《(全國通用)高考數(shù)學大一輪復習 第八章 立體幾何初步 第4節(jié) 直線、平面平行的判定及其性質(zhì)課件 文 新人教A》由會員分享,可在線閱讀,更多相關《(全國通用)高考數(shù)學大一輪復習 第八章 立體幾何初步 第4節(jié) 直線、平面平行的判定及其性質(zhì)課件 文 新人教A(34頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、第第4節(jié)直線、平面平行的判定及其性質(zhì)節(jié)直線、平面平行的判定及其性質(zhì)最新考綱1.以立體幾何的定義、公理和定理為出發(fā)點,認識和理解空間中線面平行的有關性質(zhì)與判定定理;2.能運用公理、定理和已獲得的結論證明一些有關空間圖形的平行關系的簡單命題.1.直線與平面平行(1)直線與平面平行的定義直線l與平面沒有公共點,則稱直線l與平面平行.知知 識識 梳梳 理理(2)判定定理與性質(zhì)定理一條直線與此平面內(nèi)的一條直線文字語言圖形表示符號表示判定定理平面外 平行,則該直線平行于此平面a,b,aba性質(zhì)定理一條直線和一個平面平行,則過這條直線的任一平面與此平面的 與該直線平行a,a,bab交線2.平面與平面平行(1
2、)平面與平面平行的定義沒有公共點的兩個平面叫做平行平面.(2)判定定理與性質(zhì)定理文字語言圖形表示符號表示判定定理一個平面內(nèi)的兩條 與另一個平面平行,則這兩個平面平行a,b,abP,a,b性質(zhì)定理兩個平面平行,則其中一個平面內(nèi)的直線 于另一個平面,aa如果兩個平行平面同時和第三個平面相交,那么它們的 平行,a,bab相交直線平行交線 常用結論與微點提醒1.平行關系中的兩個重要結論(1)垂直于同一條直線的兩個平面平行,即若a,a,則.(2)平行于同一平面的兩個平面平行,即若,則.2.線線、線面、面面平行間的轉(zhuǎn)化1.思考辨析(在括號內(nèi)打“”或“”)(1)若一條直線和平面內(nèi)一條直線平行,那么這條直線和
3、這個平面平行.()(2)若直線a平面,P,則過點P且平行于直線a的直線有無數(shù)條.()(3)如果一個平面內(nèi)的兩條直線平行于另一個平面,那么這兩個平面平行.()(4)如果兩個平面平行,那么分別在這兩個平面內(nèi)的兩條直線平行或異面.()診診 斷斷 自自 測測解析(1)若一條直線和平面內(nèi)的一條直線平行,那么這條直線和這個平面平行或在平面內(nèi),故(1)錯誤.(2)若a,P,則過點P且平行于a的直線只有一條,故(2)錯誤.(3)如果一個平面內(nèi)的兩條直線平行于另一個平面,則這兩個平面平行或相交,故(3)錯誤.答案(1)(2)(3)(4)2.(必修2P61A組T1(1)改編)下列命題中正確的是()A.若a,b是兩
4、條直線,且ab,那么a平行于經(jīng)過b的任何平面B.若直線a和平面滿足a,那么a與內(nèi)的任何直線平行C.平行于同一條直線的兩個平面平行D.若直線a,b和平面滿足ab,a,b,則b解析根據(jù)線面平行的判定與性質(zhì)定理知,選D.答案D3.設,是兩個不同的平面,m是直線且m.“m”是“”的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件解析當m時,可能,也可能與相交.當時,由m可知,m.“m”是“”的必要不充分條件.答案B4.(2018長沙模擬)已知m,n是兩條不同的直線,是三個不同的平面,則下列命題中正確的是()A.m,n,則mn B.mn,m,則nC.m,m,則 D
5、.,則解析A中,m與n平行、相交或異面,A不正確;B中,n或n,B不正確;根據(jù)線面垂直的性質(zhì),C正確;D中,或與相交于一條直線,D錯.答案C5.(必修2P56練習2改編)如圖,正方體ABCDA1B1C1D1中,E為DD1的中點,則BD1與平面AEC的位置關系為_.解析連接BD,設BDACO,連接EO,在BDD1中,O為BD的中點,E為DD1的中點,所以EO為BDD1的中位線,則BD1EO,而BD1平面ACE,EO平面ACE,所以BD1平面ACE.答案平行考點一與線、面平行相關命題的判定考點一與線、面平行相關命題的判定【例1】 (1)(2018成都診斷)已知m,n是空間中兩條不同的直線,是兩個不
6、同的平面,且m,n.有下列命題:若,則mn;若,則m;若l,且ml,nl,則;若l,且ml,mn,則.其中真命題的個數(shù)是()A.0 B.1 C.2 D.3解析(1)若,則mn或m,n異面,不正確;若,根據(jù)平面與平面平行的性質(zhì),可得m,正確;若l,且ml,nl,則與不一定垂直,不正確;若l,且ml,mn,l與n不一定相交,不能推出,不正確.(2)如圖,對于,連接MN,AC,則MNAC,連接AM,CN,易得AM,CN交于點P,即MN面APC,所以MN面APC是錯誤的.對于,由知M,N在平面APC內(nèi),由題易知ANC1Q,且AN平面APC,C1Q平面APC.所以C1Q面APC是正確的.對于,由知,A,
7、P,M三點共線是正確的.對于,由知MN面APC,又MN面MNQ,所以面MNQ面APC是錯誤的.答案(1)B(2)規(guī)律方法1.判斷與平行關系相關命題的真假,必須熟悉線、面平行關系的各個定義、定理,無論是單項選擇還是含選擇項的填空題,都可以從中先選出最熟悉最容易判斷的選項先確定或排除,再逐步判斷其余選項.2.(1)結合題意構造或繪制圖形,結合圖形作出判斷.(2)特別注意定理所要求的條件是否完備,圖形是否有特殊情況,通過舉反例否定結論或用反證法推斷命題是否正確.【訓練1】 (1)設m,n是不同的直線,是不同的平面,且m,n,則“”是“m且n”的()A.充分不必要條件 B.必要不充分條件C.充要條件
8、D.既不充分也不必要條件(2)(2016全國卷),是兩個平面,m,n是兩條直線,有下列四個命題:如果mn,m,n,那么.如果m,n,那么mn.如果,m,那么m.如果mn,那么m與所成的角和n與所成的角相等.其中正確的命題有_(填寫所有正確命題的編號).解析(1)若m,n,則m且n;反之若m,n,m且n,則與相交或平行,即“”是“m且n”的充分不必要條件.(2)當mn,m,n時,兩個平面的位置關系不確定,故錯誤,經(jīng)判斷知均正確,故正確答案為.答案(1)A(2)考點二直線與平面平行的判定與性質(zhì)考點二直線與平面平行的判定與性質(zhì)(多維探究多維探究)命題角度命題角度1直線與平面平行的判定直線與平面平行的
9、判定【例21】 (2016全國卷)如圖,四棱錐PABCD中,PA底面ABCD,ADBC,ABADAC3,PABC4,M為線段AD上一點,AM2MD,N為PC的中點.(1)證明:MN平面PAB;(2)求四面體NBCM的體積.又ADBC,故TN綉AM,所以四邊形AMNT為平行四邊形,于是MNAT.因為AT平面PAB,MN平面PAB,所以MN平面PAB.(2)解因為PA平面ABCD,N為PC的中點,命題角度命題角度2直線與平面平行性質(zhì)定理的應用直線與平面平行性質(zhì)定理的應用【例22】 (2018青島質(zhì)檢)如圖,五面體ABCDE,四邊形ABDE是矩形,ABC是正三角形,AB1,AE2,F(xiàn)是線段BC上一點
10、,直線BC與平面ABD所成角為30,CE平面ADF.(1)試確定F的位置;(2)求三棱錐ACDF的體積.解(1)連接BE交AD于點O,連接OF,CE平面ADF,CE平面BEC,平面ADF平面BECOF,CEOF.O是BE的中點,F(xiàn)是BC的中點.(2)BC與平面ABD所成角為30,BCAB1,規(guī)律方法1.利用判定定理判定線面平行,關鍵是找平面內(nèi)與已知直線平行的直線.常利用三角形的中位線、平行四邊形的對邊或過已知直線作一平面找其交線.2.在解決線面、面面平行的判定時,一般遵循從“低維”到“高維”的轉(zhuǎn)化,即從“線線平行”到“線面平行”,再到“面面平行”;而在應用性質(zhì)定理時,其順序恰好相反.【訓練2】
11、 (2017江蘇卷)如圖,在三棱錐ABCD中,ABAD,BCBD,平面ABD平面BCD,點E,F(xiàn)(E與A,D不重合)分別在棱AD,BD上,且EFAD.求證:(1)EF平面ABC;(2)ADAC.證明(1)在平面ABD內(nèi),ABAD,EFAD,則ABEF.AB平面ABC,EF平面ABC,EF平面ABC.(2)BCBD,平面ABD平面BCDBD,平面ABD平面BCD,BC平面BCD,BC平面ABD.AD平面ABD,BCAD.又ABAD,BC,AB平面ABC,BCABB,AD平面ABC,又因為AC平面ABC,ADAC.考點三面面平行的判定與性質(zhì)考點三面面平行的判定與性質(zhì)(典例遷移典例遷移)【例3】 (
12、經(jīng)典母題)如圖所示,在三棱柱ABCA1B1C1中,E,F(xiàn),G,H分別是AB,AC,A1B1,A1C1的中點,求證:(1)B,C,H,G四點共面;(2)平面EFA1平面BCHG.證明(1)G,H分別是A1B1,A1C1的中點,GH是A1B1C1的中位線,則GHB1C1.又B1C1BC,GHBC,B,C,H,G四點共面.(2)E,F(xiàn)分別為AB,AC的中點,EFBC,EF平面BCHG,BC平面BCHG,EF平面BCHG.又G,E分別為A1B1,AB的中點,A1B1綉AB,A1G綉EB,四邊形A1EBG是平行四邊形,A1EGB.A1E平面BCHG,GB平面BCHG,A1E平面BCHG.又A1EEFE,
13、平面EFA1平面BCHG.【遷移探究1】 在本例中,若將條件“E,F(xiàn),G,H分別是AB,AC,A1B1,A1C1的中點”變?yōu)椤癉1,D分別為B1C1,BC的中點”,求證:平面A1BD1平面AC1D.證明如圖所示,連接A1C交AC1于點M,四邊形A1ACC1是平行四邊形,M是A1C的中點,連接MD,D為BC的中點,A1BDM.A1B平面A1BD1,DM 平面A1BD1,DM平面A1BD1,又由三棱柱的性質(zhì)知,D1C1綉B(tài)D,四邊形BDC1D1為平行四邊形,DC1BD1.又DC1 平面A1BD1,BD1平面A1BD1,DC1平面A1BD1,又DC1DMD,DC1,DM平面AC1D,因此平面A1BD
14、1平面AC1D. 解連接A1B交AB1于O,連接OD1.由平面BC1D平面AB1D1,且平面A1BC1平面BC1DBC1,平面A1BC1平面AB1D1D1O,規(guī)律方法1.判定面面平行的主要方法(1)利用面面平行的判定定理.(2)線面垂直的性質(zhì)(垂直于同一直線的兩平面平行).2.面面平行條件的應用(1)兩平面平行,分析構造與之相交的第三個平面,交線平行.(2)兩平面平行,其中一個平面內(nèi)的任意一條直線與另一個平面平行.提醒利用面面平行的判定定理證明兩平面平行,需要說明是在一個平面內(nèi)的兩條直線是相交直線.【訓練3】 (2018東北三省四校聯(lián)考)如圖,在三棱柱ABCA1B1C1中,AA1底面ABC,A
15、BAC,ACAA1,E,F(xiàn)分別是棱BC,CC1的中點.(1)若線段AC上存在點D滿足平面DEF平面ABC1,試確定點D的位置,并說明理由;(2)證明:EFA1C.(1)解點D是AC的中點,理由如下:平面DEF平面ABC1,平面ABC平面DEFDE,平面ABC平面ABC1AB,ABDE,在ABC中,E是BC的中點,D是AC的中點.(2)證明三棱柱ABCA1B1C1中,ACAA1,四邊形A1ACC1是菱形,A1CAC1.AA1底面ABC,AB平面ABC,AA1AB,又ABAC,AA1ACA,AB平面AA1C1C,A1C平面AA1C1C,ABA1C.又ABAC1A,從而A1C平面ABC1,又BC1平面ABC1,A1CBC1.又E,F(xiàn)分別是BC,CC1的中點,EFBC1,從而EFA1C.