《高中數(shù)學 第二章 參數(shù)方程 一 曲線的參數(shù)方程 第1課時 參數(shù)方程的概念、參數(shù)方程與普通方程的互化高效演練 新人教A版選修44》由會員分享,可在線閱讀,更多相關(guān)《高中數(shù)學 第二章 參數(shù)方程 一 曲線的參數(shù)方程 第1課時 參數(shù)方程的概念、參數(shù)方程與普通方程的互化高效演練 新人教A版選修44(5頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、我 國 經(jīng) 濟 發(fā) 展 進 入 新 常 態(tài) , 需 要 轉(zhuǎn) 變 經(jīng) 濟 發(fā) 展 方 式 , 改 變 粗 放 式 增 長 模 式 , 不 斷 優(yōu) 化 經(jīng) 濟 結(jié) 構(gòu) , 實 現(xiàn) 經(jīng) 濟 健 康 可 持 續(xù) 發(fā) 展 進 區(qū) 域 協(xié) 調(diào) 發(fā) 展 , 推 進 新 型 城 鎮(zhèn) 化 , 推 動 城 鄉(xiāng) 發(fā) 展 一 體 化 因 : 我 國 經(jīng) 濟 發(fā) 展 還 面 臨 區(qū) 域 發(fā) 展 不 平 衡 、 城 鎮(zhèn) 化 水 平 不 高 、 城 鄉(xiāng) 發(fā) 展 不 平 衡 不 協(xié) 調(diào) 等 現(xiàn) 實 挑 戰(zhàn) 。 我 國 經(jīng) 濟 發(fā) 展 進 入 新 常 態(tài) , 需 要 轉(zhuǎn) 變 經(jīng) 濟 發(fā) 展 方 式 , 改 變 粗 放 式 增
2、長 模 式 , 不 斷 優(yōu) 化 經(jīng) 濟 結(jié) 構(gòu) , 實 現(xiàn) 經(jīng) 濟 健 康 可 持 續(xù) 發(fā) 展 進 區(qū) 域 協(xié) 調(diào) 發(fā) 展 , 推 進 新 型 城 鎮(zhèn) 化 , 推 動 城 鄉(xiāng) 發(fā) 展 一 體 化 因 : 我 國 經(jīng) 濟 發(fā) 展 還 面 臨 區(qū) 域 發(fā) 展 不 平 衡 、 城 鎮(zhèn) 化 水 平 不 高 、 城 鄉(xiāng) 發(fā) 展 不 平 衡 不 協(xié) 調(diào) 等 現(xiàn) 實 挑 戰(zhàn) 。 第第 1 1 課時課時 參數(shù)方程的概念、參數(shù)方程與普通方程的互化參數(shù)方程的概念、參數(shù)方程與普通方程的互化 A 級 基礎(chǔ)鞏固 一、選擇題 1方程x1sin ,ysin 2(為參數(shù))所表示曲線經(jīng)過下列點中的( ) A(1,1) B.32
3、,12 C.32,32 D.2 32,12 解析: 當6時,x32,y32, 所以點32,32在方程x1sin ,ysin (為參數(shù))所表示的曲線上 答案:C 2曲線x1t2,yt1與x軸交點的直角坐標是( ) A(0,1) B(1,2) C(2,0) D(2,0) 解析:設(shè)與x軸交點的直角坐標為(x,y),令y0 得t1,代入x1t2,得x2, 所以曲線與x軸的交點的直角坐標為(2,0) 答案:C 3由方程x2y24tx2ty3t240(t為參數(shù))所表示的一族圓的圓心的軌跡方程為( ) A.x2t,yt(t為參數(shù)) B.x2t,yt(t為參數(shù)) C.x2t,yt(t為參數(shù)) D.x2t,yt
4、(t為參數(shù)) 解析:設(shè)(x,y)為所求軌跡上任一點 由x2y24tx2ty3t240 得: (x2t)2(yt)242t2.所以x2t,yt(t為參數(shù)) 答案:A 4參數(shù)方程x2sin2,y1cos 2(為參數(shù))化為普通方程是( ) 我 國 經(jīng) 濟 發(fā) 展 進 入 新 常 態(tài) , 需 要 轉(zhuǎn) 變 經(jīng) 濟 發(fā) 展 方 式 , 改 變 粗 放 式 增 長 模 式 , 不 斷 優(yōu) 化 經(jīng) 濟 結(jié) 構(gòu) , 實 現(xiàn) 經(jīng) 濟 健 康 可 持 續(xù) 發(fā) 展 進 區(qū) 域 協(xié) 調(diào) 發(fā) 展 , 推 進 新 型 城 鎮(zhèn) 化 , 推 動 城 鄉(xiāng) 發(fā) 展 一 體 化 因 : 我 國 經(jīng) 濟 發(fā) 展 還 面 臨 區(qū) 域 發(fā)
5、 展 不 平 衡 、 城 鎮(zhèn) 化 水 平 不 高 、 城 鄉(xiāng) 發(fā) 展 不 平 衡 不 協(xié) 調(diào) 等 現(xiàn) 實 挑 戰(zhàn) 。 我 國 經(jīng) 濟 發(fā) 展 進 入 新 常 態(tài) , 需 要 轉(zhuǎn) 變 經(jīng) 濟 發(fā) 展 方 式 , 改 變 粗 放 式 增 長 模 式 , 不 斷 優(yōu) 化 經(jīng) 濟 結(jié) 構(gòu) , 實 現(xiàn) 經(jīng) 濟 健 康 可 持 續(xù) 發(fā) 展 進 區(qū) 域 協(xié) 調(diào) 發(fā) 展 , 推 進 新 型 城 鎮(zhèn) 化 , 推 動 城 鄉(xiāng) 發(fā) 展 一 體 化 因 : 我 國 經(jīng) 濟 發(fā) 展 還 面 臨 區(qū) 域 發(fā) 展 不 平 衡 、 城 鎮(zhèn) 化 水 平 不 高 、 城 鄉(xiāng) 發(fā) 展 不 平 衡 不 協(xié) 調(diào) 等 現(xiàn) 實 挑 戰(zhàn) 。
6、 A2xy40 B2xy40 C2xy40,x2,3 D2xy40,x2,3 解析: 由x2sin2, 則x2,3,sin2x2,y112sin22sin22x4,即 2xy40. 故化為普通方程為 2xy40,x2,3 答案:D 5設(shè)曲線C的參數(shù)方程為x23cos ,y13sin (為參數(shù)),直線l的方程為x3y20,則曲線C上到直線l的距離為7 1010的點的個數(shù)為( ) A1 B2 C3 D4 解析:由x23cos ,y13sin 得(x2)2(y1)29. 曲線C表示以點(2,1)為圓心,以 3 為半徑的圓, 則圓心C(2,1)到直線l的距離d7107 10103, 所以直線與圓相交,
7、所以過圓心(2,1)與l平行的直線與圓的 2 個交點滿足題意,又3d7 1010,故滿足題意的點有 2 個 答案:B 二、填空題 6若xcos ,為參數(shù),則曲線x2(y1)21 的參數(shù)方程為_ 解析:把xcos 代入曲線x2(y1)21, 得 cos2(y1)21, 于是(y1)21cos2sin2,即y1sin . 由于參數(shù)的任意性, 可取y1sin , 因此,曲線x2(y1)21 的參數(shù)方程為 xcos ,y1sin (為參數(shù)) 答案:xcos y1sin (為參數(shù)) 我 國 經(jīng) 濟 發(fā) 展 進 入 新 常 態(tài) , 需 要 轉(zhuǎn) 變 經(jīng) 濟 發(fā) 展 方 式 , 改 變 粗 放 式 增 長 模
8、 式 , 不 斷 優(yōu) 化 經(jīng) 濟 結(jié) 構(gòu) , 實 現(xiàn) 經(jīng) 濟 健 康 可 持 續(xù) 發(fā) 展 進 區(qū) 域 協(xié) 調(diào) 發(fā) 展 , 推 進 新 型 城 鎮(zhèn) 化 , 推 動 城 鄉(xiāng) 發(fā) 展 一 體 化 因 : 我 國 經(jīng) 我 國 經(jīng) 濟 發(fā) 展 進 入 新 常 態(tài) , 需 要 轉(zhuǎn) 變 經(jīng) 濟 發(fā) 展 方 式 , 改 變 粗 放 式 增 長 模 式 , 不 斷 優(yōu) 化 經(jīng) 濟 結(jié) 構(gòu) , 實 現(xiàn) 經(jīng) 濟 健 康 可 持 續(xù) 發(fā) 展 進 區(qū) 域 協(xié) 調(diào) 發(fā) 展 , 推 進 新 型 城 鎮(zhèn) 化 , 推 動 城 鄉(xiāng) 發(fā) 展 一 體 化 因 : 我 國 經(jīng) 濟 發(fā) 展 還 面 臨 區(qū) 域 發(fā) 展 不 平 衡 、 城
9、 鎮(zhèn) 化 水 平 不 高 、 城 鄉(xiāng) 發(fā) 展 不 平 衡 不 協(xié) 調(diào) 等 現(xiàn) 實 挑 戰(zhàn) 。 濟 發(fā) 展 還 面 臨 區(qū) 域 發(fā) 展 不 平 衡 、 城 鎮(zhèn) 化 水 平 不 高 、 城 鄉(xiāng) 發(fā) 展 不 平 衡 不 協(xié) 調(diào) 等 現(xiàn) 實 挑 戰(zhàn) 。 7在平面直角坐標系中,曲線C:x222t,y122t(t為參數(shù))的普通方程為_ 解析:因為x222t,所以22tx2,代入y122t, 得yx1,即xy10. 答案:xy10 8已知在平面直角坐標系xOy中圓C的參數(shù)方程為x 33cos ,y13sin (為參數(shù)),以坐標原點O為極點,x軸正半軸為極軸建立極坐標系, 直線的極坐標方程為cos60,則圓C
10、截直線所得弦長為_ 解析:圓C的參數(shù)方程為x 33cos ,y13sin 圓心為( 3,1),半徑為 3,直線的普通方程為cos cos 6sin sin 632x12y0,即 3xy0,圓心C( 3,1)到直線 3xy0 的距離為d|( 3)21|311, 所以圓C截直線所得弦長|AB|2r2d22 32124 2. 答案:4 2 三、解答題 9已知曲線C的參數(shù)方程為xt1t,y3t1t(t為參數(shù),t0),求曲線C的普通方程 解:由xt1t兩邊平方得x2t1t2, 又y3t1t,則t1ty3(y6) 代入x2t1t2,得x2y32, 所以 3x2y60(y6) 故曲線C的普通方程為 3x2y
11、60(y6) 10.如圖所示,OA是圓C的直徑,且OA2a,射線OB與圓交于Q點,和經(jīng)過A點的切線交于B點,作PQOA交OA于D,PBOA,試求點P的軌跡的參數(shù)方程 我 國 經(jīng) 濟 發(fā) 展 進 入 新 常 態(tài) , 需 要 轉(zhuǎn) 變 經(jīng) 濟 發(fā) 展 方 式 , 改 變 粗 放 式 增 長 模 式 , 不 斷 優(yōu) 化 經(jīng) 濟 結(jié) 構(gòu) , 實 現(xiàn) 經(jīng) 濟 健 康 可 持 續(xù) 發(fā) 展 進 區(qū) 域 協(xié) 調(diào) 發(fā) 展 , 推 進 新 型 城 鎮(zhèn) 化 , 推 動 城 鄉(xiāng) 發(fā) 展 一 體 化 因 : 我 國 經(jīng) 濟 發(fā) 展 還 面 臨 區(qū) 域 發(fā) 展 不 平 衡 、 城 鎮(zhèn) 化 水 平 不 高 、 城 鄉(xiāng) 發(fā) 展
12、 不 平 衡 不 協(xié) 調(diào) 等 現(xiàn) 實 挑 戰(zhàn) 。 我 國 經(jīng) 濟 發(fā) 展 進 入 新 常 態(tài) , 需 要 轉(zhuǎn) 變 經(jīng) 濟 發(fā) 展 方 式 , 改 變 粗 放 式 增 長 模 式 , 不 斷 優(yōu) 化 經(jīng) 濟 結(jié) 構(gòu) , 實 現(xiàn) 經(jīng) 濟 健 康 可 持 續(xù) 發(fā) 展 進 區(qū) 域 協(xié) 調(diào) 發(fā) 展 , 推 進 新 型 城 鎮(zhèn) 化 , 推 動 城 鄉(xiāng) 發(fā) 展 一 體 化 因 : 我 國 經(jīng) 濟 發(fā) 展 還 面 臨 區(qū) 域 發(fā) 展 不 平 衡 、 城 鎮(zhèn) 化 水 平 不 高 、 城 鄉(xiāng) 發(fā) 展 不 平 衡 不 協(xié) 調(diào) 等 現(xiàn) 實 挑 戰(zhàn) 。 解:設(shè)P(x,y)是軌跡上任意一點,取DOQ, 由PQOA,PBO
13、A,得 xODOQcos OAcos22acos2, yABOAtan 2atan . 所以點P的軌跡的參數(shù)方程為x2acos2,y2atan 2,2. B 級 能力提升 1當參數(shù)變化時,由點P(2cos ,3sin )所確定的曲線過點( ) A(2,3) B(1,5) C.0,2 D(2,0) 解析:先將P(2cos ,3sin )化為方程為x24y291,再將選項代進去,可得到的是(2,0) 答案:D 2已知曲線C的參數(shù)方程是x1 5cos ,y2 5sin (為參數(shù)),以直角坐標系的原點O為極點,x軸的正半軸為極軸,并取相同的長度單位建立極坐標系,則曲線C的極坐標方程是_ 解析:曲線C的
14、普通方程為(x1)2(y2)25,即x2y22x4y0,把2x2y2,xcos ,ysin 代入,得其極坐標方程為22cos 4sin 0, 即2cos 4sin . 答案:2cos 4sin 3在直角坐標系xOy中,已知直線l的參數(shù)方程為x35t,y145t(t為參數(shù))以直角坐標系的原點為極點,x軸的正半軸為極軸建立極坐標系, 曲線C的極坐標方程為2sin . (1)求曲線C的直角坐標方程; (2)若P(x,y)在直線l上,且在曲線C內(nèi),求xy的取值范圍; (3)若Q(x,y)在曲線C上,求Q到直線l的最大距離dmax. 我 國 經(jīng) 濟 發(fā) 展 進 入 新 常 態(tài) , 需 要 轉(zhuǎn) 變 經(jīng) 濟
15、 發(fā) 展 方 式 , 改 變 粗 放 式 增 長 模 式 , 不 斷 優(yōu) 化 經(jīng) 濟 結(jié) 構(gòu) , 實 現(xiàn) 經(jīng) 濟 健 康 可 持 續(xù) 發(fā) 展 進 區(qū) 域 協(xié) 調(diào) 發(fā) 展 , 推 進 新 型 城 鎮(zhèn) 化 , 推 動 城 鄉(xiāng) 發(fā) 展 一 體 化 因 : 我 國 經(jīng) 我 國 經(jīng) 濟 發(fā) 展 進 入 新 常 態(tài) , 需 要 轉(zhuǎn) 變 經(jīng) 濟 發(fā) 展 方 式 , 改 變 粗 放 式 增 長 模 式 , 不 斷 優(yōu) 化 經(jīng) 濟 結(jié) 構(gòu) , 實 現(xiàn) 經(jīng) 濟 健 康 可 持 續(xù) 發(fā) 展 進 區(qū) 域 協(xié) 調(diào) 發(fā) 展 , 推 進 新 型 城 鎮(zhèn) 化 , 推 動 城 鄉(xiāng) 發(fā) 展 一 體 化 因 : 我 國 經(jīng) 濟 發(fā)
16、 展 還 面 臨 區(qū) 域 發(fā) 展 不 平 衡 、 城 鎮(zhèn) 化 水 平 不 高 、 城 鄉(xiāng) 發(fā) 展 不 平 衡 不 協(xié) 調(diào) 等 現(xiàn) 實 挑 戰(zhàn) 。 濟 發(fā) 展 還 面 臨 區(qū) 域 發(fā) 展 不 平 衡 、 城 鎮(zhèn) 化 水 平 不 高 、 城 鄉(xiāng) 發(fā) 展 不 平 衡 不 協(xié) 調(diào) 等 現(xiàn) 實 挑 戰(zhàn) 。 解:(1)因為2sin , 所以22sin , 所以x2y22y, 即x2(y1)21, 所以曲線C的直角坐標方程為x2(y1)21. (2)因為xy35t145t15t1, 又1t1. 所以1515t15, 所以6515t145, 即xy的取值范圍是65,45. (3)曲線C的參數(shù)方程為xcos ,y1sin (為參數(shù)), 直線l的普通方程為 4x3y30, d|4cos 3sin |5|sin()|,tan 43, 所以dmax1.