《文科數(shù)學 北師大版練習:第八章 第八節(jié) 第一課時 直線與圓錐曲線的位置關(guān)系 Word版含解析》由會員分享,可在線閱讀,更多相關(guān)《文科數(shù)學 北師大版練習:第八章 第八節(jié) 第一課時 直線與圓錐曲線的位置關(guān)系 Word版含解析(8頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、
課時作業(yè)
A組——基礎(chǔ)對點練
1.(20xx·西安模擬)拋物線y2=4x的焦點為F,準線為l,經(jīng)過F且斜率為的直線與拋物線在x軸上方的部分相交于點A,AK⊥l,垂足為K,則△AKF的面積是( )
A.4 B.3
C.4 D.8
解析:∵y2=4x,∴F(1,0),l:x=-1,過焦點F且斜率為的直線l1:y=(x-1),與y2=4x聯(lián)立,解得x=3或x=(舍),故A(3,2),∴AK=4,
∴S△AKF=×4×2=4.故選C.
答案:C
2.已知直線l:y=2x+3被橢圓C:+=1(a>b>0)截得的弦長為
2、7,則下列直線中被橢圓C截得的弦長一定為7的有( )
①y=2x-3;②y=2x+1;③y=-2x-3;
④y=-2x+3.
A.1條 B.2條
C.3條 D.4條
解析:直線y=2x-3與直線l關(guān)于原點對稱,直線y=-2x-3與直線l關(guān)于x軸對稱,直線y=-2x+3與直線l關(guān)于y軸對稱,故有3條直線被橢圓C截得的弦長一定為7.
答案:C
3.(20xx·郴州模擬)過點P(-,0)作直線l與圓O:x2+y2=1交于A、B兩點,O為坐標原點,設(shè)∠AOB=θ,且θ∈,當△AOB的面積為時,直線l的斜率為( )
A. B.±
C. D.±
3、
解析:∵△AOB的面積為,
∴×1×1×sin θ=,
∴sin θ=.
∵θ∈,∴θ=,
∴圓心到直線l的距離為.
設(shè)直線l的方程為y=k(x+),
即kx-y+k=0,
∴=,
∴k=±.
答案:B
4.已知過定點(1,0)的直線與拋物線x2=y(tǒng)相交于不同的A(x1,y1),B(x2,y2)兩點,則(x1-1)(x2-1)=________.
解析:設(shè)過定點(1,0)的直線的方程為y=k(x-1),代入拋物線方程x2=y(tǒng)得x2-kx+k=0,故x1+x2=k,x1x2=k,因此(x1-1)(x2-1)=x1x2-(x1+x2)
4、+1=1.
答案: 1
5.已知雙曲線-=1(a>0,b>0)的焦距為2c,右頂點為A,拋物線x2=2py(p>0)的焦點為F.若雙曲線截拋物線的準線所得線段長為2c,且|FA|=c,則雙曲線的漸近線方程為______________.
解析:拋物線x2=2py的準線方程為y=-,與雙曲線的方程聯(lián)立得x2=a2(1+),根據(jù)已知得a2(1+)=c2 ①.由|AF|=c,得+a2=c2 ②.由①②可得a2=b2,即a=b,所以所求雙曲線的漸近線方程是y=±x.
答案:y=±x
6.過雙曲線x2-=1的右焦點作直線l交雙曲線于A、B兩點,若使得|AB
5、|=λ的直線l恰有3條,則λ=________.
解析:∵使得|AB|=λ的直線l恰有3條.
∴根據(jù)對稱性,其中有一條直線與實軸垂直.
此時A,B的橫坐標為,代入雙曲線方程,
可得y=±2,故|AB|=4.
∵雙曲線的兩個頂點之間的距離是2,小于4,
∴過雙曲線的焦點一定有兩條直線使得交點之間的距離等于4,
綜上可知|AB|=4時,有三條直線滿足題意.
∴λ=4.
答案:4
7.設(shè)橢圓E的方程為+=1(a>b>0),點O為坐標原點,點A的坐標為(a,0),點B的坐標為(0,b),點M在線段AB上,滿足|BM|=2|MA|,直線OM的斜率為.
(1)求
6、E的離心率e;
(2)設(shè)點C的坐標為(0,-b),N為線段AC的中點,點N關(guān)于直線AB的對稱點的縱坐標為,求E的方程.
解析:(1)由題設(shè)條件知,點M的坐標為,又kO M=,從而=,
進而得a=b,c==2b,故e==.
(2)由題設(shè)條件和(1)的計算結(jié)果可得,直線AB的方程為+=1,點N的坐標為.
設(shè)點N關(guān)于直線AB的對稱點S的坐標為,則線段NS的中點T的坐標為.又點T在直線AB上,且kNS·kAB=-1,
從而有解得b=3.
所以a=3,故橢圓E的方程為+=1.
8.已知中心在坐標原點,焦點在x軸上的橢圓過點P(2,),且它的離心率e=.
(1)求橢圓的標準方程
7、;
(2)與圓(x-1)2+y2=1相切的直線l:y=kx+t交橢圓于M,N兩點,若橢圓上一點C滿足+=λ,求實數(shù)λ的取值范圍.
解析:(1)設(shè)橢圓的標準方程為+=1(a>b>0),
由已知得:解得
所以橢圓的標準方程為+=1.
(2)因為直線l:y=kx+t與圓(x-1)2+y2=1相切,
所以=1?2k=(t≠0),
把y=kx+t代入+=1并整理得:
(3+4k2)x2+8ktx+(4t2-24)=0,
設(shè)M(x1,y1),N(x2,y2),則有x1+x2=-,
y1+y2=kx1+t+kx2+t=k(x1+x2)+2t=,
因為λ=(x1+x2,y1+
8、y2),
所以C,
又因為點C在橢圓上,所以,
+=1
?λ2==,
因為t2>0,所以2++1>1,
所以0<λ2<2,所以λ的取值范圍為(-,0)∪(0,).
B組——能力提升練
1.已知直線y=1-x與雙曲線ax2+by2=1(a>0,b<0)的漸近線交于A、B兩點,且過原點和線段AB中點的直線的斜率為-,則的值為( )
A.- B.-
C.- D.-
解析:由雙曲線ax2+by2=1知其漸近線方程為ax2+by2=0,設(shè)A(x1,y1),B(x2,y2),則有ax+by=0①,ax+by=0②,由①-②得a(x-x)=-b
9、(y-y),即a(x1+x2)(x1-x2)=-b(y1+y2)(y1-y2),由題意可知x1≠x2,且x1+x2≠0,∴·=-,設(shè)AB的中點為M(x0,y0),則kOM====-,又知kAB=-1,∴-×(-1)=-,∴=-,故選A.
答案:A
2.已知雙曲線-=1(a>0,b>0)的實軸長為4,虛軸的一個端點與拋物線x2=2py(p>0)的焦點重合,直線y=kx-1與拋物線相切且與雙曲線的一條漸近線平行,則p=( )
A.4 B.3
C.2 D.1
解析:由拋物線x2=2py(p>0)可知其焦點為,所以b=,又a=2,因此雙曲線的
10、方程為-=1,漸近線方程為y=±x.直線y=kx-1與雙曲線的一條漸近線平行,不妨設(shè)k=,由可得x2=2p=x-2p,得x2-x+2p=0,則Δ=2-8p=0,解得p=4.故選A.
答案:A
3.在拋物線y=x2上關(guān)于直線y=x+3對稱的兩點M,N的坐標分別為________.
解析:設(shè)直線MN的方程為y=-x+b,代入y=x2中,
整理得x2+x-b=0,令Δ=1+4b>0,
∴b>-.
設(shè)M(x1,y1),N(x2,y2),則x1+x2=-1,
=-+b=+b,
由在直線y=x+3上,
即+b=-+3,解得b=2,
聯(lián)立得
解得
答案:(-2,
11、4),(1,1)
4.過拋物線y2=4x的焦點F的直線交該拋物線于A,B兩點.若|AF|=3,則|BF|=________.
解析:拋物線y2=4x的準線為x=-1,焦點為F(1,0),設(shè)A(x1,y1),B(x2,y2).由拋物線的定義可知|AF|=x1+1=3,所以x1=2,所以y1=±2,由拋物線關(guān)于x軸對稱,假設(shè)A(2,2),由A,F(xiàn),B三點共線可知直線AB的方程為y-0=2(x-1),代入拋物線方程消去y得2x2-5x+2=0,求得x=2或,所以x2=,故|BF|=.
答案:
5.定義:在平面內(nèi),點P到曲線Γ上的點的距離的最小值稱為點P到曲線Γ的距離.在平面直角坐標
12、系xOy中,已知圓M:(x-)2+y2=12及點A(-,0),動點P到圓M的距離與到點A的距離相等,記P點的軌跡為曲線W.
(1)求曲線W的方程;
(2)過原點的直線l(l不與坐標軸重合)與曲線W交于不同的兩點C,D,點E在曲線W上,且CE⊥CD,直線DE與x軸交于點F,設(shè)直線DE、CF的斜率分別為k1、k2,求.
解析:(1)由題意知:點P在圓內(nèi)且不為圓心,易知|PA|+|PM|=2>2=|AM|,所以P點的軌跡為以A、M為焦點的橢圓,設(shè)橢圓方程為+=1(a>b>0),則?
所以b2=1,故曲線W的方程為+y2=1.
(2)設(shè)C(x1,y1)(x1y1≠0),E
13、(x2,y2),則D(-x1,-y1),則直線CD的斜率為kCD=,又CE⊥CD,所以直線CE的斜率是kCE=-,記-=k,設(shè)直線CE的方程為y=kx+m,由題意知k≠0,m≠0,由得(1+3k2)x2+6mkx+3m2-3=0,
∴x1+x2=-,
∴y1+y2=k(x1+x2)+2m=,
由題意知x1≠x2,
∴k1=kDE==-=,
∴直線DE的方程為y+y1=(x+x1),
令y=0,得x=2x1,即F(2x1,0).
可得k2=-.∴=-.
6.已知橢圓K:+=1(a>b>0)的左、右焦點分別為F1,F(xiàn)2,其離心率e=,以原點為圓心,橢圓的半焦距為半徑的圓
14、與直線x-y+2=0相切.
(1)求K的方程;
(2)過F2的直線l交K于A,B兩點,M為AB的中點,連接OM并延長交K于點C,若四邊形OACB的面積S滿足: a2=S,求直線l的斜率.
解析:(1)由題意得,解得
故橢圓K的方程為+y2=1.
(2)由于直線l的傾斜角不可為零,所以設(shè)直線l的方程為my=x-1,
與+y2=1聯(lián)立并化簡可得(m2+2)y2+2my-1=0.
設(shè)M(x0,y0),A(x1,y1),B(x2,y2),
則y1+y2=-,y1y2=-,
可得y0=-,x0=my0+1=.
設(shè)C(x,y),又=λ(λ>0),
所以x=λx0,y=λy0.
因為C在K上,故λ2(+y)=1?m2+2=λ2.①
設(shè)h1為點O到直線l的距離,h2為點C到直線l的距離,則==?h2=(λ-1)h1.
又由點到直線的距離公式得,
h1==.
而|AB|=·==,
所以S=|AB|(h1+h2)=·=.
由題意知,S==,所以=?λ=.
將λ=代入①式得m=±1,所以直線l的斜率為±1.