蟊惚灰槐究锔爬似饋?。在這本刊物提出了指南來消除浪費(fèi)的頻繁,同時(shí)增值的過程,用來分享。價(jià)值流圖的概念被首次受到重視,特別是對汽車產(chǎn)業(yè)實(shí)施有限的變異數(shù)系列生產(chǎn)后,來它擴(kuò)大到各個(gè)行業(yè)和部門。在此基礎(chǔ)上,研究工業(yè)工程的研究所(IAO)改編價(jià)值流設(shè)計(jì)方法,是以單件小批量生產(chǎn)的具體需求與產(chǎn)品類型和變異的多樣性的方法。由此產(chǎn)生的方法,稱為值流工程,采用工程模式,這是首次開發(fā)的方法,然后被標(biāo)準(zhǔn)化并投射。因此,在工業(yè)企業(yè)實(shí)施過程模式經(jīng)常將根據(jù)運(yùn)行情況實(shí)施,這種方法使得它可能代表的工作歷程的每一步,及時(shí)前面的間接活動(例如開發(fā)),從生產(chǎn)到客戶完全可以全部涉及。此外,價(jià)值流工程讓工藝工程師不只是可視化的分析一個(gè)價(jià)值流特定的產(chǎn)品組,而且對不同產(chǎn)品可以合并到一個(gè)流程圖中。除此之外,甚至可以為不同的客戶群體進(jìn)行考慮,可使用的資源由不同的產(chǎn)品或客戶群體提出,由此確定并安排在一起使方法更加簡單。因此,本價(jià)值流的工程方法是專為單件小批量生產(chǎn)效率的提高,產(chǎn)品類型的轉(zhuǎn)變和變異的多樣性做準(zhǔn)備的。
3. 施工過程的定制方法
對價(jià)值流工程的基礎(chǔ)設(shè)計(jì),尤其在建設(shè)工程中,一個(gè)進(jìn)程的映射需要整合不同工藝貿(mào)易企業(yè),使它們沿著基于價(jià)值鏈的概念進(jìn)行優(yōu)化,并建立過程和組織。這樣的概念將現(xiàn)有的精細(xì)化管理和精細(xì)化建設(shè)的方法,以及創(chuàng)新的契約方法進(jìn)行折合處理。
此外,相對于其他行業(yè),其一個(gè)整體施工過程必須擁有高度的靈活性和適應(yīng)性,尤其是產(chǎn)品方面,而這些過程都是建筑公司不能操作的。一個(gè)固定的目標(biāo)過程,因?yàn)橐罁?jù)客戶不斷變化的要求從一個(gè)項(xiàng)目到下一個(gè)。因此,合作的理想映射過程是建設(shè)項(xiàng)目是一個(gè)定制的集成不同精細(xì)化貿(mào)易的過程,并且使設(shè)計(jì)根據(jù)某工程的個(gè)人需求完成項(xiàng)目。價(jià)值流的工程方法代表強(qiáng)烈的結(jié)構(gòu)化業(yè)務(wù)建模過程,主要包括間隙從定制系列生產(chǎn)。因此我們在建筑業(yè)從系列的初步階段的代表隊(duì)單件生產(chǎn),價(jià)值流工程以作為新的發(fā)展的基礎(chǔ)定制的映射方法,描述了下面的章節(jié)。
3.1.分類客戶需求定義場景
隨著各類建筑工程的各種不同(如工業(yè)建筑相比私人住宅建筑),建筑特點(diǎn)采取對個(gè)別施工帶來很大的影響工程,從而對交易執(zhí)行過程帶來影響。為了使這一特定特征的建筑行業(yè)更清晰,圖1示例演示了三個(gè)不同的用戶場景其主要在三個(gè)直接的啟示項(xiàng)目管理:質(zhì)量,成本和時(shí)間。他們表現(xiàn)出不同的說明,影響個(gè)體建筑的是施工過程中傾入不同的項(xiàng)目,每個(gè)交易過程中都有條件復(fù)雜的內(nèi)部闡述,這個(gè)稱為了有效模板。因此,大多數(shù)中小型工業(yè)貿(mào)易企業(yè)(大約90%的歐洲建設(shè)工業(yè))合作,同時(shí)在不同類型的項(xiàng)目需要艾弗里高性能的柔性水平進(jìn)行研究。為了介紹建筑的項(xiàng)目的分類,最顯著的特點(diǎn)是具有影響和可能的規(guī)格集思廣益的項(xiàng)目。在為了將這些規(guī)格一致客戶的情況下,形態(tài)箱是接受了作為一種科學(xué)的方式。在此基礎(chǔ)上,客戶的情況需要定義,特別是對當(dāng)?shù)厥袌鲞M(jìn)行定義。作為一個(gè)例子,這樣的客戶情況典型的南蒂羅爾的木屋,繼現(xiàn)代和個(gè)人的設(shè)計(jì)可以明明。區(qū)分不同客戶的要求的情況下,在三個(gè)主要的基礎(chǔ)上定義的在工程項(xiàng)目管理的目標(biāo)。根據(jù)這個(gè),主要是低成本,低項(xiàng)目時(shí)間的同時(shí),客戶的最關(guān)鍵需求是高質(zhì)量。除初步測定這三個(gè)項(xiàng)目的目標(biāo)通過規(guī)劃,甚至在執(zhí)行過過程中的基礎(chǔ)性客戶。因此,三個(gè)類別定義的要求是:成本的依從性,合規(guī)性和施工時(shí)間質(zhì)量合格。此外,該成本費(fèi)用分為投資成本和運(yùn)行費(fèi)用,質(zhì)量是另外劃分為生態(tài)系統(tǒng)的使用,舒適的生活環(huán)境,建筑的易變性,還有客戶的各種需求。單一的要求,現(xiàn)在可以根據(jù)其相關(guān)的研究客戶的情況選擇著重情況。因此,該方法配對的比較是用來排名的替代解決方案預(yù)定義的標(biāo)準(zhǔn)進(jìn)行直接比較,以每一個(gè)單一的選擇與所有其他的選擇。有排名的替代品后,他們可以加權(quán)到后來進(jìn)行取芯模型分析。并且對客戶的要求進(jìn)行排序與取重點(diǎn),并使其成為一個(gè)實(shí)例。圖2為客戶的情況。
圖1. 不同的用戶場景暗示了不同的施工過程
圖2.客戶需求的權(quán)重
2.2. 展開和精益優(yōu)化建模過程模式
過程模式的發(fā)展完成了基于在建筑行業(yè)問題分析,并進(jìn)行了創(chuàng)建4個(gè)未來的項(xiàng)目。這些分析導(dǎo)致一個(gè)更好的理解——組織機(jī)構(gòu)和高度結(jié)構(gòu)化的過程分散的建筑業(yè)。因此,四個(gè)主要領(lǐng)域可確定的行動:
1. 在神經(jīng)網(wǎng)絡(luò)優(yōu)化的管理和控制施工組織與信息(技術(shù))
2. 施工現(xiàn)場物流化(接口生產(chǎn)建設(shè)的網(wǎng)站)
3. 規(guī)劃和執(zhí)行機(jī)構(gòu)(加強(qiáng))
4. 智能化管理
以這些領(lǐng)域的行動作為切入點(diǎn)的過程模式的發(fā)展,從這里開始,一個(gè)定義的目錄的措施,使研究小組系統(tǒng)的提高對領(lǐng)域采用精益原則的行動。對此措施的一個(gè)例子:在施工過程中的優(yōu)化規(guī)劃與控制執(zhí)行(表1)的實(shí)施規(guī)劃過程模式,(圖3)可以被此命名。這個(gè)規(guī)劃系統(tǒng)是一個(gè)控制系統(tǒng),它促進(jìn)規(guī)劃的實(shí)施和執(zhí)行,是對跨學(xué)科的現(xiàn)場特別有幫助的組織與管理模式。
圖3. 時(shí)間規(guī)劃過程的可視化模式
表1.功能性集群與發(fā)展流程模式
優(yōu)化施工現(xiàn)場的例子:物流(表2)是一個(gè)精益物流過程模式的建筑工地,被稱為“奶?!薄5侥壳盀橹箤κ┕がF(xiàn)場材料供應(yīng)可以以一種創(chuàng)新的交付,并與建筑相關(guān)聯(lián)。另一個(gè)物流措施實(shí)施的“時(shí)間”的過程模式,合理的預(yù)制客戶特定的產(chǎn)品在產(chǎn)業(yè)與供應(yīng)及時(shí)對施工現(xiàn)場模式的過程中做的一個(gè)根據(jù)標(biāo)準(zhǔn)化的價(jià)值流工程無不好。
然而,調(diào)整價(jià)值變換工程施工方法,幾個(gè)符號需要更改或添加為標(biāo)準(zhǔn),在一個(gè)合適的能夠描述施工過程的方法。進(jìn)一步適應(yīng)建筑行業(yè)的工作,必要時(shí),考慮項(xiàng)目產(chǎn)品與合同相關(guān)的框架結(jié)構(gòu)。
在研究實(shí)際的舞臺,下面的過程模式4個(gè)功能群有氮的測定,為了能夠選擇一個(gè)功能聚類過程模式需要進(jìn)行評估,對他們的領(lǐng)域應(yīng)用的正確過程模式。在這樣的背景下,集群2需要進(jìn)行評估:1預(yù)加工或裝配的適用性和公關(guān),2施工現(xiàn)場制作或施工現(xiàn)場裝配,3集群4的過程中的適用性不同類型的材料(建設(shè)模式材料,建筑構(gòu)件,間接材料和操作材料),4用于工作需要進(jìn)行評估。
發(fā)展精益流程模式從目錄的措施后,他們的客戶情況調(diào)查的使用性需要評估。因此,以下4個(gè)階段過么評估申請?jiān)谝粋€(gè)部分介紹客貨所需要的要求。
3.3. 過程模式根據(jù)客戶要求選擇
在這一部分中,來自個(gè)人客戶的情況與精益優(yōu)化過程模式要求匹配將有所描述。
選擇的方法是使用評分模型對選擇從四個(gè)功能群對后來設(shè)計(jì)適當(dāng)?shù)倪^程模式研究施工工藝流程圖。
1. 評分模型確定第一單值
2. 基于加權(quán)配對比較效益
3. 項(xiàng)目要求和評價(jià)過程模式
4. 從理想的過程模式得到最高的效益價(jià)值,從而達(dá)到適合于繪制施工過程。
使用這個(gè)為過程模式的方法,可以根據(jù)一個(gè)人價(jià)值流精益思維原理進(jìn)行設(shè)計(jì)。從功能集群2選擇流程模式4,同時(shí)其應(yīng)用領(lǐng)域是決定性的。因此,僅適用于調(diào)查案件的處理模式被考慮。
表2. 四個(gè)階段規(guī)模評估說明
4.案例研究
自定義方法的適用性上,為客戶場景的木制房屋在中價(jià)位段的第一個(gè)原型的價(jià)值流進(jìn)行了驗(yàn)證。
4.1. 中產(chǎn)階級客戶方案的木房子簡介
調(diào)查客戶案例代表一個(gè)公關(guān)制造住宅的木房子,柱和梁的施工技術(shù),客戶類型設(shè)置交鑰匙訂單處理(總承包商)于高價(jià)值,低價(jià)和生態(tài)建設(shè)。
該建筑技術(shù)使各種建筑元素,并在后來裝配在施工現(xiàn)場的個(gè)人預(yù)先制作。公關(guān)制造的元件,從而定制的基于標(biāo)準(zhǔn)化建設(shè)配置
該項(xiàng)目的處理過程為特定的客戶場景開始于客戶訂單的入口,與之前的概念設(shè)計(jì)和取樣槽的構(gòu)造函數(shù)。此后,制作圖紙的各種結(jié)構(gòu)元件被設(shè)計(jì)并傳送到內(nèi)部和外部捏造。對施工現(xiàn)場的建筑元素的最終組裝完成后,該項(xiàng)目是由構(gòu)造函數(shù)和準(zhǔn)備占領(lǐng)接受。
為了更好地理解流程,專家訪談和對公關(guān)制造和施工現(xiàn)場組裝的現(xiàn)場分析已經(jīng)進(jìn)行了在魯布納豪斯公司,一家國際知名的意大利的木房子廠家
4.2 選擇合適的工藝模式和價(jià)值流圖的設(shè)計(jì)
基于客戶的情況下“中產(chǎn)階級的中木房子”加權(quán)值得要求計(jì)算了單進(jìn)程模式的效益。為過程模式中各功能群的圖像顯示的最高值效益選定設(shè)計(jì)價(jià)值流。這種選擇是所示在下面過程模式的四個(gè)功能群中:
上述選擇的過程模式為自定義原型過程圖的一體化是如圖4所示。這一步都是手工完成的,真的能夠自定義的流程模式之間的接口。為了白紙映射簡單易懂的最大A3頁大小使用MS功率點(diǎn)模版完成。
從右上方的AP構(gòu)造函數(shù)訂貨和規(guī)劃階段開始,根據(jù)選定的配置命令處理項(xiàng)目,圖紙都是從技術(shù)的公司內(nèi)部和外部的預(yù)加工的分布。
對預(yù)加工和裝配在施工現(xiàn)場生產(chǎn)控制進(jìn)行協(xié)作,根據(jù)規(guī)劃過程模式構(gòu)建的元素,如墻壁或天花板元素公關(guān)制造,制造工業(yè)按照流程生產(chǎn)原理。各施工要素最終裝配使用施工現(xiàn)場的生產(chǎn)進(jìn)行了。
對于采購物流,對建筑材料交付的主要“牛奶”的概念,如木材,選擇。
對于內(nèi)部物流,超市的概念:結(jié)合“取貨”的實(shí)施,建筑元素,如窗戶,門或外立面,建議將規(guī)劃控制的使用場所根據(jù)及時(shí)的原則。其他調(diào)試材料,為最終的裝配需要,委托和供應(yīng)商/貿(mào)易交付施工現(xiàn)場。
表3. 選定的過程模式
圖4. 以價(jià)值流為原型的為客戶的情況制定的木房子
5. 結(jié)論
所提出的方法演示了如何設(shè)計(jì)一個(gè)集成和定制的建筑業(yè)價(jià)值流圖。到目前為止,只有有限的選擇過程模式已經(jīng)在一個(gè)案例進(jìn)行研究、開發(fā)和測試。
進(jìn)一步的研究,特別是在開發(fā)、升級過程模式的建筑建設(shè)中是加強(qiáng)概念階段。因此,過程模式中描述的“投標(biāo)前期的“策略和新的合作模式與建設(shè)績效獎勵將深入研究。
另外,過程模式將成為能夠處理甚至更好的避免施工中的許多規(guī)劃的變化,使建筑凍結(jié)和延遲減少的方法。因此,過程模式做了一個(gè)深思熟慮的變更使管理方法得到了闡述。為此,為不同的客戶方案流程圖做的設(shè)計(jì)應(yīng)已驗(yàn)證了本文提出的方法的合理性。
2212-8271 2013 The Authors.Published by Elsevier B.V.Selection and peer review under responsibility of Professor Roberto Tetidoi:10.1016/j.procir.2013.09.069 Procedia CIRP 12 (2013)402 407 8th CIRP Conference on Intelligent Computation in Manufacturing Engineering Adaptation of the value stream optimization approach to collaborative company networks in the construction industry D.T.Matta,b,D.Krausea,*,R.Raucha aInnovation Engineering Center,Fraunhofer Italia Research,Schlachthofstr.57,39100 Bozen,Ialy bFaculty of Science and Technology,Free University of Bolzano,Piazza Universit 5,39100 Bozen,Italy*Corresponding author.Tel.:+39-0471-1966914;fax:+39-0741-1966949.E-mail address:daniel.krausefraunhofer.it Abstract While in the automotive or aerospace industry the use of automation technology and processes and the application of lean manufacturing methods are common nowadays,the construction industry is lagging behind these developments.In this context,with the help of value stream design,largely known in mass production but recently also in variant intensive manufacturing,the process flows within single companies but especially amongst the partners in such a collaborative network can be designed in a highly customer-oriented and efficient way 1.Therefore,this paper describes in detail a methodology to design an integrated and customized value stream map for construction industries requirements.The approach was developed and verified based on a collaborative project of applied research with the 2012 The Authors.Published by Elsevier B.V.Selection and/or peer-review under responsibility of Professor Roberto Teti Keywords:Production;Process;Customization.1.Introduction Already in the early 60 the target of an industrialized construction value chain was followed in order to be more competitive against the growing low cost countries in Europe.Efficiency and construction costs were drastically reduced by rationalizing the construction process,pre-fabrication of construction elements and the development of innovative construction machines 2.Later,with the development of the Lean Thinking approach derived from the Toyota Production System 3,new organizational methodologies even for the construction industry were available.Despite these construction optimization activities,which were actively pushed by research as well as industry,only a few punctual projects could be realized.In this context,a significant margin of labor productivity can be detected for the construction industry.This margin amounts in Italy to about 15%from 1995 to 2007 4.Also in the fields of occupational safety and supply-chain and materials management significant deficiencies can be detected,which are compounded by the declining skills in the labor market 5.A recent study has proven potential cost and time savings trough process optimization of about 30%as realistic for the construction industry.As a consequence,it is not surprising that more than 30%of the people involved in construction business are unhappy with the processes they work with 6.Another fundamental problem of the construction industry consists in the competition for projects that is mainly cost focused:the cheapest bid wins and the very conservative industry invests little time,money or energy in innovation and thus realizes only incremental changes.The co-acting of the aforementioned factors leads to a negative spiral,which creates an increasing competitive pressure especially on small and medium sized enterprises(SME)in the construction sector and construction-related industries.Due to these problems,the cooperative and aims to develop and implement a cooperative project platform for an industrialised,integrated and intelligent 2013 The Authors.Published by Elsevier B.V.Selection and peer review under responsibility of Professor Roberto TetiAvailable online at ScienceDirect403 D.T.Matt et al./Procedia CIRP 12 (2013)402 407 construction 7build4future-consortium is co-funded by the Italian province of Bolzano and is coordinated by Fraunhofer Italia(IEC Innovation Engineering Center).It involves 12 Italian SMEsa from construction and construction related industries as well as an interdisciplinary research team formed by Fraunhofer Italia,the Free University of Bolzano,the South Tirolean CasaClima Agency and the TIS Innovation Park.Tbuild4future is to rethink and redesign the entire value chain for customized construction involving a discrete number of different players,and to reach a level of efficiency and industrialization known from other industries.2.The value stream engineering approach A value stream can be defined as the sum of every specific action within the manufacturing of a certain product 8.In this context,the physical transformation of raw materials to a finished product as well as the therefore needed information management must be considered for the value stream.In order to be able to see and in particular to understand the value stream,a lean production 3 method called value stream design was developed for the description and optimization of production processes.Value steam design supports the process engineer to visualize the value stream and the like wearing lean glasses,as 9 shortly sums it up.Within this publication the authors propose guidelines to eliminate waste increasing simultaneously the value added share of a process.The concept of value stream mapping was first implemented by the automotive industry especially for series production with limited variant number 10.Later it was expanded to various industries and branches.On this basis,the Fraunhofer Institute for Industrial Engineering(IAO)adapted the value stream design methodology to the specific needs of the single-part and small batch production with high diversity of product typologies and variants.The resulting approach,called value stream engineering,uses process patterns 11,which are first developed methodically,then standardized and finally projected.Thus,in industrial enterprises implemented process patterns are frequently projected according to the operational situation.This approach makes it possible to represent every step of the workflow,even preceding indirect activities(e.g.development),from customer to customer.Furthermore,a Alpi Fenster GmbH,Studio Arch.Ralf Dejaco,Erlacher Innenausbau KG,Euroclima AG,Eurotherm AG,EXPAN GmbH,Frener&Reifer Metallbau GmbH,Glas Mller Vetri AG,Lanz Metall GmbH,Plattner Bau AG,Tecno Spot GmbH value stream engineering enables the process engineer to not just visualize and analyze the value stream for a certain product group,but also for different product groups in one process map.Beside this,even different customer groups are considered.Thereby resources used by different product and/or customer groups can be identified and scheduled in an easier way.Thus,the value stream engineering approach is tailored for the single-part and small batch production with high diversity of product typologies and variants.3.Customized methodology for construction process design on the basis of value stream engineering In construction projects,a process map needs to integrate various different craft trade businesses along the value chain based on concepts optimizing the building process and organization.Such concepts may be existing lean management 12 or lean construction 13 methodologies as well as innovative contractual approaches 14,15 promoting cooperative project handling.Additionally,in contrast to other industries,the mapping of a holistic construction process has to be highly flexible and adaptable in terms of product and process as construction firms are not able to operate on basis of a fixed target process because of the changing customer requirements from one project to the next.Therefore,the ideal mapping process for cooperative construction projects is a customized integration of different lean trade processes,compounded and designed according to individual needs of a certain construction project.The value stream engineering approach for modeling and representing strongly structured business processes 16 covers mainly the gap from customized manufacturing to series production 10.As this represents a preliminary stage from the series production to the one-of-a-kind production,as we have in the building sector,the value stream engineering has been taken as a basis for the development of the new customized mapping methodology described in the following sections.3.1.Requirements definition for classified customer scenarios As various building projects can be very different(e.g.industrial buildings compared to private residential buildings),the building characteristics take a considerable influence on the individual construction process and thereby on the trades executing the processes 17.In order to make this specific characteristic of the building industry clearer,figure 1 exemplary illustrates three different customer scenarios 404 D.T.Matt et al./Procedia CIRP 12 (2013)402 407 and their direct implication on the three main targets of project management that are quality,cost and time.Fig.1.Different customer scenarios implicate different constructionprocessesTheillustrationdemonstratesthe differentimplications of individual building projects on theconstruction process.Thesevery differentprojectconditions complicate the internal elaboration of an efficient template process for every single trade.Thus,the mostly small and medium sized craft tradebusinesses(about 90%of the European construction industry 18)collaborating simultaneously in different typologies of projects need to perform on a very highflexibility level.In order to introduce a classification of constructionprojects,the most significant characteristics havingimpact on the process and their possible specificationswere brainstormed within the-project.In order to combine thesespecifications to coherentcustomer scenarios,the morphological box 19 wasintroduced as a scientific methodology.On this basis,customer scenarios,especially for the local market were defined.As an example for such a customer scenario thetypical South Tyrolean wooden house,following a modern and individual design can be named.The requirements,distinguishing different customerscenarios,are defined on the basis of the three primary objectives in project management.According to this,primarily low costs,low project lead time and at thesame time high quality are the crucial requirements a customer demands.Beside the initial determination of those three project objectives trough planning,even thecompliance during execution is fundamental for thecustomer.Thus,three more requirements were defined:cost compliance,construction time compliance and quality compliance.Furthermore,the cost aspect is divided into investment cost and operating costs.Quality is in addition divided into ecological usage of resources,living comfort,architecture and mutability.Altogether,there are ten customer requirements.The single requirements can now be weighted according to their relevance for the investigatingcustomer scenario.Therefore,the method of paired comparison 19 is used to rank alternative solutionsregarding predefined criteria by directly comparingevery single alternative with every other alternative.After having ranked the alternatives,they can beweighted to afterwards carry out a scoring model analysis 19.The ranking and weighting of the ten identified requirements is shown for an exemplary customer scenario in figure 2.Fig.2.Weighting of the customer requirements3.2.Development and modeling of lean-optimized process patternsThe development of process patterns was done based on a problem analysis in construction industry also carried out within the build4future-project.These analyses lead to a better understanding of theprocess organization of the small-structured and highly fragmented construction industry.Thus,four main fieldsof action could be identified:1.Optimization of management and control during n nconstruction execution(organization and information technology)2.Optimization of construction site logistics(interface between production and construction site)3.Linkage of planning and execution(strengthening of 4.Intelligent Change ManagementThese fields of action were taken as a starting point for the development of process patterns.Starting there,a catalogue of measures was defined,which enables theresearch team to systematically improve the fields of action using lean principles.An example for a measureoptimizing the planning and control during construction execution(field 1),the implementation of thePlannerprocess pattern(Figure 3)can be named.TheLast Planner System20 is a control system,which405 D.T.Matt et al./Procedia CIRP 12 (2013)402 407 promotes the implementation of execution planning and is particularly helpful forinterdisciplinary on sitemanagement and organization.An example for optimizing the construction sitelogistics(field 2)is a lean logistics process pattern for supply for the construction site could be delivered in aninnovative,building phase-related way.Another logistics measure implements a-in-pattern for a rational prefabrication of client-specificproducts inside the enterprise with a timely supply onthe construction site 7.The representation of the process pattern is doneaccording to the standardized value stream engineeringnotation.However,adapting the valuestream engineering approach to construction,several notation standards needed to be changed or added in order to beable to describe the construction processes in a suitableway.A further adaption to the construction industry willbe worked out when necessary,considering project-,product-and contract-related framework conditions.pFig.3Last Planner process pattern with timeline visualizationUntil the actual stage of the research,the followingfour functional clusters of process patterns have beendetermined:Table 1.Functional clusters and developed process patternsFunctional clusterProcess patternOrder fulfillmentEngineer-to-OrderConfigure-to-OrderOrganizational form of productionConstruction site productionWorkshop productionFlow productionProject controlCentral push-project control trough the siteforemanDecentralized pull-project control with Last PlannerProcurement logisticsReorder point controlled direct deliveryPlanning controlled direct deliveryProject plan determined direct deliveryPre-assembly and final-assembly by thesupplierCommissioning and final-assembly trough the supplier-construction sitesIn order to be able to select the right process pattern of a functional cluster,the process patterns need to beevaluated regarding their field of application.In thiscontext,for cluster 2 needs to be evaluated theapplicability for pre-fabrication or pre-assembly and construction site fabrication orconstruction site assembly.For cluster 4 the applicability of the process pattern for different types of material(building materials,building elements,indirect materials andoperating materials)21 and means for work need to beevaluated.After having developed lean process patterns deriving from the catalogue of measures,their applicability forthe investigating customer scenario(see 3.2)needs to beevaluated.Therefore,the following four-staged scaleevaluation is applied for the ten customer requirements introduced in section 3.1:Table 2.Description of the four-staged scale evaluationEvaluationDescriptionSuitableThe requirement is fulfilled by the process patternwithout any significant restrictionPartial suitableThe requirement cannot be fulfilled by the processpattern without any significant restrictionNot suitableThe requirement cannot be fulfilled by the processpattern;the process pattern is contradictory to theprocess patternNot relevantThe requirement is not influenced by the process pattern and is thus not relevant3.3.Selection of process patterns according to thecustomer requirementsIn this section,the matching of the requirementsderived from individual customer scenarios with the lean-optimized process patterns will be described.The selection approach uses the scoring model 19 toselect the appropriate process pattern from the four functional clusters to afterwards design the investigating construction process map.The scoring model determines first the single values of benefit based on the weighted paired comparison of the project requirements and the evaluated processpatterns.The ideal process pattern results from thehighest value of benefit reached and is thus suitable to beused for mapping the construction process.Using thisapproach for every cluster of process patterns,an individual value stream according to the lean thinkingprinciples can be designed.406 D.T.Matt et al./Procedia CIRP 12 (2013)402 407 Selecting a process pattern from functional cluster 2and 4,also their field of application is decisive.Thus,only the process patterns applicable for the investigating case are considered.4.Case StudyThe applicability of the customized methodology was verified on a first prototype value stream for thecustomer scenario of wooden houses in the medium price segment.4.1.Introduction of the customer scenarioiddle class wooden houseThe investigating customer scenario represents a pre-fabricated residential wooden house with post-and-beam construction technique.The customer type sets a high value on turn-key order handling(general contractor),price guarantee and ecological construction 22.n nThe building technique enables an individual pre-fabrication of the various construction elements,whichare subsequently assembled on the construction site.Thepre-fabricated elements are thereby customized based on standardized construction configurations.The project handling process for the given customer scenario starts at the entrance of a customer order and precedes with the conceptual design and the sampling trough the constructor.Afterwards,the production drawings for the various construction elements aredesigned and sent to the internal and externalfabrications.After the final assembly of the construction elements on the construction site,the project is accepted by the constructor and ready to be occupied.In order to get a better understanding of theprocesses,expert interviews and on-site analysis of thepre-fabrication and the construction site assembly havebeen carried out at Rubner Haus AG,an internationally well known Italian wooden house manufacturer.4.2.Selection of suitable process patterns and design of the value stream mapBased on the weighted requirements for the customere values of benefit for the single process patterns are calculated.For every functional cluster of process patterns,the processpattern showing the highest value of benefit has to bechosen to design the value stream.This selection isshown for the four functional clusters of process patternsin the following:Table 3.Selected process patternsFunctional clusterProcess patternOrder fulfillmentConfigure-to-OrderOrganizationalform of productionPre-fabrication:flow productionFinal-assembly:construction site productionProject controlDecentralized pull-project control with Last PlannerProcurement logisticsBuilding materials:-Run with supermarketBuilding elements:Planning controlled direct delivery(Just-in-Time)Means for work:Commissioning and final-assembly trough the supplierIndirect and operating materials:Reorder point controlled direct delivery combined with-The integration of the above selected process patternsinto a customized prototype process map is illustrated in figure 4.This step has to be done manually,to really be able to customize the interface between the processpatterns.In order to keep the mapping simple and understandable it is done on a maximum A3 page sizeusing MS Power Point templates.Fig.4.Prototype value streaBeginning on the right on top of the map,the constructor places an order and the planning phase begins.According to the selected Configure-to-Order project handling,the drawings are distributed from the technical offic
收藏