九九热最新网址,777奇米四色米奇影院在线播放,国产精品18久久久久久久久久,中文有码视频,亚洲一区在线免费观看,国产91精品在线,婷婷丁香六月天

高中數(shù)學 第三章 指數(shù)函數(shù)、對數(shù)函數(shù)和冪函數(shù) 3.2 對數(shù)函數(shù) 3.2.1 對數(shù)名師導(dǎo)航學案 蘇教版必修1

上傳人:仙*** 文檔編號:39758180 上傳時間:2021-11-12 格式:DOC 頁數(shù):7 大?。?20.50KB
收藏 版權(quán)申訴 舉報 下載
高中數(shù)學 第三章 指數(shù)函數(shù)、對數(shù)函數(shù)和冪函數(shù) 3.2 對數(shù)函數(shù) 3.2.1 對數(shù)名師導(dǎo)航學案 蘇教版必修1_第1頁
第1頁 / 共7頁
高中數(shù)學 第三章 指數(shù)函數(shù)、對數(shù)函數(shù)和冪函數(shù) 3.2 對數(shù)函數(shù) 3.2.1 對數(shù)名師導(dǎo)航學案 蘇教版必修1_第2頁
第2頁 / 共7頁
高中數(shù)學 第三章 指數(shù)函數(shù)、對數(shù)函數(shù)和冪函數(shù) 3.2 對數(shù)函數(shù) 3.2.1 對數(shù)名師導(dǎo)航學案 蘇教版必修1_第3頁
第3頁 / 共7頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《高中數(shù)學 第三章 指數(shù)函數(shù)、對數(shù)函數(shù)和冪函數(shù) 3.2 對數(shù)函數(shù) 3.2.1 對數(shù)名師導(dǎo)航學案 蘇教版必修1》由會員分享,可在線閱讀,更多相關(guān)《高中數(shù)學 第三章 指數(shù)函數(shù)、對數(shù)函數(shù)和冪函數(shù) 3.2 對數(shù)函數(shù) 3.2.1 對數(shù)名師導(dǎo)航學案 蘇教版必修1(7頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、 3.2.1 對數(shù) 名師導(dǎo)航 知識梳理 一、對數(shù)與對數(shù)運算 1.對數(shù)的定義 一般地,如果ax=N(a>0,a≠1),那么數(shù)x叫做以a為底N的對數(shù),記作__________,其中a叫做對數(shù)的__________,N叫做對數(shù)的__________. 對數(shù)恒等式為________________________________________. 2.對數(shù)的運算法則 指數(shù)的運算法則: 對數(shù)的運算法則: (1)aman=am+n;→ (1)______________; (2)=ama-

2、n=am-n;→ (2)______________; (3)(am)n=amn;→ (3)_______________. 二、對數(shù)運算法則的證明 (學會證明方法) 1.正因數(shù)的積的對數(shù)等于同一底數(shù)各個因數(shù)的對數(shù)的_______________; loga(MN)=logaM+logaN. 設(shè)logaM=p,logaN=q, 則ap=M,aq=N, ∴MN=apaq=ap+q. ∴l(xiāng)oga(MN)=p+q=logaM+logaN. 2.兩個正數(shù)的商的對數(shù)等于被除數(shù)的對數(shù)___________除數(shù)的對數(shù); l

3、oga=logaM-logaN.∵==ap-q, ∴l(xiāng)oga=p-q=logaM-logaN. 3.正數(shù)的冪的對數(shù)等于冪的底數(shù)的對數(shù)____________冪指數(shù); loga(Nn)=nlogaN. 根據(jù)對數(shù)恒等式:=N, ∴Nn=(N)n=.∴l(xiāng)oga(Nn)=nlogaN. 4.正數(shù)的正的方根的對數(shù)等于被開方數(shù)的對數(shù)______________根指數(shù). logalogaN.∵=, ∴由法則3得loga=loga=logaN. 三、對數(shù)的性質(zhì) 1.__________和__________沒有對數(shù). 因為a>0,所以不論b是什么數(shù),都有ab>0,即不論b是什么數(shù)

4、,N=ab永遠是正數(shù),這說明在相應(yīng)的對數(shù)式 b=logaN中真數(shù)N永遠是正數(shù),換句話說負數(shù)和零沒有對數(shù). 2.1的對數(shù)是__________. 因為a0=1(a>0,且a≠1),所以根據(jù)對數(shù)的定義可得loga1=0. 3.底數(shù)的對數(shù)等于__________. 因為a1=a,根據(jù)對數(shù)的定義知logaa=1. 四、一組重要的對數(shù)公式——換底公式 1.logab=,即有l(wèi)ogcalogab=logcb; 2.logba=,即有l(wèi)ogablogba=1; 3.=logab. 疑難突破 如何將給出的對數(shù)式換成指定底數(shù)的對數(shù)? 《考試大綱》要求知道用換底公式將一般對數(shù)

5、轉(zhuǎn)化成指定底數(shù)的對數(shù). 對數(shù)換底公式:logbN=(a>0且a≠1,b>0且b≠1,N>0), 推論:logab=,logab. 更特別地有l(wèi)ogaan=n. 問題探究 問題1 對數(shù)式與指數(shù)式有何關(guān)系?在對數(shù)符號logaN中,為什么規(guī)定a>0,a≠1,N>0呢? 探究思路:對數(shù)的概念是這么說的:一般地,如果a(a>0且a≠1)的b次冪等于N,即ab=N,那么就稱b是以a為底N的對數(shù),記作logaN=b,其中a叫做對數(shù)的底數(shù),N叫做真數(shù).從定義不難發(fā)現(xiàn)無論是指數(shù)式ab=N,還是對數(shù)式logaN=b都反映的是a、b、N三數(shù)之間的關(guān)系. 在對數(shù)符號logaN中,若a<0,則N

6、為某些值時,logaN不存在,如log(-2)8不存在. 若a=0,則N不為0時,logaN不存在;N為0時,logaN可以為任何正數(shù),不唯一. 若a=1,則N不為1時,logaN不存在;N為1時,logaN可以為任何實數(shù),不唯一.因此規(guī)定a>0且a≠1.因為logaN=bab=N,在實數(shù)范圍內(nèi),正數(shù)的任何次冪都是正數(shù),因此N>0. 問題2 對于對數(shù),除了對數(shù)的定義,還有對數(shù)的性質(zhì),你能說說這些相關(guān)的內(nèi)容嗎? 探究思路:對數(shù)部分,我們首先應(yīng)當掌握對數(shù)的意義,即對數(shù)式與指數(shù)式之間的對應(yīng)關(guān)系.另外對于對數(shù)我們應(yīng)該掌握一些常用的性質(zhì):如(1)loga1=0(1的對數(shù)是0); (2)log

7、aa=1(底數(shù)的對數(shù)是1); (3)N=N(對數(shù)恒等式); (4)logaN=(b>0且b≠1)(換底公式); (5)logaM+logaN=logaMN; (6)logaM-logaN=loga; (7)nlogaN=logaNn; (8)logaN=logamNn. 以上各式均有條件a>0且a≠1. 問題3 初學對數(shù)運算性質(zhì),容易犯下面的錯誤: loga(MN)=logaMlogaN,loga(MN)=logaMlogaN,loga=,logaNn=(logaN)n.應(yīng)該如何解決呢? 探究思路:首先應(yīng)把握對數(shù)運算的本質(zhì)特征,運算性質(zhì)是把真數(shù)的乘、除、乘方降級為

8、對數(shù)的加、減、乘運算,是降級運算;其次,對數(shù)記號logaN整體上才有意義,不能誤把對數(shù)符號當作表示數(shù)的字母進行運算. 典題精講 例1 (1)將下列指數(shù)式寫成對數(shù)式: ①210=1 024;②10-3=; ③0.33=0.027;④e0=1. (2)將下列對數(shù)式寫成指數(shù)式: ①log0.46.25=-2;②lg2=0.301 0; ③log310=2.095 9;④ln23.14=x. 思路解析 應(yīng)用指數(shù)式與對數(shù)式的等價關(guān)系求解. 答案:(1)①log21 024=10;②lg=-3;③log0.30.027=3;④ln1=0. (2)①0.4-2=6.25;②100.3

9、01 0=2;③32.095 9=10;④ex=23.14. 例2 計算:log2+log212-log242. 思路解析 這是幾個對數(shù)式的加減運算,注意到每個對數(shù)式是同底的,則可以利用同底數(shù)的對數(shù)的運算公式化為一個對數(shù)式.當然也可以反其道而行之,即把每個對數(shù)的真數(shù)寫成積或商的形式,再利用積或商的對數(shù)的運算性質(zhì)化為同底對數(shù)的和與差,然后進行約簡. 解法一:原式=(log27-log248)+log23+2log22-(log27+log22+log23) =log27-log23-log216+log23+2-log27-=-. 解法二:原式=log2(12)=-. 例3 求

10、下列各式的值: (1); (2)7lg20()lg0.7; (3)log2(1+)+log2(1+); (4)lg(). 思路解析 (1)由冪的運算法則把其化成同底,用對數(shù)恒等式N=N化簡計算. (2)通過取對數(shù),先算出對數(shù)值,再求值. (3)運用對數(shù)運算法則化成一個對數(shù),然后利用底數(shù)與真數(shù)的特殊關(guān)系求解. (4)運用對數(shù)運算法則巧去根號. 解答:(1). (2)設(shè)x=7lg20()lg0.7,則lgx=lg20lg7+lg0.7lg()=(lg2+1)lg7+(lg7-1)(-lg2)=lg7+lg2=lg14, ∴x=14,即7lg20()lg0.7=14. (3

11、)log2(1+)+log2(1+)=log2[(1+)2-()2]=log22=log2=. (4)lg()=lg()2=lg(3++3-+2)=lg10=. 例4 已知11.2a=1 000,0.011 2b=1 000,那么-等于( ) A.1 B.2 C.3 D.4 思路解析 本題有兩種解題方法. 解法一:用指數(shù)解.由題意11.2=,0.011 2=, ∴兩式相除得==1 000. ∴-=1. 解法二:用對數(shù)解. 由題意,得alg11.2=3,blg0.011

12、 2=3, ∴-= (lg11.2-lg0.011 2)=1. 答案:A 例5 方程lg(4x+2)=lg2x+lg3的解是_____________. 思路解析 把方程兩邊化為同底的對數(shù)式,然后比較真數(shù)得含有求知數(shù)的方程,解之即可. 解:把兩邊化成同底的對數(shù)式為lg(4x+2)=lg(2x3), 比較真數(shù),得方程4x+2=2x3, 利用換元法,解得2x=1或2x=2. 所以x=0或x=1. 答案:x1=0,x2=1 知識導(dǎo)學 1.對數(shù)的概念 在實際應(yīng)用中,一定要注意指數(shù)式與對數(shù)式的等價性,即logaN=bab=N. 2.換底公式 一般地,我們稱

13、logaN=為對數(shù)的換底公式.換底公式是對數(shù)中一個非常重要的公式,這是因為它是對一個對數(shù)進行變形運算的主要依據(jù)之一,是對數(shù)的運算性質(zhì).對數(shù)運算性質(zhì)應(yīng)用的前提是式子中對數(shù)的底相同.若底不同則需要利用換底公式化為底相同的.我們在應(yīng)用換底公式時,一方面要證明它和它的幾個推論;另一方面要結(jié)合構(gòu)成式子的各對數(shù)的特點選擇一個恰當?shù)臄?shù)作為對數(shù)的底,不要盲目地換底,以簡化我們的解題過程. 3.常用對數(shù)與自然對數(shù)的概念 有了對數(shù)的概念后,要求log0.840.5的值,我們需要引入兩個常用的對數(shù):常用對數(shù)和自然對數(shù).常用對數(shù)是指以10為底的對數(shù);自然對數(shù)是指以e(e=2.718 28…,是一個無理數(shù))

14、為底的對數(shù). 有了常用對數(shù)和自然對數(shù)再利用對數(shù)的運算性質(zhì),我們就可以求log0.840.5的值了. 4.對數(shù)恒等式 對數(shù)恒等式:=N. 它的證明也很簡單,只要緊扣對數(shù)式的定義即可證明. ∵ab=N, ∴b=logaN. ∴ab==N, 即=N. 如=5、=6等.要熟記對數(shù)恒等式的形式,會使用這一公式化簡對數(shù)式. 疑難導(dǎo)析 對數(shù)換底公式口訣: 換底公式真神奇,換成新底可任意, 原底加底變分母,真數(shù)加底變分子. 問題導(dǎo)思 指數(shù)式與對數(shù)式之間可以相互轉(zhuǎn)化,它們之間可以理解為就像加法與減法一樣的關(guān)系.后面我們會學習反

15、函數(shù),指數(shù)式與對數(shù)式之間的轉(zhuǎn)化可以通過反函數(shù)進行. 這些常用的性質(zhì)在指數(shù)運算中非常有用,需要記牢. 有的性質(zhì)可以用口訣來幫助記憶,比如,性質(zhì)(5)(6)(7)可以這樣來記: 積的對數(shù)變?yōu)榧樱? 商的對數(shù)變?yōu)闇p, 冪的乘方取對數(shù), 要把指數(shù)提到前. 典題導(dǎo)考 綠色通道 指數(shù)式與對數(shù)式之間的換算,就是利用logaN=bab=N. 典題變式 已知loga2=m,loga3=n,則a2m-n=____________. 解答:∵loga2=m,loga3=n, ∴am=2,an=3. ∴a2m-n=. 綠色通道 解決

16、求值問題一般有兩種解法:一是將式中的真數(shù)的積、商、冪、方根運用對數(shù)的運算法則化為對數(shù)的和、差、積、商,即“化整為零”,然后合并、消項、化簡求值;二是將式中的對數(shù)的和、差、積、商運用對數(shù)運算法則將它們化為真數(shù)的積、商、冪、方根,即“化零為整”,然后“相約”,化簡求值. 典題變式 計算2log525+3log264-8log71的值為( ) A.14 B.8 C.22 D.27 答案:C 綠色通道 有關(guān)對數(shù)式的運算,除了要用到對數(shù)運算性質(zhì)外,還要注意代數(shù)運算的其他性質(zhì)的運用

17、.如遇到不能直接運用對數(shù)運算法則進行運算的問題,有兩種解決辦法:一是取對數(shù),先求出對數(shù)值,再求出真數(shù)的值,即為原式的值;二是運用對數(shù)恒等式N=N把任何正數(shù)N化成含所需要的正數(shù)為底數(shù)的對數(shù)的一個冪,即可轉(zhuǎn)化為用冪的運算法則和對數(shù)運算法則解決問題. 典題變式 1.lg5lg8 000+(lg)2+lg0.06-lg6=______________. 解答:原式=lg5(3+3lg2)+3lg22+lg=3(1-lg2)(1+lg2)+3lg22-2=3-2=1. 2.計算2lg5+lg8+lg5lg20+lg22的值. 解答:原式=2lg5+2lg2+lg5(2lg2+lg5)+lg22

18、 =lg25+2lg2lg5+lg22+2(lg5+lg2) =(lg5+lg2)2+2(lg5+lg2) =lg210+2lg10 =1+2=3. 綠色通道 因為指數(shù)與對數(shù)存在著互逆的運算關(guān)系,因而反映在具體問題中就一定從指數(shù)式、對數(shù)式兩條思路分別運用冪的運算法則和對數(shù)運算法則解決問題.這就是對立統(tǒng)一的原則在具體思路上的指導(dǎo)和體現(xiàn). 典題變式 已知a=lg(1+),b=lg(1+),試用a、b的式子表示lg1.4. 答案:lg1.4=(a-4b+1). 黑色陷阱 如果誤以為原方程lg(4x+2)=lg2x+lg3可化為lg4x+lg2=lg2x+lg3,將導(dǎo)致解

19、題錯誤.這也說明數(shù)學思維的嚴密性,如果百密一疏,則后悔莫及! 典題變式 已知函數(shù)f(x)=則f[f()]的值是( ) A.9 B. C.-9 D.- 答案:B 6EDBC3191F2351DD815FF33D4435F3756EDBC3191F2351DD815FF33D4435F3756EDBC3191F2351DD815FF33D4435F3756EDBC3191F2351DD815FF33D4435F3756EDBC3191F2351DD815FF33D4435F3756EDBC3191F2351DD815FF33D4435F375

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!