8、)是兩曲線唯一的公共點(diǎn).
(3)解:lnb-lna2-b-ab+a=12ln ba-ba-1ba+1,
∵01.
構(gòu)造函數(shù) (x)=12ln x-x-1x+1(x>1),
則′(x)=12x-x+1-(x-1)(x+1)2
=12x-2(x+1)2
=(x-1)22x(x+1)2>0,
∴ (x)在(1,+∞)上單調(diào)遞增,
又當(dāng)x=1時(shí), (1)=0,
∴x>1時(shí), (x)>0,
即12ln x>x-1x+1,
則有12ln ba>ba-1ba+1成立,
即lnb-lna2>b-ab+a.
即f(b)-f(a)2>b-ab+a.
5.(20
9、15湖北省八市聯(lián)考)定義在R上的函數(shù)g(x)及二次函數(shù)h(x)滿足g(x)+2g(-x)=ex+2ex-9,h(-2)=h(0)=1且h(-3)=-2.
(1)求g(x)和h(x)的解析式;
(2)對于x1,x2∈[-1,1],均有h(x1)+ax1+5≥g(x2)-x2g(x2)成立,求a的取值范圍;
(3)設(shè)f(x)=g(x),x>0,h(x),x≤0,討論方程f[f(x)]=2的解的個數(shù)情況.
解:(1)∵g(x)+2g(-x)=ex+2ex-9,①
g(-x)+2g(x)=e-x+2e-x-9,
即g(-x)+2g(x)=2ex+1ex-9, ②
由①②聯(lián)立解得g
10、(x)=ex-3.
∵h(yuǎn)(x)是二次函數(shù),且h(-2)=h(0)=1,
可設(shè)h(x)=ax(x+2)+1,
由h(-3)=-2,
解得a=-1.
∴h(x)=-x(x+2)+1=-x2-2x+1.
∴g(x)=ex-3,h(x)=-x2-2x+1.
(2)設(shè)φ(x)=h(x)+ax+5=-x2+(a-2)x+6,
F(x)=ex-3-x(ex-3)=(1-x)ex+3x-3,
依題意知,當(dāng)-1≤x≤1時(shí),[φ(x)]min≥[F(x)]max.
∵F′(x)=-ex+(1-x)ex+3=-xex+3在[-1,1]上單調(diào)遞減,
∴[F′(x)]min=F′(1)=3-e>0
11、,
∴F(x)在[-1,1]上單調(diào)遞增,
∴[F(x)]max=F(1)=0,
∴φ(-1)=7-a≥0,φ(1)=a+3≥0,
解得-3≤a≤7,
∴實(shí)數(shù)a的取值范圍為[-3,7].
(3)f(x)的圖象如圖所示.
令T=f(x),則f(T)=2.
∴T1=-1,T2=ln 5,f(x)=-1有兩個解,f(x)=ln 5有3個解.
∴f[f(x)]=2有5個解.
6.已知函數(shù)f(x)=ax-1-ln x(a∈R).
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若函數(shù)f(x)在x=1處取得極值,不等式f(x)≥bx-2對?x∈(0,
+∞)恒成立,求實(shí)數(shù)b的取值范圍;
12、
(3)當(dāng)x>y>e-1時(shí),證明不等式exln(1+y)>eyln(1+x).
(1)解:函數(shù)的定義域是(0,+∞),
且f′(x)=a-1x=ax-1x.
當(dāng)a≤0時(shí),ax-1<0,從而f′(x)<0,函數(shù)f(x)在(0,+∞)上單調(diào)遞減;
當(dāng)a>0時(shí),若0
13、在(0,+∞)上恒成立,只需b≤1+1x-lnxx在(0,+∞)上恒成立.
令g(x)=1x-lnxx,則g′(x)=-1x2-1x2+lnxx2=lnx-2x2.
易知x=e2為函數(shù)g(x)在(0,+∞)內(nèi)唯一的極小值點(diǎn),也是最小值點(diǎn),故[g(x)]min=g(e2)=-1e2,即(1+1x-lnxx)min=1-1e2,故只要b≤1-1e2即可.
所以b的取值范圍是(-∞,1-1e2].
(3)證明:由題意可知,要證不等式exln(1+y)>eyln(1+x)成立,只需證ex+1ln(x+1)>ey+1ln(y+1).
構(gòu)造函數(shù)h(x)=exlnx,則h′(x)=exlnx-exxln2x=ex(lnx-1x)ln2x,h′(x)在(e,+∞)上單調(diào)遞增,
h′(x)>h′(e)>0,
則h(x)在(e,+∞)上單調(diào)遞增.
由于x>y>e-1,所以x+1>y+1>e,
所以ex+1ln(x+1)>ey+1ln(y+1),
即exln(1+y)>eyln(1+x).