九九热最新网址,777奇米四色米奇影院在线播放,国产精品18久久久久久久久久,中文有码视频,亚洲一区在线免费观看,国产91精品在线,婷婷丁香六月天

《創(chuàng)新設(shè)計》2014屆高考數(shù)學人教A版(理)一輪復習【配套word版文檔】:第九篇 第5講 雙曲線

上傳人:每**** 文檔編號:40522047 上傳時間:2021-11-16 格式:DOC 頁數(shù):13 大?。?22.50KB
收藏 版權(quán)申訴 舉報 下載
《創(chuàng)新設(shè)計》2014屆高考數(shù)學人教A版(理)一輪復習【配套word版文檔】:第九篇 第5講 雙曲線_第1頁
第1頁 / 共13頁
《創(chuàng)新設(shè)計》2014屆高考數(shù)學人教A版(理)一輪復習【配套word版文檔】:第九篇 第5講 雙曲線_第2頁
第2頁 / 共13頁
《創(chuàng)新設(shè)計》2014屆高考數(shù)學人教A版(理)一輪復習【配套word版文檔】:第九篇 第5講 雙曲線_第3頁
第3頁 / 共13頁

下載文檔到電腦,查找使用更方便

8 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《《創(chuàng)新設(shè)計》2014屆高考數(shù)學人教A版(理)一輪復習【配套word版文檔】:第九篇 第5講 雙曲線》由會員分享,可在線閱讀,更多相關(guān)《《創(chuàng)新設(shè)計》2014屆高考數(shù)學人教A版(理)一輪復習【配套word版文檔】:第九篇 第5講 雙曲線(13頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、 第5講 雙曲線 A級 基礎(chǔ)演練(時間:30分鐘 滿分:55分) 一、選擇題(每小題5分,共20分) 1.已知雙曲線中心在原點且一個焦點為F1(-,0),點P位于該雙曲線上,線段PF1的中點坐標為(0,2),則雙曲線的方程是 (  ). A.-y2=1 B.x2-=1 C.-=1 D.-=1 解析 設(shè)雙曲線的標準方程為-=1(a>0,b>0),由PF1的中點為(0,2)知,PF2⊥x軸,P(,4),即=4,b2=4a,∴5-a2=4a,a=1,b=2,∴雙曲線方程為x2-=1. 答案 B 2.(2012·湖

2、南)已知雙曲線C:-=1的焦距為10,點P(2,1)在C的漸近線上,則C的方程為 (  ). A.-=1 B.-=1 C.-=1 D.-=1 解析 不妨設(shè)a>0,b>0,c=. 據(jù)題意,2c=10,∴c=5. ① 雙曲線的漸近線方程為y=±x,且P(2,1)在C的漸近線上,∴1=. ② 2 / 13 由①②解得b2=5,a2=20,故正確選項為A. 答案 A 3.已知雙曲線x2-=1的左頂點為A1,右焦點為F2,P為雙曲線右支上一點,則·的最小值為

3、 (  ). A.-2 B.- C.1 D.0 解析 設(shè)點P(x,y),其中x≥1.依題意得A1(-1,0),F(xiàn)2(2,0),則有=x2-1,y2=3(x2-1),·=(-1-x,-y)·(2-x,-y)=(x+1)(x-2)+y2=x2+3(x2-1)-x-2=4x2-x-5=42-,其中x≥1.因此,當x=1時,·取得最小值-2,選A. 答案 A 4.如圖,中心均為原點O的雙曲線與橢圓有公共焦點,M,N是雙曲線的兩頂點.若M,O,N將橢圓長軸四等分,則雙曲線與橢圓的離心率的比值是 (  ). A.3 B.

4、2 C. D. 解析 設(shè)雙曲線的方程為-=1,橢圓的方程為+=1,由于M,O,N將橢圓長軸四等分,所以a2=2a1,又e1=,e2=,所以==2. 答案 B 二、填空題(每小題5分,共10分) 5.已知雙曲線C1:-=1(a>0,b>0)與雙曲線C2:-=1有相同的漸近線,且C1的右焦點為F(,0),則a=________,b=________. 解析 與雙曲線-=1有共同漸近線的雙曲線的方程可設(shè)為-=λ(λ>0),即-=1.由題意知c=,則4λ+16λ=5?λ=,則a2=1,b2=4.又a>0,b>0,故a=1,b=2.

5、答案 1 2 6.(2012·江蘇)在平面直角坐標系xOy中,若雙曲線-=1的離心率為,則m的值為________. 解析 由題意得m>0,∴a=,b=. ∴c=,由e==,得=5, 解得m=2. 答案 2 三、解答題(共25分) 7.(12分)中心在原點,焦點在x軸上的一橢圓與一雙曲線有共同的焦點F1,F(xiàn)2,且|F1F2|=2,橢圓的長半軸與雙曲線半實軸之差為4,離心率之比為3∶7. (1)求這兩曲線方程; (2)若P為這兩曲線的一個交點,求cos∠F1PF2的值. 解 (1)由已知:c=,設(shè)橢圓長、短半軸長分別為a,b,雙曲線半實、虛軸長分別為m,n, 則

6、 解得a=7,m=3.∴b=6,n=2. ∴橢圓方程為+=1,雙曲線方程為-=1. (2)不妨設(shè)F1,F(xiàn)2分別為左、右焦點,P是第一象限的一個交點,則|PF1|+|PF2|=14,|PF1|-|PF2|=6, 所以|PF1|=10,|PF2|=4.又|F1F2|=2, ∴cos∠F1PF2= ==. 8.(13分)(2012·合肥聯(lián)考)已知雙曲線的中心在原點,焦點F1,F(xiàn)2在坐標軸上,離心率為,且過點(4,-). (1)求雙曲線方程; (2)若點M(3,m)在雙曲線上,求證:·=0; (3)求△F1MF2的面積. (1)解 ∵e=,∴設(shè)雙曲線方程

7、為x2-y2=λ. 又∵雙曲線過(4,-)點,∴λ=16-10=6, ∴雙曲線方程為x2-y2=6. (2)證明 法一 由(1)知a=b=,c=2, ∴F1(-2,0),F(xiàn)2(2,0), ∴kMF1=,kMF2=, ∴kMF1·kMF2==, 又點(3,m)在雙曲線上,∴m2=3, ∴kMF1·kMF2=-1,MF1⊥MF2,·=0. 法二 ∵=(-3-2,-m),=(2-3,-m), ∴·=(3+2)(3-2)+m2=-3+m2. ∵M在雙曲線上,∴9-m2=6, ∴m2=3,∴·=0. (3)解 ∵在△F1MF2中

8、,|F1F2|=4,且|m|=, ∴S△F1MF2=·|F1F2|·|m|=×4×=6. B級 能力突破(時間:30分鐘 滿分:45分) 一、選擇題(每小題5分,共10分) 1.(2013·北京西城模擬)過雙曲線-=1(a>0,b>0)的左焦點F(-c,0)(c>0)作圓x2+y2=的切線,切點為E,延長FE交雙曲線右支于點P,若+=2,則雙曲線的離心率為 (  ). A. B. C. D. 解析 設(shè)雙曲線的右焦點為A,則=

9、-,故+=-==2,即OE=AP.所以E是PF的中點,所以AP=2OE=2×=a.所以PF=3a.在Rt△APF中,a2+(3a)2=(2c)2,即10a2=4c2,所以e2=,即離心率為e= =,選C. 答案 C 2.(2012·福建)已知雙曲線-=1的右焦點與拋物線y2=12x的焦點重合,則該雙曲線的焦點到其漸近線的距離等于 (  ). A. B.4 C.3 D.5 解析 易求得拋物線y2=12x的焦點為(3,0),故雙曲線-=1的右焦點為(3,0),即c=3,故32=4+b2,∴b2=5,∴雙曲線的漸近線方程

10、為y=±x,∴雙曲線的右焦點到其漸近線的距離為=. 答案 A 二、填空題(每小題5分,共10分) 3.(2013·臨沂聯(lián)考)已知點F是雙曲線-=1(a>0,b>0)的左焦點,點E是該雙曲線的右頂點,過點 F且垂直于x軸的直線與雙曲線交于A,B兩點,若△ABE是銳角三角形,則該雙曲線的離心率e的取值范圍為________. 解析 由題意知,△ABE為等腰三角形.若△ABE是銳角三角形,則只需要∠AEB為銳角.根據(jù)對稱性,只要∠AEF<即可.直線AB的方程為x=-c,代入雙曲線方程得y2=,取點A,則|AF|=,|EF|=a+c,只要|AF|

11、<|EF|就能使∠AEF<,即<a+c,即b2<a2+ac,即c2-ac-2a2<0,即e2-e-2<0,即-1<e<2.又e>1,故1<e<2. 答案 (1,2) 4.(2012·湖北)如圖,雙曲線-=1(a,b>0)的兩頂點為A1,A2,虛軸兩端點為B1,B2,兩焦點為F1,F(xiàn)2.若以A1A2為直徑的圓內(nèi)切于菱形F1B1F2B2,切點分別為A,B,C,D.則 (1)雙曲線的離心率e=________; (2)菱形F1B1F2B2的面積S1與矩形ABCD的面積S2的比值=________. 解析 (1)由題

12、意可得a =bc,∴a4-3a2c2+c4=0,∴e4-3e2+1=0,∴e2=,∴e=. (2)設(shè)sin θ=,cos θ=,====e2-=. 答案 (1) (2) 三、解答題(共25分) 5.(12分)已知雙曲線-=1(a>0,b>0)的兩個焦點分別為F1,F(xiàn)2,點P在雙曲線上,且 PF1⊥PF2,|PF1|=8,|PF2|=6. (1)求雙曲線的方程; (2)設(shè)過雙曲線左焦點F1的直線與雙曲線的兩漸近線交于A,B兩點,且=2,求此直線方程. 解 (1)由題意知,在Rt△PF1F2中, |F1F2|=, 即2c==10,所以c=5. 由橢圓的定義

13、,知2a=|PF1|-|PF2|=8-6=2,即a=1. 所以b2=c2-a2=24,故雙曲線的方程為x2-=1. (2)左焦點為F1(-5,0),兩漸近線方程為y=±2x. 由題意得過左焦點的該直線的斜率存在. 設(shè)過左焦點的直線方程為y=k(x+5),則與兩漸近線的交點為和. 由=2,得 =2或者 =2, 解得k=±. 故直線方程為y=±(x+5). 6.(13分)(2011·江西)P(x0,y0)(x0≠±a)是雙曲線E:-=1(a>0,b>0)上一點,M,N分別是雙曲線E的左,右頂點,直線PM,PN的斜率之

14、積為. (1)求雙曲線的離心率; (2)過雙曲線E的右焦點且斜率為1的直線交雙曲線于A,B兩點,O為坐標原點,C為雙曲線上一點,滿足=λ+,求λ的值. 解 (1)由點P(x0,y0)(x0≠±a)在雙曲線-=1上,有-=1. 由題意有·=, 可得a2=5b2,c2=a2+b2=6b2,e==. (2)聯(lián)立得4x2-10cx+35b2=0. 設(shè)A(x1,y1),B(x2,y2), 則 ① 設(shè)=(x3,y3),=λ+,即 又C為雙曲線上一點,即x-5y=5b2,有 (λx1+x2)2-5(λy1+y2)2=5b2. 化簡

15、得λ2(x-5y)+(x-5y)+2λ(x1x2-5y1y2)=5b2. ② 又A(x1,y1),B(x2,y2)在雙曲線上, 所以x-5y=5b2,x-5y=5b2. 由①式又有x1x2-5y1y2=x1x2-5(x1-c)(x2-c)=-4x1x2+5c(x1+x2)-5c2=10b2, ②式可化為λ2+4λ=0,解得λ=0或λ=-4. 特別提醒:教師配贈習題、課件、視頻、圖片、文檔等各種電子資源見《創(chuàng)新設(shè)計·高考總復習》光盤中內(nèi)容. 希望對大家有所幫助,多謝您的瀏覽!

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!