九九热最新网址,777奇米四色米奇影院在线播放,国产精品18久久久久久久久久,中文有码视频,亚洲一区在线免费观看,国产91精品在线,婷婷丁香六月天

高中數(shù)學(xué) 第3章 數(shù)系的擴充與復(fù)數(shù)的引入階段復(fù)習(xí)課學(xué)案 新人教A版選修12

上傳人:仙*** 文檔編號:39182135 上傳時間:2021-11-10 格式:DOC 頁數(shù):5 大?。?17KB
收藏 版權(quán)申訴 舉報 下載
高中數(shù)學(xué) 第3章 數(shù)系的擴充與復(fù)數(shù)的引入階段復(fù)習(xí)課學(xué)案 新人教A版選修12_第1頁
第1頁 / 共5頁
高中數(shù)學(xué) 第3章 數(shù)系的擴充與復(fù)數(shù)的引入階段復(fù)習(xí)課學(xué)案 新人教A版選修12_第2頁
第2頁 / 共5頁
高中數(shù)學(xué) 第3章 數(shù)系的擴充與復(fù)數(shù)的引入階段復(fù)習(xí)課學(xué)案 新人教A版選修12_第3頁
第3頁 / 共5頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《高中數(shù)學(xué) 第3章 數(shù)系的擴充與復(fù)數(shù)的引入階段復(fù)習(xí)課學(xué)案 新人教A版選修12》由會員分享,可在線閱讀,更多相關(guān)《高中數(shù)學(xué) 第3章 數(shù)系的擴充與復(fù)數(shù)的引入階段復(fù)習(xí)課學(xué)案 新人教A版選修12(5頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、 第三課 數(shù)系的擴充與復(fù)數(shù)的引入 [核心速填] 1.復(fù)數(shù)的有關(guān)概念及分類 (1)代數(shù)形式為z=a+bi(a,b∈R),其中實部為a,虛部為b; (2)共軛復(fù)數(shù)為z=a-bi(a,b∈R). (3)復(fù)數(shù)的分類 ①若 z=a+bi(a,b∈R)是實數(shù),則z與的關(guān)系為z=. ②若z=a+bi(a,b∈R)是純虛數(shù),則z與的關(guān)系為z+=0(z≠0). 2.與復(fù)數(shù)運算有關(guān)的問題 (1)復(fù)數(shù)相等的充要條件 a+bi=c+di?(a,b,c,d∈R). (2)復(fù)數(shù)的模 復(fù)數(shù)z=a+bi的模|z|=,且z=|z|2=a2+b2. (3)復(fù)數(shù)的四則運算,若兩個復(fù)數(shù)z1=a1+b1

2、i,z2=a2+b2i(a1,b1,a2,b2∈R) ①加法:z1+z2=(a1+a2)+(b1+b2)i; ②減法:z1-z2=(a1-a2)+(b1-b2)i; ③乘法:z1z2=(a1a2-b1b2)+(a1b2+a2b1)i; ④除法:==+i(z2≠0); 3.復(fù)數(shù)的幾何意義 (1)任何一個復(fù)數(shù)z=a+bi一一對應(yīng)著復(fù)平面內(nèi)一個點Z(a,b),也一一對應(yīng)著一個從原點出發(fā)的向量. (2)復(fù)數(shù)加法的幾何意義 若復(fù)數(shù)z1、z2對應(yīng)的向量1、2不共線,則復(fù)數(shù)z1+z2是以1、2為兩鄰邊的平行四邊形的對角線所對應(yīng)的復(fù)數(shù). (3)復(fù)數(shù)減法的幾何意義 復(fù)數(shù)z1-z2是連接向量1

3、、2的終點,并指向Z1的向量所對應(yīng)的復(fù)數(shù). [題型探究] 復(fù)數(shù)的概念  當實數(shù)a為何值時,z=a2-2a+(a2-3a+2)i. (1)為實數(shù);(2)為純虛數(shù); (3)對應(yīng)的點在第一象限內(nèi); (4)復(fù)數(shù)z對應(yīng)的點在直線x-y=0. 【導(dǎo)學(xué)號:48662162】 [解] (1)z∈R?a2-3a+2=0,解得a=1或a=2. (2)z為純虛數(shù), 即故a=0. (3)z對應(yīng)的點在第一象限,則 ∴∴a<0,或a>2. ∴a的取值范圍是(-∞,0)∪(2,+∞). (4)依題設(shè)(a2-2a)-(a2-3a+2)=0,∴a=2. [規(guī)律方法] 處理復(fù)數(shù)概念問題的兩個注

4、意點 (1)當復(fù)數(shù)不是a+bi(a,b∈R)的形式時,要通過變形化為a+bi的形式,以便確定其實部和虛部. (2)求解時,要注意實部和虛部本身對變量的要求,否則容易產(chǎn)生增根. [跟蹤訓(xùn)練] 1.(1)若復(fù)數(shù)z=1+i(i為虛數(shù)單位),是z的共軛復(fù)數(shù),則z2+2的虛部為(  ) A.0       B.-1 C.1 D.-2 (2)設(shè)i是虛數(shù)單位,若復(fù)數(shù)a-(a∈R)是純虛數(shù),則a的值為(  ) A.-3 B.-1 C.1 D.3 (1)A (2)D [(1)因為z=1+i,所以=1-i,所以z2+2=(1+i)2+(1-i)2=2i+(-2i)=0.故選A. (2

5、)因為a-=a-=a-=(a-3)-i,由純虛數(shù)的定義,知a-3=0,所以a=3.] 復(fù)數(shù)的幾何意義  (1)在復(fù)平面內(nèi),復(fù)數(shù)(i是虛數(shù)單位)所對應(yīng)的點位于(  ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 (2)已知復(fù)數(shù)z1=2+3i,z2=a+bi,z3=1-4i,它們在復(fù)平面上所對應(yīng)的點分別為A,B,C.若=2+,則a=________,b=________. [解析] (1)== =-+i,∴復(fù)數(shù)對應(yīng)的點位于第二象限. (2)∵=2+ ∴1-4i=2(2+3i)+(a+bi) 即∴] [答案] (1)B (2)-3 -10 [跟蹤訓(xùn)練]

6、2.若i為虛數(shù)單位,如31圖中復(fù)平面內(nèi)點Z表示復(fù)數(shù)z,則表示復(fù)數(shù)的點是(  ) 圖31 A.E B.F C.G D.H D [∵點Z(3,1)對應(yīng)的復(fù)數(shù)為z, ∴z=3+i,====2-i,該復(fù)數(shù)對應(yīng)的點的坐標是(2,-1),即H點.] 復(fù)數(shù)的四則運算  (1) 已知是z的共軛復(fù)數(shù),若zi+2=2z,則z=(  ) A.1+i B.1-i C.-1+i D.-1-i (2)已知復(fù)數(shù)z1=2-3i,z2=,則=(  ) A.-4+3i B.3+4i C.3-4i D.4-3i (1)[解析] 設(shè)z=a+bi(a,b∈R),則=a-bi,代入zi+2=

7、2z中得,(a+bi)(a-bi)i+2=2(a+bi),∴2+(a2+b2)i=2a+2bi, 由復(fù)數(shù)相等的條件得, ∴∴z=1+i,故選A. (2)== =-=4-3i. [答案] (1)A (2)D 母題探究:1.本例題(1)中已知條件不變,則=________. i [由解析知z=1+i,所以=1-i. ==i.] 2.本例題(2)中已知條件不變,則z1z2=__________. -i [z1z2= == ==-i.] [規(guī)律方法] (1)復(fù)數(shù)的乘法運算與多項式的乘法運算類似; (2)復(fù)數(shù)的除法運算,將分子分母同時乘以分母的共軛復(fù)數(shù),最后整理成a+bi

8、(a,b∈R)的結(jié)構(gòu)形式. (3)利用復(fù)數(shù)相等,可實現(xiàn)復(fù)數(shù)問題的實數(shù)化. 轉(zhuǎn)化與化歸思想  已知z是復(fù)數(shù),z+2i,均為實數(shù),且(z+ai)2的對應(yīng)點在第一象限,求實數(shù)a的取值范圍. 【導(dǎo)學(xué)號:48662164】 [解] 設(shè)z=x+yi(x,y∈R), 則z+2i=x+(y+2)i為實數(shù),∴y=-2. 又==(x-2i)(2+i) =(2x+2)+(x-4)i為實數(shù), ∴x=4.∴z=4-2i,又∵(z+ai)2=(4-2i+ai)2=(12+4a-a2)+8(a-2)i在第一象限. ∴,解得2

9、設(shè)出復(fù)數(shù)z的代數(shù)形式,即z=x+yi(x,y∈R),則涉及復(fù)數(shù)的分類、幾何意義、模的運算、四則運算、共軛復(fù)數(shù)等問題,都可以轉(zhuǎn)化為實數(shù)x,y應(yīng)滿足的條件,即復(fù)數(shù)問題實數(shù)化的思想是本章的主要思想方法. [跟蹤訓(xùn)練] 3.已知x,y為共軛復(fù)數(shù),且(x+y)2-3xyi=4-6i,求x,y. [解] 設(shè)x=a+bi(a,b∈R),則y=a-bi. 又(x+y)2-3xyi=4-6i, ∴4a2-3(a2+b2)i=4-6i, ∴∴,或 或或∴ 或或或 6EDBC3191F2351DD815FF33D4435F3756EDBC3191F2351DD815FF33D4435F3756EDBC3191F2351DD815FF33D4435F3756EDBC3191F2351DD815FF33D4435F3756EDBC3191F2351DD815FF33D4435F3756EDBC3191F2351DD815FF33D4435F375

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!