高中數(shù)學 第二章 基本初等函數(shù)Ⅰ2.1 指數(shù)函數(shù) 2.1.1 指數(shù)與指數(shù)冪的運算教學設計 新人教A版必修1
《高中數(shù)學 第二章 基本初等函數(shù)Ⅰ2.1 指數(shù)函數(shù) 2.1.1 指數(shù)與指數(shù)冪的運算教學設計 新人教A版必修1》由會員分享,可在線閱讀,更多相關《高中數(shù)學 第二章 基本初等函數(shù)Ⅰ2.1 指數(shù)函數(shù) 2.1.1 指數(shù)與指數(shù)冪的運算教學設計 新人教A版必修1(27頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、 2.1.1 指數(shù)與指數(shù)冪的運算 教學分析 我們在初中的學習過程中,已了解了整數(shù)指數(shù)冪的概念和運算性質.從本節(jié)開始我們將在回顧平方根和立方根的基礎上,類比出正數(shù)的n次方根的定義,從而把指數(shù)推廣到分數(shù)指數(shù).進而推廣到有理數(shù)指數(shù),再推廣到實數(shù)指數(shù),并將冪的運算性質由整數(shù)指數(shù)冪推廣到實數(shù)指數(shù)冪. 教材為了讓學生在學習之外就感受到指數(shù)函數(shù)的實際背景,先給出兩個具體例子:GDP的增長問題和碳14的衰減問題.前一個問題,既讓學生回顧了初中學過的整數(shù)指數(shù)冪,也讓學生感受到其中的函數(shù)模型,并且還有思想教育價值.后一個問題讓學生體會其中的函數(shù)模型的同時,激發(fā)學生探究分數(shù)指數(shù)冪、無理數(shù)指數(shù)冪的興趣與欲
2、望,為新知識的學習作了鋪墊. 本節(jié)安排的內容蘊涵了許多重要的數(shù)學思想方法,如推廣的思想(指數(shù)冪運算律的推廣)、類比的思想、逼近的思想(有理數(shù)指數(shù)冪逼近無理數(shù)指數(shù)冪)、數(shù)形結合的思想(用指數(shù)函數(shù)的圖象研究指數(shù)函數(shù)的性質)等,同時,充分關注與實際問題的結合,體現(xiàn)數(shù)學的應用價值. 根據(jù)本節(jié)內容的特點,教學中要注意發(fā)揮信息技術的力量,盡量利用計算器和計算機創(chuàng)設教學情境,為學生的數(shù)學探究與數(shù)學思維提供支持. 三維目標 1.通過與初中所學的知識進行類比,理解分數(shù)指數(shù)冪的概念,進而學習指數(shù)冪的性質.掌握分數(shù)指數(shù)冪和根式之間的互化,掌握分數(shù)指數(shù)冪的運算性質.培養(yǎng)學生觀察分析、抽象類比的能力. 2.掌
3、握根式與分數(shù)指數(shù)冪的互化,滲透“轉化”的數(shù)學思想.通過運算訓練,養(yǎng)成學生嚴謹治學,一絲不茍的學習習慣,讓學生了解數(shù)學來自生活,數(shù)學又服務于生活的哲理. 3.能熟練地運用有理指數(shù)冪運算性質進行化簡、求值,培養(yǎng)學生嚴謹?shù)乃季S和科學正確的計算能力. 4.通過訓練及點評,讓學生更能熟練掌握指數(shù)冪的運算性質.展示函數(shù)圖象,讓學生通過觀察,進而研究指數(shù)函數(shù)的性質,讓學生體驗數(shù)學的簡潔美和統(tǒng)一美. 重點難點 教學重點 (1)分數(shù)指數(shù)冪和根式概念的理解. (2)掌握并運用分數(shù)指數(shù)冪的運算性質. (3)運用有理指數(shù)冪的性質進行化簡、求值. 教學難點 (1)分數(shù)指數(shù)冪及根式概念的理解. (2)
4、有理指數(shù)冪性質的靈活應用. 課時安排 3課時 第1課時 導入新課 思路1.同學們在預習的過程中能否知道考古學家如何判斷生物的發(fā)展與進化,又怎樣判斷它們所處的年代?(考古學家是通過對生物化石的研究來判斷生物的發(fā)展與進化的,第二個問題我們不太清楚)考古學家是按照這樣一條規(guī)律推測生物所處的年代的.教師板書本節(jié)課題:指數(shù)函數(shù)——指數(shù)與指數(shù)冪的運算. 思路2.同學們,我們在初中學習了平方根、立方根,那么有沒有四次方根、五次方根…n次方根呢?答案是肯定的,這就是我們本堂課研究的課題:指數(shù)函數(shù)——指數(shù)與指數(shù)冪的運算. 推進新課 (1)什么是平方根?什么是立方根?一個數(shù)的平方根有幾
5、個,立方根呢? (2)如x4=a,x5=a,x6=a,根據(jù)上面的結論我們又能得到什么呢? (3)根據(jù)上面的結論我們能得到一般性的結論嗎? (4)可否用一個式子表達呢? 活動:教師提示,引導學生回憶初中的時候已經學過的平方根、立方根是如何定義的,對照類比平方根、立方根的定義解釋上面的式子,對問題(2)的結論進行引申、推廣,相互交流討論后回答,教師及時啟發(fā)學生,具體問題一般化,歸納類比出n次方根的概念,評價學生的思維. 討論結果:(1)若x2=a,則x叫做a的平方根,正實數(shù)的平方根有兩個,它們互為相反數(shù),如:4的平方根為2,負數(shù)沒有平方根,同理,若x3=a,則x叫做a的立方根,一個數(shù)的立
6、方根只有一個,如:-8的立方根為-2. (2)類比平方根、立方根的定義,一個數(shù)的四次方等于a,則這個數(shù)叫a的四次方根.一個數(shù)的五次方等于a,則這個數(shù)叫a的五次方根.一個數(shù)的六次方等于a,則這個數(shù)叫a的六次方根. (3)類比(2)得到一個數(shù)的n次方等于a,則這個數(shù)叫a的n次方根. (4)用一個式子表達是,若xn=a,則x叫a的n次方根. 教師板書n次方根的意義: 一般地,如果xn=a,那么x叫做a的n次方根(n th root),其中n>1且n∈N*. 可以看出數(shù)的平方根、立方根的概念是n次方根的概念的特例. (1)你能根據(jù)n次方根的意義求出下列數(shù)的n次方根嗎?(多媒體顯示以下
7、題目). ①4的平方根;②8的立方根;③16的4次方根;④32的5次方根;⑤-32的5次方根;⑥0的7次方根;⑦a6的立方根. (2)平方根,立方根,4次方根,5次方根,7次方根,分別對應的方根的指數(shù)是什么數(shù),有什么特點?4,8,16,-32,32,0,a6分別對應什么性質的數(shù),有什么特點? (3)問題(2)中,既然方根有奇次的也有偶次的,數(shù)a有正有負,還有零,結論有一個的,也有兩個的,你能否總結一般規(guī)律呢? (4)任何一個數(shù)a的偶次方根是否存在呢? 活動:教師提示學生切實緊扣n次方根的概念,求一個數(shù)a的n次方根,就是求出的那個數(shù)的n次方等于a,及時點撥學生,從數(shù)的分類考慮,可以把具
8、體的數(shù)寫出來,觀察數(shù)的特點,對問題(2)中的結論,類比推廣引申,考慮要全面,對回答正確的學生及時表揚,對回答不準確的學生提示引導考慮問題的思路. 討論結果:(1)因為2的平方等于4,2的立方等于8,2的4次方等于16,2的5次方等于32,-2的5次方等于-32,0的7次方等于0,a2的立方等于a6,所以4的平方根,8的立方根,16的4次方根,32的5次方根,-32的5次方根,0的7次方根,a6的立方根分別是2,2,2,2,-2,0,a2. (2)方根的指數(shù)是2,3,4,5,7…特點是有奇數(shù)和偶數(shù).總的來看,這些數(shù)包括正數(shù),負數(shù)和零. (3)一個數(shù)a的奇次方根只有一個,一個正數(shù)a的偶次方根
9、有兩個,是互為相反數(shù).0的任何次方根都是0. (4)任何一個數(shù)a的偶次方根不一定存在,如負數(shù)的偶次方根就不存在,因為沒有一個數(shù)的偶次方是一個負數(shù). 類比前面的平方根、立方根,結合剛才的討論,歸納出一般情形,得到n次方根的性質: ①當n為偶數(shù)時,正數(shù)a的n次方根有兩個,是互為相反數(shù),正的n次方根用表示,如果是負數(shù),負的n次方根用-表示,正的n次方根與負的n次方根合并寫成(a>0). ②n為奇數(shù)時,正數(shù)的n次方根是一個正數(shù),負數(shù)的n次方根是一個負數(shù),這時a的n次方根用符號表示. ③負數(shù)沒有偶次方根;0的任何次方根都是零. 上面的文字語言可用下面的式子表示: a為正數(shù): a為負數(shù):
10、 零的n次方根為零,記為=0. 可以看出數(shù)的平方根、立方根的性質是n次方根的性質的特例. 思考 根據(jù)n次方根的性質能否舉例說明上述幾種情況? 活動:教師提示學生對方根的性質要分類掌握,即正數(shù)的奇偶次方根,負數(shù)的奇次方根,零的任何次方根,這樣才不重不漏,同時巡視學生,隨機給出一個數(shù),我們寫出它的平方根,立方根,四次方根等,看是否有意義,注意觀察方根的形式,及時糾正學生在舉例過程中的問題. 解:答案不唯一,比如,64的立方根是4,16的四次方根為2,-27的5次方根為,而-27的4次方根不存在等.其中也表示方根,它類似于的形式,現(xiàn)在我們給式子一個名稱——根式. 根式的概念: 式子叫做
11、根式,其中a叫做被開方數(shù),n叫做根指數(shù). 如中,3叫根指數(shù),-27叫被開方數(shù). 思考 表示an的n次方根,式子=a一定成立嗎?如果不一定成立,那么等于什么? 活動:教師讓學生注意討論n為奇偶數(shù)和a的符號,充分讓學生多舉實例,分組討論.教師點撥,注意歸納整理. 〔如==-3,=|-8|=8〕. 解答:根據(jù)n次方根的意義,可得:()n=a. 通過探究得到:n為奇數(shù),=a. n為偶數(shù),=|a|= 因此我們得到n次方根的運算性質: ①()n=a.先開方,再乘方(同次),結果為被開方數(shù). ②n為奇數(shù),=a.先奇次乘方,再開方(同次),結果為被開方數(shù). n為偶數(shù),=|a|=先偶次乘
12、方,再開方(同次),結果為被開方數(shù)的絕對值. 思路1 例 求下列各式的值: (1);(2);(3);(4)(a>b). 活動:求某些式子的值,首先考慮的應是什么,明確題目的要求是什么,都用到哪些知識,關鍵是啥,搞清這些之后,再針對每一個題目仔細分析.觀察學生的解題情況,讓學生展示結果,抓住學生在解題過程中出現(xiàn)的問題并對癥下藥.求下列各式的值實際上是求數(shù)的方根,可按方根的運算性質來解,首先要搞清楚運算順序,目的是把被開方數(shù)的符號定準,然后看根指數(shù)是奇數(shù)還是偶數(shù),如果是奇數(shù),無需考慮符號,如果是偶數(shù),開方的結果必須是非負數(shù). 解:(1)=-8; (2)=10; (3)=π-3;
13、 (4)=a-b(a>b). 點評:不注意n的奇偶性對式子的值的影響,是導致問題出現(xiàn)的一個重要原因,要在理解的基礎上,記準,記熟,會用,活用. 變式訓練 求出下列各式的值: (1); (2)(a≤1); (3). 解:(1)=-2, (2)(a≤1)=3a-3, (3)= 點評:本題易錯的是第(3)題,往往忽視a與1大小的討論,造成錯解. 思路2 例1 下列各式中正確的是( ) A.=a B.= C.a0=1 D.= 活動:教師提示,這是一道選擇題,本題考查n次方根的運算性質,應首先考慮根據(jù)方根的意義和運算性質來解,既要考慮被開方數(shù),又要考慮根指數(shù),嚴格按求
14、方根的步驟,體會方根運算的實質,學生先思考哪些地方容易出錯,再回答. 解析:(1)=a,考查n次方根的運算性質,當n為偶數(shù)時,應先寫=|a|,故A項錯. (2)=,本質上與上題相同,是一個正數(shù)的偶次方根,根據(jù)運算順序也應如此,結論為=,故B項錯. (3)a0=1是有條件的,即a≠0,故C項也錯. (4)D項是一個正數(shù)的偶次方根,根據(jù)運算順序也應如此,故D項正確.所以答案選D. 答案:D 點評:本題由于考查n次方根的運算性質與運算順序,有時極易選錯,選四個答案的情況都會有,因此解題時千萬要細心. 例2 +=__________. 活動:讓同學們積極思考,交流討論,本題乍一看內容與
15、本節(jié)無關,但仔細一想,我們學習的內容是方根,這里是帶有雙重根號的式子,去掉一層根號,根據(jù)方根的運算求出結果是解題的關鍵,因此將根號下面的式子化成一個完全平方式就更為關鍵了,從何處入手?需利用和的平方公式與差的平方公式化為完全平方式.正確分析題意是關鍵,教師提示,引導學生解題的思路. 解析:因為===+1, ===-1, 所以+=2. 答案:2 點評:不難看出與形式上有些特點,即是對稱根式,是形式的式子,我們總能找到辦法把其化成一個完全平方式. 思考 上面的例2還有別的解法嗎? 活動:教師引導,去根號常常利用完全平方公式,有時平方差公式也可,同學們觀察兩個式子的特點,具有對稱性,
16、再考慮并交流討論,一個是“+”,一個是“-”,去掉一層根號后,相加正好抵消.同時借助平方差,又可去掉根號,因此把兩個式子的和看成一個整體,兩邊平方即可,探討得另一種解法. 另解:利用整體思想,x=+, 兩邊平方,得x2=3+2+3-2+2()()=6+2=6+2=8,所以x=2. 點評:對雙重二次根式,特別是形式的式子,我們總能找到辦法將根號下面的式子化成一個完全平方式,問題迎刃而解,另外對的式子,我們可以把它們看成一個整體利用完全平方公式和平方差公式去解. 變式訓練 若=a-1,求a的取值范圍. 解:因為=a-1,而==|a-1|=a-1, 即a-1≥0, 所以a≥1. 點
17、評:利用方根的運算性質轉化為去絕對值符號,是解題的關鍵. (教師用多媒體顯示在屏幕上) 1.以下說法正確的是( ) A.正數(shù)的n次方根是一個正數(shù) B.負數(shù)的n次方根是一個負數(shù) C.0的n次方根是零 D.a的n次方根用表示(以上n>1且n∈N*) 答案:C 2.化簡下列各式: (1);(2);(3);(4);(5). 答案:(1)2;(2);(3)x2;(4)|x|;(5)|x-y|. 3.計算+=__________. 解析:+ =+ =+ =++- =2. 答案:2 問題:=a與()n=a(n>1,n∈N)哪一個是恒等式,為什么?請舉例說明.
18、活動:組織學生結合前面的例題及其解答,進行分析討論,解決這一問題要緊扣n次方根的定義. 通過歸納,得出問題結果,對a是正數(shù)和零,n為偶數(shù)時,n為奇數(shù)時討論一下.再對a是負數(shù),n為偶數(shù)時,n為奇數(shù)時討論一下,就可得到相應的結論. 解:(1)()n=a(n>1,n∈N). 如果xn=a(n>1,且n∈N)有意義,則無論n是奇數(shù)或偶數(shù),x=一定是它的一個n次方根,所以()n=a恒成立. 例如:()4=3,()3=-5. (2)= 當n為奇數(shù)時,a∈R,=a恒成立. 例如:=2,=-2. 當n為偶數(shù)時,a∈R,an≥0,表示正的n次方根或0,所以如果a≥0,那么=a.例如=3,=0;如
19、果a<0,那么=|a|=-a,如==3, 即()n=a(n>1,n∈N)是恒等式,=a(n>1,n∈N)是有條件的. 點評:實質上是對n次方根的概念、性質以及運算性質的深刻理解. 學生仔細交流討論后,在筆記上寫出本節(jié)課的學習收獲,教師用多媒體顯示在屏幕上. 1.如果xn=a,那么x叫a的n次方根,其中n>1且n∈N*.用式子表示,式子叫根式,其中a叫被開方數(shù),n叫根指數(shù). (1)當n為偶數(shù)時,a的n次方根有兩個,是互為相反數(shù),正的n次方根用表示,如果是負數(shù),負的n次方根用-表示,正的n次方根與負的n次方根合并寫成(a>0). (2)n為奇數(shù)時,正數(shù)的n次方根是一個正數(shù),負數(shù)的n
20、次方根是一個負數(shù),這時a的n次方根用符號表示. (3)負數(shù)沒有偶次方根.0的任何次方根都是零. 2.掌握兩個公式:n為奇數(shù)時,()n=a,n為偶數(shù)時,=|a|= 課本習題2.1A組 1. 補充作業(yè): 1.化簡下列各式: (1);(2);(3). 解:(1)===; (2)=-=-; (3)==. 2.若5<a<8,則式子-的值為__________. 解析:因為5<a<8,所以-=a-5-8+a=2a-13. 答案:2a-13 3.+=__________. 解析:對雙重二次根式,我們覺得難以下筆,我們考慮只有在開方的前提下才可能解出,由此提示我們想辦法去掉一層
21、根式, 不難看出==+. 同理==-. 所以+=2. 答案:2 學生已經學習了數(shù)的平方根和立方根,根式的內容是這些內容的推廣,本節(jié)課由于方根和根式的概念和性質難以理解,在引入根式的概念時,要結合已學內容,列舉具體實例,根式的講解要分n是奇數(shù)和偶數(shù)兩種情況來進行,每種情況又分a>0,a<0,a=0三種情況,并結合具體例子講解,因此設計了大量的類比和練習題目,要靈活處理這些題目,幫助學生加以理解,所以需要用多媒體信息技術服務教學. 第2課時 作者:郝云靜 導入新課 思路1.碳14測年法.原來宇宙射線在大氣層中能夠產生放射性碳14,并與氧結合成二氧化碳后進入所有活組織,先為植物
22、吸收,再為動物吸收,只要植物和動物生存著,它們就會不斷地吸收碳14在機體內保持一定的水平.而當有機體死亡后,即會停止吸收碳14,其組織內的碳14便以約5 730年的半衰期開始衰變并消失.對于任何含碳物質只要測定剩下的放射性碳14的含量,便可推斷其年代(半衰期:經過一定的時間,變?yōu)樵瓉淼囊话?.引出本節(jié)課題:指數(shù)與指數(shù)冪的運算之分數(shù)指數(shù)冪. 思路2.同學們,我們在初中學習了整數(shù)指數(shù)冪及其運算性質,那么整數(shù)指數(shù)冪是否可以推廣呢?答案是肯定的.這就是本節(jié)的主講內容,教師板書本節(jié)課題——指數(shù)與指數(shù)冪的運算之分數(shù)指數(shù)冪. 推進新課 (1)整數(shù)指數(shù)冪的運算性質是什么? (2)觀察以下式子,
23、并總結出規(guī)律:a>0, ①; ②==a4=,; ③==a3=; ④==a5=. (3)利用(2)的規(guī)律,你能表示下列式子嗎? ,,,(x>0,m,n∈N*,且n>1). (4)你能用方根的意義來解釋(3)的式子嗎? (5)你能推廣到一般的情形嗎? 活動:學生回顧初中學習的整數(shù)指數(shù)冪及運算性質,仔細觀察,特別是每題的開始和最后兩步的指數(shù)之間的關系,教師引導學生體會方根的意義,用方根的意義加以解釋,指點啟發(fā)學生類比(2)的規(guī)律表示,借鑒(2)(3),我們把具體推廣到一般,對寫正確的同學及時表揚,其他學生鼓勵提示. 討論結果:(1)整數(shù)指數(shù)冪的運算性質:an=aaa…a,a0=1
24、(a≠0);00無意義; a-n=(a≠0);aman=am+n;(am)n=amn;(an)m=amn;(ab)n=anbn. (2)①a2是a10的5次方根;②a4是a8的2次方根;③a3是a12的4次方根;④a5是a10的2次方根.實質上①=,②=,③=,④=結果的a的指數(shù)是2,4,3,5分別寫成了,,,,形式上變了,本質沒變. 根據(jù)4個式子的最后結果可以總結:當根式的被開方數(shù)的指數(shù)能被根指數(shù)整除時,根式可以寫成分數(shù)作為指數(shù)的形式(分數(shù)指數(shù)冪形式). (3)利用(2)的規(guī)律,=,=,=,=. (4)53的四次方根是,75的三次方根是,a7的五次方根是,xm的n次方根是. 結果
25、表明方根的結果和分數(shù)指數(shù)冪是相通的. (5)如果a>0,那么am的n次方根可表示為=,即=(a>0,m,n∈N*,n>1). 綜上所述,我們得到正數(shù)的正分數(shù)指數(shù)冪的意義,教師板書: 規(guī)定:正數(shù)的正分數(shù)指數(shù)冪的意義是=(a>0,m,n∈N*,n>1). (1)負整數(shù)指數(shù)冪的意義是怎樣規(guī)定的? (2)你能得出負分數(shù)指數(shù)冪的意義嗎? (3)你認為應怎樣規(guī)定零的分數(shù)指數(shù)冪的意義? (4)綜合上述,如何規(guī)定分數(shù)指數(shù)冪的意義? (5)分數(shù)指數(shù)冪的意義中,為什么規(guī)定a>0,去掉這個規(guī)定會產生什么樣的后果? (6)既然指數(shù)的概念就從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù),那么整數(shù)指數(shù)冪的運算性質是否
26、也適用于有理數(shù)指數(shù)冪呢? 活動:學生回想初中學習的情形,結合自己的學習體會回答,根據(jù)零的整數(shù)指數(shù)冪的意義和負整數(shù)指數(shù)冪的意義來類比,把正分數(shù)指數(shù)冪的意義與負分數(shù)指數(shù)冪的意義融合起來,與整數(shù)指數(shù)冪的運算性質類比可得有理數(shù)指數(shù)冪的運算性質,教師在黑板上板書,學生合作交流,以具體的實例說明a>0的必要性,教師及時作出評價. 討論結果:(1)負整數(shù)指數(shù)冪的意義是:a-n=(a≠0),n∈N*. (2)既然負整數(shù)指數(shù)冪的意義是這樣規(guī)定的,類比正數(shù)的正分數(shù)指數(shù)冪的意義可得正數(shù)的負分數(shù)指數(shù)冪的意義. 規(guī)定:正數(shù)的負分數(shù)指數(shù)冪的意義是==(a>0,m,n∈N*,n>1). (3)規(guī)定:零的分數(shù)指數(shù)冪
27、的意義是:零的正分數(shù)次冪等于零,零的負分數(shù)指數(shù)冪沒有意義. (4)教師板書分數(shù)指數(shù)冪的意義.分數(shù)指數(shù)冪的意義就是: 正數(shù)的正分數(shù)指數(shù)冪的意義是=(a>0,m,n∈N*,n>1),正數(shù)的負分數(shù)指數(shù)冪的意義是==(a>0,m,n∈N*,n>1),零的正分數(shù)次冪等于零,零的負分數(shù)指數(shù)冪沒有意義. (5)若沒有a>0這個條件會怎樣呢? 如==-1,==1具有同樣意義的兩個式子出現(xiàn)了截然不同的結果,這只說明分數(shù)指數(shù)冪在底數(shù)小于零時是無意義的.因此在把根式化成分數(shù)指數(shù)時,切記要使底數(shù)大于零,如無a>0的條件,比如式子=,同時負數(shù)開奇次方是有意義的,負數(shù)開奇次方時,應把負號移到根式的外邊,然后再按規(guī)
28、定化成分數(shù)指數(shù)冪,也就是說,負分數(shù)指數(shù)冪在有意義的情況下總表示正數(shù),而不是負數(shù),負數(shù)只是出現(xiàn)在指數(shù)上. (6)規(guī)定了分數(shù)指數(shù)冪的意義后,指數(shù)的概念就從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù). 有理數(shù)指數(shù)冪的運算性質:對任意的有理數(shù)r,s,均有下面的運算性質: ①aras=ar+s(a>0,r,s∈Q), ②(ar)s=ars(a>0,r,s∈Q), ③(ab)r=arbr(a>0,b>0,r∈Q). 我們利用分數(shù)指數(shù)冪的意義和有理數(shù)指數(shù)冪的運算性質可以解決一些問題,來看下面的例題. 例1 求值:(1);(2);(3)-5;(4). 活動:教師引導學生考慮解題的方法,利用冪的運算性質計算
29、出數(shù)值或化成最簡根式,根據(jù)題目要求,把底數(shù)寫成冪的形式,8寫成23,25寫成52,寫成2-1,寫成4,利用有理數(shù)冪的運算性質可以解答,完成后,把自己的答案用投影儀展示出來. 解:(1)=22=4; (2)=5-1=; (3)-5=(2-1)-5=2-1(-5)=32; (4)=-3=. 點評:本例主要考查冪值運算,要按規(guī)定來解.在進行冪值運算時,要首先考慮轉化為指數(shù)運算,而不是首先轉化為熟悉的根式運算,如===4. 例2 用分數(shù)指數(shù)冪的形式表示下列各式. a3;a2;(a>0). 活動:學生觀察、思考,根據(jù)解題的順序,把根式化為分數(shù)指數(shù)冪,再由冪的運算性質來運算,根式化為分數(shù)指
30、數(shù)冪時,要由里往外依次進行,把握好運算性質和順序,學生討論交流自己的解題步驟,教師評價學生的解題情況,鼓勵學生注意總結. 解:a3=a3=; a2=a2=; =. 點評:利用分數(shù)指數(shù)冪的意義和有理數(shù)指數(shù)冪的運算性質進行根式運算時,其順序是先把根式化為分數(shù)指數(shù)冪,再由冪的運算性質來運算.對于計算的結果,不強求統(tǒng)一用什么形式來表示,沒有特別要求,就用分數(shù)指數(shù)冪的形式來表示,但結果不能既有分數(shù)指數(shù)又有根式,也不能既有分母又有負指數(shù). 例3 計算下列各式(式中字母都是正數(shù)). (1); (2). 活動:先由學生觀察以上兩個式子的特征,然后分析,四則運算的順序是先算乘方,再算乘除,最后算
31、加減,有括號的先算括號內的,整數(shù)冪的運算性質及運算規(guī)律擴充到分數(shù)指數(shù)冪后,其運算順序仍符合我們以前的四則運算順序,再解答,把自己的答案用投影儀展示出來,相互交流,其中要注意到(1)小題是單項式的乘除運算,可以用單項式的乘除法運算順序進行,要注意符號,第(2)小題是乘方運算,可先按積的乘方計算,再按冪的乘方進行計算,熟悉后可以簡化步驟. 解:(1)原式=[2(-6)(-3)]=4ab0=4a; (2)=m2n-3=. 點評:分數(shù)指數(shù)冪不表示相同因式的積,而是根式的另一種寫法.有了分數(shù)指數(shù)冪,就可把根式轉化成分數(shù)指數(shù)冪的形式,用分數(shù)指數(shù)冪的運算法則進行運算了. 本例主要是指數(shù)冪的運算法則的
32、綜合考查和應用. 變式訓練 求值:(1)3; (2). 解:(1)3==32=9; (2)===m2n-4. 例4 計算下列各式: (1)(-); (2)(a>0). 活動:先由學生觀察以上兩個式子的特征,然后分析,化為同底.利用分數(shù)指數(shù)冪計算,在第(1)小題中,只含有根式,且不是同次根式,比較難計算,但把根式先化為分數(shù)指數(shù)冪再計算,這樣就簡便多了,第(2)小題也是先把根式轉化為分數(shù)指數(shù)冪后再由運算法則計算,最后寫出解答. 解:(1)原式= ==-5; (2)==. 課本本節(jié)練習 1,2,3. 【補充練習】 教師用實物投影儀把題目投射到屏幕上讓學生解答,教師巡
33、視,啟發(fā),對做得好的同學給予表揚鼓勵. 1.(1)下列運算中,正確的是( ) A.a2a3=a6 B.(-a2)3=(-a3)2 C.(-1)0=0 D.(-a2)3=-a6 (2)下列各式①,②,③,④(各式的n∈N,a∈R)中,有意義的是( ) A.①② B.①③ C.①②③④ D.①③④ (3)()2()2等于( ) A.a B.a2 C.a3 D.a4 (4)把根式-2改寫成分數(shù)指數(shù)冪的形式為( ) A. B. C. D. (5)化簡的結果是( ) A.6a
34、 B.-a C.-9a D.9a 2.計算:(1)--2+-3-1+(-1)0=__________. (2)設5x=4,5y=2,則52x-y=__________. 3.已知x+y=12,xy=9且x<y,求的值. 答案:1.(1)D (2)B (3)B (4)A (5)C 2.(1)19 (2)8 3.解:. 因為x+y=12,xy=9,所以(x-y)2=(x+y)2-4xy=144-36=108=427. 又因為x<y,所以x-y=-23=-6. 所以原式===-. 1.化簡:. 活動:學生觀察式子特點,考慮x的指數(shù)之間的關系可以得到解題思路
35、,應對原式進行因式分解,根據(jù)本題的特點,注意到: x-1=-13=; x+1=+13=; . 構建解題思路教師適時啟發(fā)提示. 解: = = = =. 點撥:解這類題目,要注意運用以下公式, =a-b, =a+b, =ab. 2.已知,探究下列各式的值的求法. (1)a+a-1;(2)a2+a-2;(3). 解:(1)將,兩邊平方,得a+a-1+2=9,即a+a-1=7; (2)將a+a-1=7兩邊平方,得a2+a-2+2=49,即a2+a-2=47; (3)由于, 所以有=a+a-1+1=8. 點撥:對“條件求值”問題,一定要弄清已知與未知的聯(lián)系,然后采
36、取“整體代換”或“求值后代換”兩種方法求值. 活動:教師,本節(jié)課同學們有哪些收獲?請把你的學習收獲記錄在你的筆記本上,同學們之間相互交流.同時教師用投影儀顯示本堂課的知識要點: (1)分數(shù)指數(shù)冪的意義就是:正數(shù)的正分數(shù)指數(shù)冪的意義是=(a>0,m,n∈N*,n>1),正數(shù)的負分數(shù)指數(shù)冪的意義是==(a>0,m,n∈N*,n>1),零的正分數(shù)次冪等于零,零的負分數(shù)指數(shù)冪沒有意義. (2)規(guī)定了分數(shù)指數(shù)冪的意義后,指數(shù)的概念就從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù). (3)有理數(shù)指數(shù)冪的運算性質:對任意的有理數(shù)r,s,均有下面的運算性質: ①aras=ar+s(a>0,r,s∈Q), ②(a
37、r)s=ars(a>0,r,s∈Q), ③(ab)r=arbr(a>0,b>0,r∈Q). (4)說明兩點: ①分數(shù)指數(shù)冪的意義是一種規(guī)定,我們前面所舉的例子只表明這種規(guī)定的合理性,其中沒有推出關系. ②整數(shù)指數(shù)冪的運算性質對任意的有理數(shù)指數(shù)冪也同樣適用.因而分數(shù)指數(shù)冪與根式可以互化,也可以利用=am來計算. 課本習題2.1A組 2,4. 本節(jié)課是分數(shù)指數(shù)冪的意義的引出及應用,分數(shù)指數(shù)是指數(shù)概念的又一次擴充,要讓學生反復理解分數(shù)指數(shù)冪的意義,教學中可以通過根式與分數(shù)指數(shù)冪的互化來鞏固加深對這一概念的理解,用觀察、歸納和類比的方法完成,由于是硬性的規(guī)定,沒有合理的解釋,因此多
38、安排一些練習,強化訓練,鞏固知識,要輔助以信息技術的手段來完成大容量的課堂教學任務. 第3課時 作者:鄭芳鳴 導入新課 思路1.同學們,既然我們把指數(shù)從正整數(shù)推廣到整數(shù),又從整數(shù)推廣到正分數(shù)到負分數(shù),這樣指數(shù)就推廣到有理數(shù),那么它是否也和數(shù)的推廣一樣,到底有沒有無理數(shù)指數(shù)冪呢?回顧數(shù)的擴充過程,自然數(shù)到整數(shù),整數(shù)到分數(shù)(有理數(shù)),有理數(shù)到實數(shù).并且知道,在有理數(shù)到實數(shù)的擴充過程中,增添的數(shù)是無理數(shù).對無理數(shù)指數(shù)冪,也是這樣擴充而來.既然如此,我們這節(jié)課的主要內容是:教師板書本堂課的課題〔指數(shù)與指數(shù)冪的運算(3)〕之無理數(shù)指數(shù)冪. 思路2.同學們,在初中我們學習了函數(shù)的知識,對函數(shù)有了
39、一個初步的了解,到了高中,我們又對函數(shù)的概念進行了進一步的學習,有了更深的理解,我們僅僅學了幾種簡單的函數(shù),如一次函數(shù)、二次函數(shù)、正比例函數(shù)、反比例函數(shù)、三角函數(shù)等,這些遠遠不能滿足我們的需要,隨著科學的發(fā)展,社會的進步,我們還要學習許多函數(shù),其中就有指數(shù)函數(shù),為了學習指數(shù)函數(shù)的知識,我們必須學習實數(shù)指數(shù)冪的運算性質,為此,我們必須把指數(shù)冪從有理數(shù)指數(shù)冪擴充到實數(shù)指數(shù)冪,因此我們本節(jié)課學習:指數(shù)與指數(shù)冪的運算(3)之無理數(shù)指數(shù)冪,教師板書本節(jié)課的課題. 推進新課 (1)我們知道=1.414 213 56…,那么1.41,1.414,1.414 2,1.414 21,…,是的什么近似
40、值?而1.42,1.415,1.414 3,1.414 22,…,是的什么近似值? (2)多媒體顯示以下圖表:同學們從上面的兩個表中,能發(fā)現(xiàn)什么樣的規(guī)律? 的過剩近似值 的近似值 1.5 11.180 339 89 1.42 9.829 635 328 1.415 9.750 851 808 1.414 3 9.739 872 62 1.414 22 9.738 618 643 1.414 214 9.738 524 602 1.414 213 6 9.738 518 332 1.414 213 57 9.738 517 862 1.414 213 5
41、63 9.738 517 752 … … 的近似值 的不足近似值 9.518 269 694 1.4 9.672 669 973 1.41 9.735 171 039 1.414 9.738 305 174 1.414 2 9.738 461 907 1.414 21 9.738 508 928 1.414 213 9.738 516 765 1.414 213 5 9.738 517 705 1.414 213 56 9.738 517 736 1.414 213 562 … … (3)你能給上述思想起個名字嗎? (4)一個正數(shù)的無理
42、數(shù)次冪到底是一個什么性質的數(shù)呢?如,根據(jù)你學過的知識,能作出判斷并合理地解釋嗎? (5)借助上面的結論你能說出一般性的結論嗎? 活動:教師引導,學生回憶,教師提問,學生回答,積極交流,及時評價學生,學生有困惑時加以解釋,可用多媒體顯示輔助內容: 問題(1)從近似值的分類來考慮,一方面從大于的方向,另一方面從小于的方向. 問題(2)對圖表的觀察一方面從上往下看,再一方面從左向右看,注意其關聯(lián). 問題(3)上述方法實際上是無限接近,最后是逼近. 問題(4)對問題給予大膽猜測,從數(shù)軸的觀點加以解釋. 問題(5)在(3)(4)的基礎上,推廣到一般的情形,即由特殊到一般. 討論結果:(1
43、)1.41,1.414,1.414 2,1.414 21,…這些數(shù)都小于,稱的不足近似值,而1.42,1.415,1.414 3,1.414 22,…,這些數(shù)都大于,稱的過剩近似值. (2)第一個表:從大于的方向逼近時,就從51.5,51.42,51.415,51.414 3,51.414 22,…,即大于的方向逼近. 第二個表:從小于的方向逼近時,就從51.4,51.41,51.414,51.414 2,51.414 21,…,即小于的方向逼近. 從另一角度來看這個問題,在數(shù)軸上近似地表示這些點,數(shù)軸上的數(shù)字表明一方面從51.4,51.41,51.414,51.414 2,51.414
44、 21,…,即小于的方向接近,而另一方面從51.5,51.42,51.415,51.414 3,51.414 22,…,即大于的方向接近,可以說從兩個方向無限地接近,即逼近,所以是一串有理數(shù)指數(shù)冪51.4,51.41,51.414,51.414 2,51.414 21,…,和另一串有理數(shù)指數(shù)冪51.5,51.42,51.415,51.414 3,51.414 22,…,按上述變化規(guī)律變化的結果,事實上表示這些數(shù)的點從兩個方向向表示的點靠近,但這個點一定在數(shù)軸上,由此我們可得到的結論是一定是一個實數(shù),即51.4<51.41<51.414<51.414 2<51.414 21<…<<…<51.41
45、4 22<51.414 3<51.415<51.42<51.5. 充分表明是一個實數(shù). (3)逼近思想,事實上里面含有極限的思想,這是以后要學的知識. (4)根據(jù)(2)(3)我們可以推斷是一個實數(shù),猜測一個正數(shù)的無理數(shù)次冪是一個實數(shù). (5)無理數(shù)指數(shù)冪的意義: 一般地,無理數(shù)指數(shù)冪aα(a>0,α是無理數(shù))是一個確定的實數(shù). 也就是說無理數(shù)可以作為指數(shù),并且它的結果是一個實數(shù),這樣指數(shù)概念又一次得到推廣,在數(shù)的擴充過程中,我們知道有理數(shù)和無理數(shù)統(tǒng)稱為實數(shù).我們規(guī)定了無理數(shù)指數(shù)冪的意義,知道它是一個確定的實數(shù),結合前面的有理數(shù)指數(shù)冪,那么,指數(shù)冪就從有理數(shù)指數(shù)冪擴充到實數(shù)指數(shù)冪.
46、 (1)為什么在規(guī)定無理數(shù)指數(shù)冪的意義時,必須規(guī)定底數(shù)是正數(shù)? (2)無理數(shù)指數(shù)冪的運算法則是怎樣的?是否與有理數(shù)指數(shù)冪的運算法則相通呢? (3)你能給出實數(shù)指數(shù)冪的運算法則嗎? 活動:教師組織學生互助合作,交流探討,引導他們用反例說明問題,注意類比,歸納. 對問題(1)回顧我們學習分數(shù)指數(shù)冪的意義時對底數(shù)的規(guī)定,舉例說明. 對問題(2)結合有理數(shù)指數(shù)冪的運算法則,既然無理數(shù)指數(shù)冪aα(a>0,α是無理數(shù))是一個確定的實數(shù),那么無理數(shù)指數(shù)冪的運算法則應當與有理數(shù)指數(shù)冪的運算法則類似,并且相通. 對問題(3)有了有理數(shù)指數(shù)冪的運算法則和無理數(shù)指數(shù)冪的運算法則,實數(shù)的運算法則自然就
47、得到了. 討論結果:(1)底數(shù)大于零的必要性,若a=-1,那么aα是+1還是-1就無法確定了,這樣就造成混亂,規(guī)定了底數(shù)是正數(shù)后,無理數(shù)指數(shù)冪aα是一個確定的實數(shù),就不會再造成混亂. (2)因為無理數(shù)指數(shù)冪是一個確定的實數(shù),所以能進行指數(shù)的運算,也能進行冪的運算,有理數(shù)指數(shù)冪的運算性質,同樣也適用于無理數(shù)指數(shù)冪.類比有理數(shù)指數(shù)冪的運算性質可以得到無理數(shù)指數(shù)冪的運算法則: ①aras=ar+s(a>0,r,s都是無理數(shù)). ②(ar)s=ars(a>0,r,s都是無理數(shù)). ③(ab)r=arbr(a>0,b>0,r是無理數(shù)). (3)指數(shù)冪擴充到實數(shù)后,指數(shù)冪的運算性質也就推廣到了
48、實數(shù)指數(shù)冪. 實數(shù)指數(shù)冪的運算性質: 對任意的實數(shù)r,s,均有下面的運算性質: ①aras=ar+s(a>0,r,s∈R). ②(ar)s=ars(a>0,r,s∈R). ③(ab)r=arbr(a>0,b>0,r∈R). 例1 利用函數(shù)計算器計算.(精確到0.001) (1)0.32.1;(2)3.14-3;(3);(4). 活動:教師教會學生利用函數(shù)計算器計算,熟悉計算器的各鍵的功能,正確輸入各類數(shù),算出數(shù)值,對于(1),可先按底數(shù)0.3,再按鍵,再按冪指數(shù)2.1,最后按,即可求得它的值; 對于(2),先按底數(shù)3.14,再按鍵,再按負號鍵,再按3,最后按即可; 對于
49、(3),先按底數(shù)3.1,再按鍵,再按34,最后按即可; 對于(4),這種無理指數(shù)冪,可先按底數(shù)3,其次按鍵,再按鍵,再按3,最后按鍵.有時也可按或鍵,使用鍵上面的功能去運算. 學生可以相互交流,挖掘計算器的用途. 解:(1)0.32.1≈0.080;(2)3.14-3≈0.032;(3)≈2.336;(4)≈6.705. 點評:熟練掌握用計算器計算冪的值的方法與步驟,感受現(xiàn)代技術的威力,逐步把自己融入現(xiàn)代信息社會;用四舍五入法求近似值,若保留小數(shù)點后n位,只需看第(n+1)位能否進位即可. 例2 求值或化簡. (1)(a>0,b>0); (2)(a>0,b>0); (3)+-.
50、 活動:學生觀察,思考,所謂化簡,即若能化為常數(shù)則化為常數(shù),若不能化為常數(shù)則應使所化式子達到最簡,對既有分數(shù)指數(shù)冪又有根式的式子,應該把根式統(tǒng)一化為分數(shù)指數(shù)冪的形式,便于運算,教師有針對性地提示引導,對(1)由里向外把根式化成分數(shù)指數(shù)冪,要緊扣分數(shù)指數(shù)冪的意義和運算性質,對(2)既有分數(shù)指數(shù)冪又有根式,應當統(tǒng)一起來,化為分數(shù)指數(shù)冪,對(3)有多重根號的式子,應先去根號,這里是二次根式,被開方數(shù)應湊完全平方,這樣,把5,7,6拆成()2+()2,22+()2,22+()2,并對學生作及時的評價,注意總結解題的方法和規(guī)律. 解:(1)== . 點評:根式的運算常常化成冪的運算進行,計算結果如
51、沒有特殊要求,就用根式的形式來表示. (2) = =a0b0=. 點評:化簡這類式子一般有兩種辦法,一是首先用負指數(shù)冪的定義把負指數(shù)化成正指數(shù),另一個方法是采用分式的基本性質把負指數(shù)化成正指數(shù). (3)+- =+- =-+2--2+=0. 點評:考慮根號里面的數(shù)是一個完全平方數(shù),千萬注意方根的性質的運用. 例3 已知,n∈N*,求(x+)n的值. 活動:學生思考,觀察題目的特點,從整體上看,應先化簡,然后再求值,要有預見性,與具有對稱性,它們的積是常數(shù)1,為我們解題提供了思路,教師引導學生考慮問題的思路,必要時給予提示. =. 這時應看到1+x2=, 這樣先算出1
52、+x2,再算出,代入即可. 解:將代入1+x2,得1+x2=, 所以(x+)n= = ==5. 點評:運用整體思想和完全平方公式是解決本題的關鍵,要深刻理解這種做法. 課本習題2.1A組 3. 利用投影儀投射下列補充練習: 1.化簡:的結果是( ) A. B. C. D. 解析:根據(jù)本題的特點,注意到它的整體性,特別是指數(shù)的規(guī)律性,我們可以進行適當?shù)淖冃危? 因為,所以原式的分子分母同乘以. 依次類推,所以. 答案:A 2.計算0.5+0.1-2+-3π0+9-0.5+490.52-4. 解:原式= =+100+-3++=100
53、. 3.計算+(a≥1). 解:原式=+=+1+|-1|(a≥1). 本題可以繼續(xù)向下做,去掉絕對值,作為思考留作課下練習. 4.設a>0,,則(x+)n的值為__________. 解析:1+x2=. 這樣先算出1+x2,再算出, 將代入1+x2,得1+x2=. 所以(x+)n= ==a. 答案:a 參照我們說明無理數(shù)指數(shù)冪的意義的過程,請你說明無理數(shù)指數(shù)冪的意義. 活動:教師引導學生回顧無理數(shù)指數(shù)冪的意義的過程,利用計算器計算出的近似值,取它的過剩近似值和不足近似值,根據(jù)這些近似值計算的過剩近似值和不足近似值,利用逼近思想,“逼出”的意義,學生合作交流,在投影儀
54、上展示自己的探究結果. 解:=1.732 050 80…,取它的過剩近似值和不足近似值如下表. 的過剩近似值 的過剩近似值 的不足近似值 的不足近似值 1.8 3.482 202 253 1.7 3.249 009 585 1.74 3.340 351 678 1.73 3.317 278 183 1.733 3.324 183 446 1.731 3.319 578 342 1.732 1 3.322 110 36 1.731 9 3.321 649 849 1.732 06 3.322 018 252 1.732 04 3.321 972
55、2 1.732 051 3.321 997 529 1.732 049 3.321 992 923 1.732 050 9 3.321 997 298 1.732 050 7 3.321 996 838 1.732 050 81 3.321 997 091 1.732 050 79 3.321 997 045 … … … … 我們把用2作底數(shù),的不足近似值作指數(shù)的各個冪排成從小到大的一列數(shù) 21.7,21.72,21.731,21.731 9,…, 同樣把用2作底數(shù),的過剩近似值作指數(shù)的各個冪排成從大到小的一列數(shù): 21.8,21.74,21.733,2
56、1.732 1,…,不難看出的過剩近似值和不足近似值相同的位數(shù)越多,即的近似值精確度越高,以其過剩近似值和不足近似值為指數(shù)的冪2α會越來越趨近于同一個數(shù),我們把這個數(shù)記為, 即21.7<21.73<21.731<21.731 9<…<<…<21.732 1<21.733<21.74<21.8. 也就是說是一個實數(shù),=3.321 997 …也可以這樣解釋: 當?shù)倪^剩近似值從大于的方向逼近時,2的近似值從大于的方向逼近; 當?shù)牟蛔憬浦祻男∮诘姆较虮平鼤r,2的近似值從小于的方向逼近. 所以就是一串有理指數(shù)冪21.7,21.73,21.731,21.731 9,…,和另一串有理指數(shù)冪21.
57、8,21.74,21.733,21.732 1,…,按上述規(guī)律變化的結果,即≈3.321 997. (1)無理指數(shù)冪的意義. 一般地,無理數(shù)指數(shù)冪aα(a>0,α是無理數(shù))是一個確定的實數(shù). (2)實數(shù)指數(shù)冪的運算性質: 對任意的實數(shù)r,s,均有下面的運算性質: ①aras=ar+s(a>0,r,s∈R). ②(ar)s=ars(a>0,r,s∈R). ③(ab)r=arbr(a>0,b>0,r∈R). (3)逼近的思想,體會無限接近的含義. 課本習題2.1 B組 2. 無理數(shù)指數(shù)是指數(shù)概念的又一次擴充,教學中要讓學生通過多媒體的演示,理解無理數(shù)指數(shù)冪的意義,教
58、學中也可以讓學生自己通過實際情況去探索,自己得出結論,加深對概念的理解,本堂課內容較為抽象,又不能進行推理,只能通過多媒體的教學手段,讓學生體會,特別是逼近的思想、類比的思想,多作練習,提高學生理解問題、分析問題的能力. 【備用習題】 1.以下各式中成立且結果為最簡根式的是( ) A.= B.=y(tǒng) C.= D.(-)3=5+125-2 答案:B 2.對于a>0,r,s∈Q,以下運算中正確的是( ) A.aras=ars B.(ar)s=ars C.r=arbs D.arbs=(ab)r+s 答案:B 3.式子=成立當且僅當( ) A.≥0
59、 B.x≠1 C.x<1 D.x≥2 解析:方法一: 要使式子=成立,需x-1>0,x-2≥0,即x≥2. 若x≥2,則式子=成立. 故選D. 方法二: 對A,式子≥0連式子成立也保證不了,尤其x-2≤0,x-1<0時式子不成立. 對B,x-1<0時式子不成立. 對C,x<1時無意義. 對D正確. 答案:D 4.化簡(1<b<2). 解:==-1(1<b<2). 5.計算+. 解:令x=+, 兩邊立方得x3=2++2-+3(+),即x3=4-3x,x3+3x-4=0.∴(x-1)(x2+x+4)=0. ∵x2+x+4=2+>0,∴x-1=0,即x=1. ∴+=1. 6EDBC3191F2351DD815FF33D4435F3756EDBC3191F2351DD815FF33D4435F3756EDBC3191F2351DD815FF33D4435F3756EDBC3191F2351DD815FF33D4435F3756EDBC3191F2351DD815FF33D4435F3756EDBC3191F2351DD815FF33D4435F375
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 房地產銷售工作總結區(qū)域績效完成情況明年工作計劃
- 人資部部門年終總結人力資源規(guī)劃與實施
- 教師課程總結匯報提升教學質量與反思教學過程
- 2025年中小學校黨建工作計劃2篇例文
- 2025年學校黨建工作計劃(工作要點)5篇范文
- 2025年學校黨建工作計劃例文【3份】
- 初中英語知識點總結:英語副詞精華講解
- 施工安全事故易發(fā)期
- 安全管理人員安全工作總結范文
- 初中英語重點語法:三大從句總結
- 鐵路廣場冰雪等極端天氣的安全應急預案
- 安全培訓資料:某公司職業(yè)病防治宣傳教育培訓制度
- 初中英語最齊全的8大時態(tài)
- 硝酸使用安全和典型案例、對策
- 安全培訓資料:某公司職業(yè)病危害事故處置與報告制度