九九热最新网址,777奇米四色米奇影院在线播放,国产精品18久久久久久久久久,中文有码视频,亚洲一区在线免费观看,国产91精品在线,婷婷丁香六月天

(課標專用 5年高考3年模擬A版)高考數(shù)學 專題六 數(shù)列 4 數(shù)列的綜合應用試題 文-人教版高三數(shù)學試題

上傳人:文*** 文檔編號:240558155 上傳時間:2024-04-15 格式:DOCX 頁數(shù):25 大小:77.31KB
收藏 版權申訴 舉報 下載
(課標專用 5年高考3年模擬A版)高考數(shù)學 專題六 數(shù)列 4 數(shù)列的綜合應用試題 文-人教版高三數(shù)學試題_第1頁
第1頁 / 共25頁
(課標專用 5年高考3年模擬A版)高考數(shù)學 專題六 數(shù)列 4 數(shù)列的綜合應用試題 文-人教版高三數(shù)學試題_第2頁
第2頁 / 共25頁
(課標專用 5年高考3年模擬A版)高考數(shù)學 專題六 數(shù)列 4 數(shù)列的綜合應用試題 文-人教版高三數(shù)學試題_第3頁
第3頁 / 共25頁

本資源只提供3頁預覽,全部文檔請下載后查看!喜歡就下載吧,查找使用更方便

20 積分

下載資源

資源描述:

《(課標專用 5年高考3年模擬A版)高考數(shù)學 專題六 數(shù)列 4 數(shù)列的綜合應用試題 文-人教版高三數(shù)學試題》由會員分享,可在線閱讀,更多相關《(課標專用 5年高考3年模擬A版)高考數(shù)學 專題六 數(shù)列 4 數(shù)列的綜合應用試題 文-人教版高三數(shù)學試題(25頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、數(shù)列的綜合應用 探考情 悟真題 【考情探究】 考點 內容解讀 5年考情 預測 熱度 考題示例 考向 關聯(lián)考點 數(shù)列求和 掌握數(shù)列的求和方法 2019天津,18,13分 數(shù)列求和(錯位相減法) 求通項公式 ★★★ 2017課標全國Ⅲ,17,12分 數(shù)列求和(裂項相消法) 由遞推式求通項公式 數(shù)列的綜 合應用 能綜合應用等差、等比數(shù)列解決相應問題 2016課標全國Ⅰ,17,12分 等差、等比數(shù)列的綜合問題 等差數(shù)列的判定 ★★★ 分析解讀 綜合運用數(shù)列,特別是等差數(shù)列、等比數(shù)列的有關知識,解答數(shù)列綜合問題和實際問題,培養(yǎng)學生的理解能力

2、、數(shù)學建模能力和運算能力.數(shù)列是特殊的函數(shù),是高考的常考點.歷年高考考題中低、中、高檔試題均有出現(xiàn),需引起充分的重視.本節(jié)內容在高考中分值為12分左右,屬于中檔題. 破考點 練考向 【考點集訓】 考點一 數(shù)列求和 1.(2018福建閩侯第八中學期末,16)已知數(shù)列{nan}的前n項和為Sn,且an=2n,則使得Sn-nan+1+50<0的最小正整數(shù)n的值為    .? 答案 5 2.(2019湖南郴州第二次教學質量監(jiān)測,16)已知數(shù)列{an}和{bn}滿足a1a2a3…an=2bn(n∈N*),若數(shù)列{an}為等比數(shù)列,且a1=2,a4=16,則數(shù)列1bn的前n項和Sn=   

3、 .? 答案 2nn+1 3.(2018河南、河北兩省聯(lián)考,18)已知數(shù)列{an}的前n項和為Sn,a1=5,nSn+1-(n+1)Sn=n2+n. (1)求證:數(shù)列Snn為等差數(shù)列; (2)令bn=2nan,求數(shù)列{bn}的前n項和Tn. 答案 (1)證明:由nSn+1-(n+1)Sn=n2+n得Sn+1n+1-Snn=1, 又S11=5,所以數(shù)列Snn是首項為5,公差為1的等差數(shù)列. (2)由(1)可知Snn=5+(n-1)=n+4,所以Sn=n2+4n. 當n≥2時,an=Sn-Sn-1=n2+4n-(n-1)2-4(n-1)=2n+3. 又a1=5符合上式,所以an=

4、2n+3(n∈N*), 所以bn=(2n+3)2n, 所以Tn=5×2+7×22+9×23+…+(2n+3)2n,① 2Tn=5×22+7×23+9×24+…+(2n+1)2n+(2n+3)2n+1,② 所以②-①得 Tn=(2n+3)2n+1-10-(23+24+…+2n+1) =(2n+3)2n+1-10-23(1-2n-1)1-2 =(2n+3)2n+1-10-(2n+2-8) =(2n+1)2n+1-2. 考點二 數(shù)列的綜合應用 1.(2018福建漳州期末調研測試,5)等差數(shù)列{an}和等比數(shù)列{bn}的首項均為1,公差與公比均為3,則ab1+ab2+ab3=(

5、  ) A.64 B.32 C.38 D.33 答案 D  2.(2018河南商丘第二次模擬,6)已知數(shù)列{an}滿足a1=1,an+1-an≥2(n∈N*),且Sn為{an}的前n項和,則(  ) A.an≥2n+1 B.Sn≥n2 C.an≥2n-1 D.Sn≥2n-1 答案 B  3.(2019福建晉江(安溪一中、養(yǎng)正中學、惠安一中、泉州實驗中學四校)期中,18)已知數(shù)列{an}的前n項和為Sn,且Sn=2an-2. (1)求數(shù)列{an}的通項公式; (2)若數(shù)列n+1an的前n項和為Tn,求Tn以及Tn的最小值. 答案 (1)當n=1時,a1=2.當n≥2時,Sn-

6、1=2an-1-2, 所以an=Sn-Sn-1=2an-2an-1,整理得anan-1=2(常數(shù)), 所以數(shù)列{an}是首項為2,公比為2的等比數(shù)列,故an=2n. (2)令bn=n+1an,則bn=n+12n, 所以Tn=221+322+…+n+12n①, 12Tn=222+323+…+n+12n+1②, ①-②,得12Tn=32-n+32n+1, 所以Tn=3-n+32n, 令cn=n+32n,則cn+1cn=n+42n+6<1, 所以cn>cn+1,從而數(shù)列{Tn}是單調遞增數(shù)列, 所以Tn≥T1=1. 故Tn的最小值為1. 4.(命題標準樣題,16)設三角形的邊

7、長為不相等的整數(shù),且最大邊長為n,這些三角形的個數(shù)為an. (1)求數(shù)列{an}的通項公式; (2)在1,2,…,100中任取三個不同的整數(shù),求它們可以是一個三角形的三條邊長的概率. 附:1+22+32+…+n2=n(n+1)(2n+1)6. 答案 本題考查三角形三邊的關系、數(shù)列的概念、通項公式,等差數(shù)列求和,古典概型等數(shù)學知識.試題將數(shù)列與概率相結合,體現(xiàn)了理性思維、數(shù)學探究的學科素養(yǎng),考查了邏輯推理能力、運算求解能力和創(chuàng)新能力,落實了基礎性、綜合性、創(chuàng)新性的考查要求. (1)設x,y,n為滿足題意的三角形的邊長,不妨設xn. 由題設,易得a1=a2=a3

8、=0. 當n≥4,且n為偶數(shù)時, 若y≤n2,x不存在;若y=n2+1,則x為n2;若y=n2+2,則x為n2-1,n2,n2+1;……; 若y=n-1,則x為2,3,…,n-2. 所以an=1+3+…+(n-3)=(n-2)24. 當n>4,且n為奇數(shù)時,可得 an=2+4+…+(n-3)=(n-1)(n-3)4. 所以{an}的通項公式為 an=0,n=1,2,3,(n-2)24,n≥4,且n為偶數(shù),(n-1)(n-3)4,n≥5,且n為奇數(shù). (2)記Sn為數(shù)列{an}的前n項和.由(1)可得 S100=14×(22+42+…+982)+14×(2×4+4×6+…+9

9、6×98) =(12+22+…+492)+12+22+…+482+(1+2+…+48) =49×50×1956. 故所求概率為S100100×99×983×2×1=65132. 煉技法 提能力 【方法集訓】 方法 數(shù)列求和的方法 1.(2018河南中原名校11月聯(lián)考,10)設函數(shù)f(x)滿足f(n+1)=2f(n)+n2(n∈N*),且f(1)=2,則f(40)=(  ) A.95 B.97 C.105 D.392 答案 D  2.(2019吉林長春模擬,7)已知數(shù)列{an}的前n項和Sn=n2+2n,則數(shù)列1an·an+1的前6項和為(  ) A.215 B.415

10、 C.511 D.1011 答案 A  3.(2019湘贛十四校第一次聯(lián)考,17)已知函數(shù)f(x)=2019·sinπx-π3(x∈R)的所有正零點構成遞增數(shù)列{an}. (1)求數(shù)列{an}的通項公式; (2)設bn=2nan+23,求數(shù)列{bn}的前n項和Sn. 答案 (1)令f(x)=2019sinπx-π3=0, 得πx-π3=kπ(k∈Z),則有x=13+k(k∈Z). ∵f(x)的所有正零點構成遞增數(shù)列{an}, ∴{an}是以13為首項,1為公差的等差數(shù)列, ∴an=13+(n-1)×1=n-23(n∈N*). (2)由(1)知bn=n·2n. ∴Sn=1×

11、21+2×22+3×23+…+(n-1)×2n-1+n×2n,① ∴2Sn=1×22+2×23+3×24+…+(n-1)×2n+n×2n+1,② ②-①得Sn=-1×21-22-23-…-2n+n×2n+1=n×2n+1-21(1-2n)1-2=(n-1)·2n+1+2. 4.(2018河南安陽第二次模擬,17)設等差數(shù)列{an}的前n項和為Sn,點(n,Sn)在函數(shù)f(x)=x2+Bx+C-1(B,C∈R)的圖象上,且a1=C. (1)求數(shù)列{an}的通項公式; (2)記bn=an(a2n-1+1),求數(shù)列{bn}的前n項和Tn. 答案 (1)設數(shù)列{an}的公差為d, 則Sn

12、=na1+n(n-1)2d=d2n2+a1-d2n, 又Sn=n2+Bn+C-1,兩式對照得d2=1,C-1=0, 解得d=2,C=1,又因為a1=C, 所以a1=1, 所以數(shù)列{an}的通項公式為an=2n-1. (2)由(1)知bn=(2n-1)(2·2n-1-1+1)=(2n-1)2n, 則Tn=1×2+3×22+…+(2n-1)·2n, 2Tn=1×22+3×23+…+(2n-3)·2n+(2n-1)·2n+1, 兩式相減得 Tn=(2n-1)·2n+1-2(22+23+…+2n)-2 =(2n-1)·2n+1-2×22(1-2n-1)1-2-2 =(2n-3)·

13、2n+1+6. 【五年高考】 A組 統(tǒng)一命題·課標卷題組 考點一 數(shù)列求和  (2017課標全國Ⅲ,17,12分)設數(shù)列{an}滿足a1+3a2+…+(2n-1)an=2n. (1)求{an}的通項公式; (2)求數(shù)列an2n+1的前n項和. 答案 (1)因為a1+3a2+…+(2n-1)an=2n, 故當n≥2時,a1+3a2+…+(2n-3)an-1=2(n-1). 兩式相減得(2n-1)an=2. 所以an=22n-1(n≥2). 又由題設可得a1=2, 從而{an}的通項公式為an=22n-1(n∈N*). (2)記an2n+1的前n項和為Sn. 由(1

14、)知an2n+1=2(2n+1)(2n-1)=12n-1-12n+1. 則Sn=11-13+13-15+…+12n-1-12n+1=2n2n+1. 考點二 數(shù)列的綜合應用  (2016課標全國Ⅰ,17,12分)已知{an}是公差為3的等差數(shù)列,數(shù)列{bn}滿足b1=1,b2=13,anbn+1+bn+1=nbn. (1)求{an}的通項公式; (2)求{bn}的前n項和. 答案 (1)由已知,a1b2+b2=b1,b1=1,b2=13,得a1=2,(3分) 所以數(shù)列{an}是首項為2,公差為3的等差數(shù)列,通項公式為an=3n-1.(5分) (2)由(1)和anbn+1+bn+1

15、=nbn得bn+1=bn3,(7分) 因此{bn}是首項為1,公比為13的等比數(shù)列.(9分) 記{bn}的前n項和為Sn, 則Sn=1-13n1-13=32-12×3n-1.(12分) B組 自主命題·省(區(qū)、市)卷題組 考點一 數(shù)列求和 1.(2019天津,18,13分)設{an}是等差數(shù)列,{bn}是等比數(shù)列,公比大于0.已知a1=b1=3,b2=a3,b3=4a2+3. (1)求{an}和{bn}的通項公式; (2)設數(shù)列{cn}滿足cn=1,n為奇數(shù),bn2,n為偶數(shù).求a1c1+a2c2+…+a2nc2n(n∈N*). 答案 本題主要考查等差數(shù)列、等比數(shù)列的通項

16、公式及其前n項和公式等基礎知識.考查數(shù)列求和的基本方法和運算求解能力,體現(xiàn)了數(shù)學運算的核心素養(yǎng). (1)設等差數(shù)列{an}的公差為d,等比數(shù)列{bn}的公比為q. 依題意,得3q=3+2d,3q2=15+4d,解得d=3,q=3, 故an=3+3(n-1)=3n,bn=3×3n-1=3n. 所以,{an}的通項公式為an=3n,{bn}的通項公式為bn=3n. (2)a1c1+a2c2+…+a2nc2n =(a1+a3+a5+…+a2n-1)+(a2b1+a4b2+a6b3+…+a2nbn) =n×3+n(n-1)2×6+(6×31+12×32+18×33+…+6n×3n) =

17、3n2+6(1×31+2×32+…+n×3n). 記Tn=1×31+2×32+…+n×3n,① 則3Tn=1×32+2×33+…+n×3n+1,② ②-①得,2Tn=-3-32-33-…-3n+n×3n+1=-3(1-3n)1-3+n×3n+1=(2n-1)3n+1+32. 所以,a1c1+a2c2+…+a2nc2n=3n2+6Tn=3n2+3×(2n-1)3n+1+32=(2n-1)3n+2+6n2+92(n∈N*). 2.(2018浙江,20,15分)已知等比數(shù)列{an}的公比q>1,且a3+a4+a5=28,a4+2是a3,a5的等差中項.數(shù)列{bn}滿足b1=1,數(shù)列{(bn

18、+1-bn)an}的前n項和為2n2+n. (1)求q的值; (2)求數(shù)列{bn}的通項公式. 答案 (1)由a4+2是a3,a5的等差中項得a3+a5=2a4+4, 所以a3+a4+a5=3a4+4=28, 解得a4=8. 由a3+a5=20得8q+1q=20, 解得q=2或q=12, 因為q>1,所以q=2. (2)設cn=(bn+1-bn)an,數(shù)列{cn}的前n項和為Sn. 由cn=S1,  n=1,Sn-Sn-1,n≥2,解得cn=4n-1. 由(1)可知an=2n-1, 所以bn+1-bn=(4n-1)·12n-1, 故bn-bn-1=(4n-5)·12n

19、-2,n≥2, bn-b1=(bn-bn-1)+(bn-1-bn-2)+…+(b3-b2)+(b2-b1) =(4n-5)·12n-2+(4n-9)·12n-3+…+7·12+3. 設Tn=3+7·12+11·122+…+(4n-5)·12n-2,n≥2, 12Tn=3·12+7·122+…+(4n-9)·12n-2+(4n-5)·12n-1(n≥2), 所以12Tn=3+4·12+4·122+…+4·12n-2-(4n-5)·12n-1(n≥2), 因此Tn=14-(4n+3)·12n-2,n≥2, 又b1=1,所以bn=15-(4n+3)·12n-2. 3.(2017山東,

20、19,12分)已知{an}是各項均為正數(shù)的等比數(shù)列,且a1+a2=6,a1a2=a3. (1)求數(shù)列{an}的通項公式; (2){bn}為各項非零的等差數(shù)列,其前n項和為Sn.已知S2n+1=bnbn+1,求數(shù)列bnan的前n項和Tn. 答案 (1)設{an}的公比為q, 由題意知:a1(1+q)=6,a12q=a1q2, 又an>0,解得a1=2,q=2,所以an=2n. (2)由題意知:S2n+1=(2n+1)(b1+b2n+1)2=(2n+1)bn+1, 又S2n+1=bnbn+1,bn+1≠0,所以bn=2n+1. 令cn=bnan,則cn=2n+12n. 因此Tn=

21、c1+c2+…+cn=32+522+723+…+2n-12n-1+2n+12n, 又12Tn=322+523+724+…+2n-12n+2n+12n+1, 兩式相減得12Tn=32+12+122+…+12n-1-2n+12n+1, 所以Tn=5-2n+52n. 4.(2017北京,15,13分)已知等差數(shù)列{an}和等比數(shù)列{bn}滿足a1=b1=1,a2+a4=10,b2b4=a5. (1)求{an}的通項公式; (2)求和:b1+b3+b5+…+b2n-1. 答案 (1)設等差數(shù)列{an}的公差為d. 因為a2+a4=10,所以2a1+4d=10. 解得d=2. 所以a

22、n=2n-1. (2)設等比數(shù)列{bn}的公比為q. 因為b2b4=a5,所以b1qb1q3=9. 解得q2=3. 所以b2n-1=b1q2n-2=3n-1. 從而b1+b3+b5+…+b2n-1=1+3+32+…+3n-1=3n-12. 5.(2016天津,18,13分)已知{an}是等比數(shù)列,前n項和為Sn(n∈N*),且1a1-1a2=2a3,S6=63. (1)求{an}的通項公式; (2)若對任意的n∈N*,bn是log2an和log2an+1的等差中項,求數(shù)列{(-1)nbn2}的前2n項和. 答案 (1)設數(shù)列{an}的公比為q.由已知,有1a1-1a1q=2a

23、1q2,解得q=2,或q=-1. 又由S6=a1·1-q61-q=63,知q≠-1,所以a1·1-261-2=63,得a1=1.所以an=2n-1. (2)由題意,得bn=12(log2an+log2an+1)=12(log22n-1+log22n)=n-12, 即{bn}是首項為12,公差為1的等差數(shù)列. 設數(shù)列{(-1)nbn2}的前n項和為Tn,則 T2n=(-b12+b22)+(-b32+b42)+…+(-b2n-12+b2n2) =b1+b2+b3+b4+…+b2n-1+b2n=2n(b1+b2n)2=2n2. 考點二 數(shù)列的綜合應用 1.(2018北京,15,1

24、3分)設{an}是等差數(shù)列,且a1=ln2,a2+a3=5ln2. (1)求{an}的通項公式; (2)求ea1+ea2+…+ean. 答案 (1)設{an}的公差為d. 因為a2+a3=5ln2, 所以2a1+3d=5ln2. 又a1=ln2,所以d=ln2. 所以an=a1+(n-1)d=nln2. (2)因為ea1=eln2=2,eanean-1=ean-an-1=eln2=2, 所以{ean}是首項為2,公比為2的等比數(shù)列. 所以ea1+ea2+…+ean=2×1-2n1-2=2(2n-1). 2.(2017天津,18,13分)已知{an}為等差數(shù)列,前n項和為S

25、n(n∈N*),{bn}是首項為2的等比數(shù)列,且公比大于0,b2+b3=12,b3=a4-2a1,S11=11b4. (1)求{an}和{bn}的通項公式; (2)求數(shù)列{a2nbn}的前n項和(n∈N*). 答案 (1)設等差數(shù)列{an}的公差為d,等比數(shù)列{bn}的公比為q.由已知b2+b3=12,得b1(q+q2)=12, 而b1=2,所以q2+q-6=0. 又因為q>0,解得q=2. 所以,bn=2n. 由b3=a4-2a1,可得3d-a1=8①. 由S11=11b4,可得a1+5d=16②, 聯(lián)立①②,解得a1=1,d=3, 由此可得an=3n-2. 所以,{a

26、n}的通項公式為an=3n-2,{bn}的通項公式為bn=2n. (2)設數(shù)列{a2nbn}的前n項和為Tn,由a2n=6n-2,有Tn=4×2+10×22+16×23+…+(6n-2)×2n, 2Tn=4×22+10×23+16×24+…+(6n-8)×2n+(6n-2)×2n+1, 上述兩式相減,得 -Tn=4×2+6×22+6×23+…+6×2n-(6n-2)×2n+1 =12×(1-2n)1-2-4-(6n-2)×2n+1 =-(3n-4)2n+2-16. 得Tn=(3n-4)2n+2+16. 所以,數(shù)列{a2nbn}的前n項和為(3n-4)2n+2+16. 3.(2

27、016浙江,17,15分)設數(shù)列{an}的前n項和為Sn.已知S2=4,an+1=2Sn+1,n∈N*. (1)求通項公式an; (2)求數(shù)列{|an-n-2|}的前n項和. 答案 (1)由題意得a1+a2=4,a2=2a1+1,則a1=1,a2=3. 又當n≥2時,由an+1-an=(2Sn+1)-(2Sn-1+1)=2an, 得an+1=3an.又因為a2=3=3a1,所以數(shù)列{an}是首項為1,公比為3的等比數(shù)列. 所以,數(shù)列{an}的通項公式為an=3n-1,n∈N*. (2)設bn=|3n-1-n-2|,n∈N*,則b1=2,b2=1. 當n≥3時,由于3n-1>n+

28、2,故bn=3n-1-n-2,n≥3. 設數(shù)列{bn}的前n項和為Tn,則T1=2,T2=3. 當n≥3時,Tn=3+9(1-3n-2)1-3-(n+7)(n-2)2=3n-n2-5n+112, 經(jīng)檢驗,n=2時也符合. 所以Tn=2,     n=1,3n-n2-5n+112,n≥2,n∈N*. C組 教師專用題組 考點一 數(shù)列求和 1.(2015湖北,19,12分)設等差數(shù)列{an}的公差為d,前n項和為Sn,等比數(shù)列{bn}的公比為q.已知b1=a1,b2=2,q=d,S10=100. (1)求數(shù)列{an},{bn}的通項公式; (2)當d>1時,記cn=anbn,

29、求數(shù)列{cn}的前n項和Tn. 解析 (1)由題意有,10a1+45d=100,a1d=2,即2a1+9d=20,a1d=2, 解得a1=1,d=2,或a1=9,d=29.故an=2n-1,bn=2n-1,或an=19(2n+79),bn=9·29n-1. (2)由d>1,知an=2n-1,bn=2n-1,故cn=2n-12n-1, 于是Tn=1+32+522+723+924+…+2n-12n-1,① 12Tn=12+322+523+724+925+…+2n-12n.② ①-②可得 12Tn=2+12+122+…+12n-2-2n-12n=3-2n+32n, 故Tn=6-2n+

30、32n-1. 2.(2015安徽,18,12分)已知數(shù)列{an}是遞增的等比數(shù)列,且a1+a4=9,a2a3=8. (1)求數(shù)列{an}的通項公式; (2)設Sn為數(shù)列{an}的前n項和,bn=an+1SnSn+1,求數(shù)列{bn}的前n項和Tn. 答案 (1)由題設知a1·a4=a2·a3=8, 又a1+a4=9,可解得a1=1,a4=8或a1=8,a4=1(舍去). 由a4=a1q3得公比為q=2,故an=a1qn-1=2n-1. (2)Sn=a1(1-qn)1-q=2n-1,又bn=an+1SnSn+1=Sn+1-SnSnSn+1=1Sn-1Sn+1, 所以Tn=b1+b2

31、+…+bn=1S1-1S2+1S2-1S3+…+1Sn-1Sn+1=1S1-1Sn+1 =1-12n+1-1. 3.(2015山東,19,12分)已知數(shù)列{an}是首項為正數(shù)的等差數(shù)列,數(shù)列1an·an+1的前n項和為n2n+1. (1)求數(shù)列{an}的通項公式; (2)設bn=(an+1)·2an,求數(shù)列{bn}的前n項和Tn. 答案 (1)設數(shù)列{an}的公差為d. 令n=1,得1a1a2=13, 所以a1a2=3. 令n=2,得1a1a2+1a2a3=25, 所以a2a3=15. 解得a1=1,d=2, 所以an=2n-1. (2)由(1)知bn=2n·22n-1

32、=n·4n, 所以Tn=1·41+2·42+…+n·4n, 所以4Tn=1·42+2·43+…+n·4n+1, 兩式相減,得-3Tn=41+42+…+4n-n·4n+1 =4(1-4n)1-4-n·4n+1 =1-3n3×4n+1-43. 所以Tn=3n-19×4n+1+49=4+(3n-1)4n+19. 4.(2014課標Ⅰ,17,12分)已知{an}是遞增的等差數(shù)列,a2,a4是方程x2-5x+6=0的根. (1)求{an}的通項公式; (2)求數(shù)列an2n的前n項和. 答案 (1)方程x2-5x+6=0的兩根為2,3,由題意得a2=2,a4=3. 設數(shù)列{an}的公

33、差為d,則a4-a2=2d,故d=12,從而a1=32. 所以{an}的通項公式為an=12n+1. (2)設an2n的前n項和為Sn,由(1)知an2n=n+22n+1,則 Sn=322+423+…+n+12n+n+22n+1, 12Sn=323+424+…+n+12n+1+n+22n+2. 兩式相減得12Sn=34+123+…+12n+1-n+22n+2 =34+141-12n-1-n+22n+2. 所以Sn=2-n+42n+1. 5.(2014湖北,19,12分)已知等差數(shù)列{an}滿足:a1=2,且a1,a2,a5成等比數(shù)列. (1)求數(shù)列{an}的通項公式; (2

34、)記Sn為數(shù)列{an}的前n項和,是否存在正整數(shù)n,使得Sn>60n+800?若存在,求n的最小值;若不存在,說明理由. 答案 (1)設數(shù)列{an}的公差為d,依題意,得2,2+d,2+4d成等比數(shù)列,故有(2+d)2=2(2+4d), 化簡得d2-4d=0,解得d=0或d=4. 當d=0時,an=2; 當d=4時,an=2+(n-1)·4=4n-2, 從而得數(shù)列{an}的通項公式為an=2或an=4n-2. (2)當an=2時,Sn=2n.顯然2n<60n+800, 此時不存在正整數(shù)n,使得Sn>60n+800成立. 當an=4n-2時,Sn=n[2+(4n-2)]2=2n2

35、. 令2n2>60n+800,即n2-30n-400>0, 解得n>40或n<-10(舍去), 此時存在正整數(shù)n,使得Sn>60n+800成立,n的最小值為41. 綜上,當an=2時,不存在滿足題意的n; 當an=4n-2時,存在滿足題意的n,其最小值為41. 6.(2014安徽,18,12分)數(shù)列{an}滿足a1=1,nan+1=(n+1)an+n(n+1),n∈N*. (1)證明:數(shù)列ann是等差數(shù)列; (2)設bn=3n·an,求數(shù)列{bn}的前n項和Sn. 答案 (1)證明:由已知可得an+1n+1=ann+1,即an+1n+1-ann=1. 所以ann是以a11=

36、1為首項,1為公差的等差數(shù)列. (2)由(1)得ann=1+(n-1)·1=n,所以an=n2. 從而bn=n·3n. ∴Sn=1·31+2·32+3·33+…+n·3n,① 3Sn=1·32+2·33+…+(n-1)·3n+n·3n+1.② ①-②得-2Sn=31+32+…+3n-n·3n+1 =3·(1-3n)1-3-n·3n+1=(1-2n)·3n+1-32. 所以Sn=(2n-1)·3n+1+34. 7.(2014山東,19,12分)在等差數(shù)列{an}中,已知公差d=2,a2是a1與a4的等比中項. (1)求數(shù)列{an}的通項公式; (2)設bn=an(n+1)2,

37、記Tn=-b1+b2-b3+b4-…+(-1)nbn,求Tn. 答案 (1)由題意知(a1+d)2=a1(a1+3d), 即(a1+2)2=a1(a1+6), 解得a1=2, 所以數(shù)列{an}的通項公式為an=2n. (2)由題意知bn=an(n+1)2=n(n+1). 所以bn+1-bn=2(n+1), 所以當n為偶數(shù)時, Tn=(-b1+b2)+(-b3+b4)+…+(-bn-1+bn) =4+8+12+…+2n =n2(4+2n)2=n(n+2)2, 當n為奇數(shù)時, 若n=1,則T1=-b1=-2, 若n>1,則Tn=Tn-1+(-bn) =(n-1)(n+1

38、)2-n(n+1) =-(n+1)22, n=1時,滿足上式. 所以Tn=-(n+1)22,n為奇數(shù),n(n+2)2,n為偶數(shù). 8.(2013重慶,16,13分)設數(shù)列{an}滿足:a1=1,an+1=3an,n∈N+. (1)求{an}的通項公式及前n項和Sn; (2)已知{bn}是等差數(shù)列,Tn為其前n項和,且b1=a2,b3=a1+a2+a3,求T20. 答案 (1)由題設知{an}是首項為1,公比為3的等比數(shù)列,所以an=3n-1,Sn=1-3n1-3=12(3n-1). (2)b1=a2=3,b3=1+3+9=13,b3-b1=10=2d,所以公差d=5, 故T2

39、0=20×3+20×192×5=1010. 9.(2013安徽,19,13分)設數(shù)列{an}滿足a1=2,a2+a4=8,且對任意n∈N*,函數(shù)f(x)=(an-an+1+an+2)x+an+1cosx-an+2sinx滿足f'π2=0. (1)求數(shù)列{an}的通項公式; (2)若bn=2an+12an,求數(shù)列{bn}的前n項和Sn. 答案 (1)由題設可得,f'(x)=an-an+1+an+2-an+1sinx-an+2·cosx. 對任意n∈N*,f'π2=an-an+1+an+2-an+1=0, 即an+1-an=an+2-an+1, 故{an}為等差數(shù)列. 由a1=2,

40、a2+a4=8,解得{an}的公差d=1,所以an=2+1·(n-1)=n+1. (2)由bn=2an+12an=2n+1+12n+1=2n+12n+2知,Sn=b1+b2+…+bn=2n+2·n(n+1)2+121-12n1-12=n2+3n+1-12n. 10.(2013湖南,19,13分)設Sn為數(shù)列{an}的前n項和,已知a1≠0,2an-a1=S1·Sn,n∈N*. (1)求a1,a2,并求數(shù)列{an}的通項公式; (2)求數(shù)列{nan}的前n項和. 答案 (1)令n=1,得2a1-a1=a12, 即a1=a12. 因為a1≠0, 所以a1=1. 令n=2, 得2

41、a2-1=S2=1+a2. 解得a2=2. 當n≥2時,2an-1=Sn,2an-1-1=Sn-1,兩式相減得2an-2an-1=an.即an=2an-1. 于是數(shù)列{an}是首項為1,公比為2的等比數(shù)列. 因此,an=2n-1.所以數(shù)列{an}的通項公式為an=2n-1. (2)由(1)知nan=n·2n-1. 記數(shù)列{n·2n-1}的前n項和為Bn,于是 Bn=1+2×2+3×22+…+n×2n-1,① 2Bn=1×2+2×22+3×23+…+n×2n.② ①-②得-Bn=1+2+22+…+2n-1-n·2n=2n-1-n·2n. 從而Bn=1+(n-1)·2n. 考

42、點二 數(shù)列的綜合應用 1.(2018江蘇,14,5分)已知集合A={x|x=2n-1,n∈N*},B={x|x=2n,n∈N*}.將A∪B的所有元素從小到大依次排列構成一個數(shù)列{an}.記Sn為數(shù)列{an}的前n項和,則使得Sn>12an+1成立的n的最小值為    .? 答案 27 2.(2017江蘇,19,16分)對于給定的正整數(shù)k,若數(shù)列{an}滿足:an-k+an-k+1+…+an-1+an+1+…+an+k-1+an+k=2kan對任意正整數(shù)n(n>k)總成立,則稱數(shù)列{an}是“P(k)數(shù)列”. (1)證明:等差數(shù)列{an}是“P(3)數(shù)列”; (2)若數(shù)列{an}既是“

43、P(2)數(shù)列”,又是“P(3)數(shù)列”,證明:{an}是等差數(shù)列. 證明 (1)因為{an}是等差數(shù)列,設其公差為d,則an=a1+(n-1)d, 從而,當n≥4時,an-k+an+k=a1+(n-k-1)d+a1+(n+k-1)d=2a1+2(n-1)d=2an,k=1,2,3, 所以an-3+an-2+an-1+an+1+an+2+an+3=6an, 因此等差數(shù)列{an}是“P(3)數(shù)列”. (2)數(shù)列{an}既是“P(2)數(shù)列”,又是“P(3)數(shù)列”,因此, 當n≥3時,an-2+an-1+an+1+an+2=4an,① 當n≥4時,an-3+an-2+an-1+an+1+a

44、n+2+an+3=6an.② 由①知,an-3+an-2=4an-1-(an+an+1),③ an+2+an+3=4an+1-(an-1+an).④ 將③④代入②,得an-1+an+1=2an,其中n≥4, 所以a3,a4,a5,…是等差數(shù)列,設其公差為d'. 在①中,取n=4,則a2+a3+a5+a6=4a4,所以a2=a3-d', 在①中,取n=3,則a1+a2+a4+a5=4a3,所以a1=a3-2d', 所以數(shù)列{an}是等差數(shù)列. 3.(2016四川,19,12分)已知數(shù)列{an}的首項為1,Sn為數(shù)列{an}的前n項和,Sn+1=qSn+1,其中q>0,n∈N*.

45、 (1)若a2,a3,a2+a3成等差數(shù)列,求數(shù)列{an}的通項公式; (2)設雙曲線x2-y2an2=1的離心率為en,且e2=2,求e12+e22+…+en2. 答案 (1)由已知,Sn+1=qSn+1,Sn+2=qSn+1+1,兩式相減得到an+2=qan+1,n≥1. 又由S2=qS1+1得到a2=qa1, 故an+1=qan對所有n≥1都成立. 所以,數(shù)列{an}是首項為1,公比為q的等比數(shù)列. 從而an=qn-1. 由a2,a3,a2+a3成等差數(shù)列,可得2a3=a2+a2+a3, 所以a3=2a2,故q=2. 所以an=2n-1(n∈N*). (2)由(1)可

46、知,an=qn-1. 所以雙曲線x2-y2an2=1的離心率en=1+an2=1+q2(n-1). 由e2=1+q2=2解得q=3. 所以,e12+e22+…+en2 =(1+1)+(1+q2)+…+[1+q2(n-1)] =n+[1+q2+…+q2(n-1)] =n+q2n-1q2-1 =n+12(3n-1). 4.(2015天津,18,13分)已知{an}是各項均為正數(shù)的等比數(shù)列,{bn}是等差數(shù)列,且a1=b1=1,b2+b3=2a3,a5-3b2=7. (1)求{an}和{bn}的通項公式; (2)設cn=anbn,n∈N*,求數(shù)列{cn}的前n項和. 答案 (1

47、)設數(shù)列{an}的公比為q,數(shù)列{bn}的公差為d,由題意知q>0.由已知,有2q2-3d=2,q4-3d=10,消去d,整理得q4-2q2-8=0.又因為q>0,解得q=2,所以d=2. 所以數(shù)列{an}的通項公式為an=2n-1,n∈N*;數(shù)列{bn}的通項公式為bn=2n-1,n∈N*. (2)由(1)有cn=(2n-1)·2n-1,設{cn}的前n項和為Sn,則 Sn=1×20+3×21+5×22+…+(2n-3)×2n-2+(2n-1)×2n-1, 2Sn=1×21+3×22+5×23+…+(2n-3)×2n-1+(2n-1)×2n, 上述兩式相減,得-Sn=1+22+23

48、+…+2n-(2n-1)×2n=2n+1-3-(2n-1)×2n=-(2n-3)×2n-3, 所以,Sn=(2n-3)·2n+3,n∈N*. 5.(2015浙江,17,15分)已知數(shù)列{an}和{bn}滿足a1=2,b1=1,an+1=2an(n∈N*),b1+12b2+13b3+…+1nbn=bn+1-1(n∈N*). (1)求an與bn; (2)記數(shù)列{anbn}的前n項和為Tn,求Tn. 答案 (1)由a1=2,an+1=2an,得an=2n(n∈N*). 由題意知, 當n=1時,b1=b2-1,故b2=2. 當n≥2時,1nbn=bn+1-bn,整理得bn+1n+1=b

49、nn, 所以bn=n(n∈N*). (2)由(1)知anbn=n·2n, 因此Tn=2+2·22+3·23+…+n·2n, 2Tn=22+2·23+3·24+…+n·2n+1, 所以Tn-2Tn=2+22+23+…+2n-n·2n+1. 故Tn=(n-1)2n+1+2(n∈N*). 6.(2014廣東,19,14分)設各項均為正數(shù)的數(shù)列{an}的前n項和為Sn,且Sn滿足Sn2-(n2+n-3)Sn-3(n2+n)=0,n∈N*. (1)求a1的值; (2)求數(shù)列{an}的通項公式; (3)證明:對一切正整數(shù)n,有1a1(a1+1)+1a2(a2+1)+…+1an(an+1

50、)<13. 答案 (1)∵Sn2-(n2+n-3)Sn-3(n2+n)=0, ∴令n=1,得a12+a1-6=0, 解得a1=2或a1=-3. 又an>0,∴a1=2. (2)由Sn2-(n2+n-3)Sn-3(n2+n)=0, 得[Sn-(n2+n)](Sn+3)=0, 又an>0,所以Sn+3≠0, 所以Sn=n2+n, 所以當n≥2時,an=Sn-Sn-1=n2+n-[(n-1)2+n-1]=2n, 又由(1)知,a1=2,符合上式, 所以an=2n. (3)證明:由(2)知,1an(an+1)=12n(2n+1), 所以1a1(a1+1)+1a2(a2+1)+

51、…+1an(an+1) =12×3+14×5+…+12n(2n+1) <12×3+13×5+15×7+…+1(2n-1)(2n+1) =16+1213-15+15-17+…+12n-1-12n+1 =16+1213-12n+1 <16+12×13=13. 7.(2013課標Ⅱ,17,12分)已知等差數(shù)列{an}的公差不為零,a1=25,且a1,a11,a13成等比數(shù)列. (1)求{an}的通項公式; (2)求a1+a4+a7+…+a3n-2. 解析 (1)設{an}的公差為d.由題意得,a112=a1a13, 即(a1+10d)2=a1(a1+12d). 于是d(2a1+

52、25d)=0. 又a1=25,所以d=0(舍去)或d=-2. 故an=-2n+27. (2)令Sn=a1+a4+a7+…+a3n-2. 由(1)知a3n-2=-6n+31,故{a3n-2}是首項為25,公差為-6的等差數(shù)列.從而 Sn=n2(a1+a3n-2) =n2(-6n+56) =-3n2+28n. 8.(2013山東,20,12分)設等差數(shù)列{an}的前n項和為Sn,且S4=4S2,a2n=2an+1. (1)求數(shù)列{an}的通項公式; (2)若數(shù)列{bn}滿足b1a1+b2a2+…+bnan=1-12n,n∈N*,求{bn}的前n項和Tn. 答案 (1)設等差數(shù)

53、列{an}的首項為a1,公差為d. 由S4=4S2,a2n=2an+1得4a1+6d=8a1+4d,a1+(2n-1)d=2a1+2(n-1)d+1, 解得a1=1,d=2. 因此an=2n-1,n∈N*. (2)由已知b1a1+b2a2+…+bnan=1-12n,n∈N*,得 當n=1時,b1a1=12; 當n≥2時,bnan=1-12n-1-12n-1=12n. 所以bnan=12n,n∈N*. 由(1)知,an=2n-1,n∈N*, 所以bn=2n-12n,n∈N*, 又Tn=12+322+523+…+2n-12n, 12Tn=122+323+…+2n-32n+2n

54、-12n+1, 兩式相減得12Tn=12+222+223+…+22n-2n-12n+1 =32-12n-1-2n-12n+1, 所以Tn=3-2n+32n. 【三年模擬】 時間:70分鐘 分值:95分 一、選擇題(每小題5分,共20分) 1.(2018福建廈門第一學期期末質檢,7)已知數(shù)列{an}滿足an+1+(-1)n+1an=2,則其前100項和為(  ) A.250 B.200 C.150 D.100 答案 D  2.(2020屆河南商丘模擬,6)對于函數(shù)y=f(x),部分x與y的對應值如下表: x 1 2 3 4 5 6 7 8 9 y 7

55、 4 5 8 1 3 5 2 6 數(shù)列{xn}滿足x1=2,且對任意n∈N*,點(xn,xn+1)都在函數(shù)y=f(x)的圖象上,則x1+x2+x3+…+x2019的值為(  ) A.9408 B.9422 C.9424 D.9428 答案 B  3.(2020屆福建福州模擬,10)已知數(shù)列{an}滿足a1=1,an+1=(n+1)an22an2+4nan+n2,則a8=(  ) A.8964-2 B.8932-2 C.8916-2 D.897-2 答案 A  4.(2019河北衡水中學第一次摸底,12)已知函數(shù)f(x)=mx-2017,x≥2019,3m2018

56、+1x-2020,x<2019,數(shù)列{an}滿足:an=f(n),n∈N*,且{an}是單調遞增數(shù)列,則實數(shù)m的取值范圍是(  ) A.(1,2] B.(1,2) C.(2,+∞) D.(1,+∞) 答案 C  二、解答題(共75分) 5.(2019安徽黃山畢業(yè)班第二次質量檢測,17)已知數(shù)列nan-1的前n項和Sn=n,n∈N*. (1)求數(shù)列{an}的通項公式; (2)令bn=2n+1(an-1)2(an+1-1)2,數(shù)列{bn}的前n項和為Tn,求證:對任意的n∈N*,都有Tn<1. 答案 (1)因為Sn=n,① 所以當n≥2時,Sn-1=n-1,② 由①-②得

57、nan-1=1,故an=n+1, 又因為a1=2適合上式, 所以an=n+1(n∈N*). (2)證明:由(1)知,bn=2n+1(an-1)2(an+1-1)2=2n+1n2(n+1)2=1n2-1(n+1)2, 所以Tn=112-122+122-132+…+1n2-1(n+1)2=1-1(n+1)2. 所以Tn<1. 6.(2020屆皖江名校聯(lián)盟第一次聯(lián)考,17)已知數(shù)列{an}滿足a1=1,n2an+1-(n+1)2an=2n2(n+1)2,n∈N*,設bn=ann2. (1)求數(shù)列{bn}的通項公式; (2)求數(shù)列1bnbn+1的前n項和Sn. 答案 (1)因為n2a

58、n+1-(n+1)2an=2n2(n+1)2,n∈N*, 所以an+1(n+1)2-ann2=2(n∈N*),又bn=ann2, 所以數(shù)列{bn}是等差數(shù)列. 因為a1=1,所以bn=ann2=a112+2(n-1)=2n-1(n∈N*).(6分) (2)因為1bnbn+1=1(2n-1)(2n+1)=1212n-1-12n+1, 所以Sn=12×11-13+13-15+…+12n-1-12n+1=12×1-12n+1=n2n+1.(12分) 7.(2020屆新疆哈密月考,17)已知數(shù)列{an},{bn},其中a1=5,b1=-1,且滿足an=12(3an-1-bn-1),bn=-

59、12(an-1-3bn-1),n∈N*,n≥2. (1)求證:數(shù)列{an-bn}為等比數(shù)列; (2)求數(shù)列3×2n-1anan+1的前n項和Sn. 答案 (1)證明:an-bn=12(3an-1-bn-1)--12(an-1-3bn-1)=2(an-1-bn-1),n∈N*,n≥2, 又a1-b1=5-(-1)=6,所以{an-bn}是首項為6,公比為2的等比數(shù)列. (2)由(1)知,an-bn=3×2n.① 因為an+bn=12(3an-1-bn-1)+-12(an-1-3bn-1)=an-1+bn-1,n∈N*,n≥2, 又a1+b1=5+(-1)=4,所以{an+bn}為常

60、數(shù)列且an+bn=4.② 聯(lián)立①②得an=3×2n-1+2, 故3×2n-1anan+1=3×2n-1(3×2n-1+2)(3×2n+2)=13×2n-1+2-13×2n+2. 所以Sn=13×20+2-13×21+2+13×21+2-13×22+2+…+13×2n-1+2-13×2n+2=15-13×2n+2. 8.(2019湖南百所重點名校大聯(lián)考,17)已知數(shù)列{an}滿足:a1+a2+a3+…+an=n-an(n=1,2,3,…). (1)求證:數(shù)列{an-1}是等比數(shù)列; (2)令bn=(2-n)(an-1)(n=1,2,3,…),如果對任意n∈N*,都有bn+14t≤t2

61、,求實數(shù)t的取值范圍. 答案 (1)證明:由a1+a2+a3+…+an=n-an,① 得a1+a2+a3+…+an+1=n+1-an+1,② ②-①可得2an+1-an=1. 即an+1-1=12(an-1), 又a1-1=-12, ∴{an-1}是以-12為首項,12為公比的等比數(shù)列. (2)由(1)可得an=1-12n, 故bn=n-22n. 設數(shù)列{bn}的第r項最大, 則有r-22r≥r-12r+1,r-22r≥r-32r-1,即2(r-2)≥r-1,r-2≥2(r-3). ∴3≤r≤4, 故數(shù)列{bn}的最大項是b3或b4,且b3=b4=18. ∵對任意n∈

62、N*,都有bn+14t≤t2,即bn≤t2-14t對任意n∈N*恒成立, ∴18≤t2-14t,解得t≥12或t≤-14. ∴實數(shù)t的取值范圍是12,+∞∪-∞,-14. 9.(2020屆山東夏季高考模擬,17)在①b1+b3=a2,②a4=b4,③S5=-25這三個條件中任選一個,補充在下面問題中,若問題中的k存在,求出k的值;若k不存在,說明理由.設等差數(shù)列{an}的前n項和為Sn,{bn}是等比數(shù)列,    ,b1=a5,b2=3,b5=-81,是否存在k,使Sk>Sk+1且Sk+1

63、{bn}的公比為q,則q3=b5b2=-27,解得q=-3, 所以bn=-(-3)n-1. 從而a5=b1=-1,a2=b1+b3=-10, 由于{an}是等差數(shù)列,所以an=3n-16. 因為Sk>Sk+1且Sk+10, 所以滿足題意的k存在,當且僅當3(k+1)-16<0,3(k+2)-16>0,解得k=4. 方案二:選條件②. 設{bn}的公比為q,則q3=b5b2=-27,解得q=-3, 所以bn=-(-3)n-1. 從而a5=b1=-1,a4=b4=27,所以{an}的公差d=-28. Sk>Sk+1且Sk+1

64、于ak+1<0且ak+2>0,此時d=ak+2-ak+1>0,與d=-28矛盾,所以滿足題意的k不存在. 方案三:選條件③. 設{bn}的公比為q,則q3=b5b2=-27,解得q=-3, 所以bn=-(-3)n-1. 從而a5=b1=-1, 由{an}是等差數(shù)列得S5=5(a1+a5)2, 由S5=-25得a1=-9. 所以an=2n-11. 因為Sk>Sk+1且Sk+10, 所以滿足題意的k存在,當且僅當2(k+1)-11<0,2(k+2)-11>0,解得k=4. 10.(2020屆江西高安模擬,20)已知函數(shù)f(x)滿足f(x+

65、y)=f(x)·f(y)且f(1)=12. (1)當n∈N*時,求f(n)的表達式; (2)設an=n·f(n),n∈N*,求證:a1+a2+a3+…+an<2. 答案 (1)∵f(x+y)=f(x)·f(y)且f(1)=12, ∴令x=n,y=1,得f(n+1)=f(n)·f(1)=12f(n), ∵n∈N*, ∴數(shù)列{f(n)}是以f(1)=12為首項,12為公比的等比數(shù)列, ∴f(n)=12·12n-1=12n(n∈N*). (2)證明:設Tn=a1+a2+…+an, ∵an=n·f(n)=n·12n(n∈N*), ∴Tn=12+2×122+3×123+…+n×12n

66、, 則12Tn=122+2×123+3×124+…+(n-1)×12n+n×12n+1,兩式相減,得12Tn=12+122+123+…+12n-n×12n+1=121-12n1-12-n×12n+1=1-12n-n×12n+1=1-2+n2n+1, ∴Tn=2-2+n2n<2. 11.(2020屆河南洛陽聯(lián)考,19)已知數(shù)列{an}滿足a1=12,2an+1an=1+1n(n∈N*). (1)求數(shù)列{an}的通項公式; (2)求數(shù)列{an}的前n項和Tn; (3)設數(shù)列{bn}滿足bn=-2n-10,n=2k,nan,n=2k-1,其中k∈N*.記{bn}的前n項和為Sn,是否存在正整數(shù)m,p(m

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對上載內容本身不做任何修改或編輯。若文檔所含內容侵犯了您的版權或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!