《高考理科數(shù)學 第一輪復習測試題19》由會員分享,可在線閱讀,更多相關《高考理科數(shù)學 第一輪復習測試題19(6頁珍藏版)》請在裝配圖網上搜索。
1、
A級 基礎達標演練
(時間:40分鐘 滿分:60分)
一、選擇題(每小題5分,共25分)
1.(20xx山東)設f(x)為定義在R上的奇函數(shù).當x≥0時,f(x)=2x+2x+b(b為常數(shù)),則f(-1)等于( ).
A.3 B.1 C.-1 D.-3
解析 由f(-0)=-f(0),即f(0)=0.則b=-1,
f(x)=2x+2x-1,f(-1)=-f(1)=-3.
答案 D
2.(★)已知定義在R上的奇函數(shù),f(x)滿足f(x+2)=-f(x),則f(6)的值為
( ).
A.-1 B.0
2、 C.1 D.2
解析 (構造法)構造函數(shù)f(x)=sin x,則有f(x+2)=sin=-sin x=-f(x),所以f(x)=sin x是一個滿足條件的函數(shù),所以f(6)=sin 3π=0,故選B.
答案 B
【點評】 根據函數(shù)的性質構造出一個符合條件的具體函數(shù),是解答抽象函數(shù)選擇題的常用方法,充分體現(xiàn)了由抽象到具體的思維方法.
3.(★)(20xx遼寧)若函數(shù)f(x)=為奇函數(shù),
則a=( ).
A. B. C. D.1
解析 (特例法)∵f(x)=是奇函數(shù),
∴f(-1)=-f(1),
∴
3、=-,
∴a+1=3(1-a),解得a=.
答案 A
【點評】 本題采用特例法,可簡化運算,當然也可用奇函數(shù)的定義進行解題,不過過程較為繁瑣,若運算能力較弱容易出錯.
4.(20xx南昌二中月考)函數(shù)f(x)的定義域為R,若f(x+1)與f(x-1)都是奇函數(shù),則( ).
A.f(x)是偶函數(shù) B.f(x)是奇函數(shù)
C.f(x)=f(x+2) D.f(x+3)是奇函數(shù)
解析 由已知條件對x∈R都有f(-x+1)=-f(x+1),f(-x-1)=-f(x-1)因此f(-x+3)=f[-(x-2)+1]=-f[(x-2)+1]=-f(x-1)=f(-x-1)=f(-x-2+
4、1)=f(-(x+2)+1)=-f((x+2)+1)=-f(x+3),因此函數(shù)f(x+3)是奇函數(shù).
答案 D
5.(20xx上海)下列函數(shù)中,既是偶函數(shù),又在區(qū)間(0,+∞)上單調遞減的函數(shù)為( ).
A.y=ln B.y=x3 C.y=2|x| D.y=cos x
解析 f(x)=ln 滿足f(-x)=f(x),且當x∈(0,+∞)時,f(x)=-ln x,顯然f(x)在(0,+∞)上是減函數(shù),故選A.
答案 A
二、填空題(每小題4分,共12分)
6.若f(x)=+a是奇函數(shù),則a=________.
解析 由f(x)是奇函數(shù),利用賦值法得f(-1)
5、=-f(1)即+a=--a整理得:-1+2a=0,即a=.
答案
7.(20xx安徽改編)若f(x)是R上周期為5的奇函數(shù),且滿足f(1)=1,f(2)=2,則f(3)-f(4)=________.
解析 ∵f(x+5)=f(x)且f(-x)=-f(x),
∴f(3)=f(3-5)=f(-2)=-f(2)=-2,f(4)=f(-1)=-f(1)=-1,故f(3)-f(4)=(-2)-(-1)=-1.
答案?。?
8.設奇函數(shù)f(x)的定義域為[-5,5],當x∈[0,5]時,函數(shù)y=f(x)的圖象如圖所示,則使函數(shù)值y<0的x的取值集合為________.
解析 由原函數(shù)是
6、奇函數(shù),所以y=f(x)在[-5,5]上的圖象關于坐標原點對稱,由y=f(x)在[0,5]上的圖象,得它在[-5,0]上的圖象,如圖所示.由圖象知,使函數(shù)值y<0的x的取值集合為(-2,0)∪(2,5).
答案 (-2,0)∪(2,5)
三、解答題(共23分)
9.(11分)已知f(x)是R上的奇函數(shù),且當x∈(-∞,0)時,f(x)=-xlg(2-x),求f(x)的解析式.
解 ∵f(x)是R上的奇函數(shù),可得f(0)=0.
當x>0時,-x<0,由已知f(-x)=xlg(2+x),
∴-f(x)=xlg(2+x),即f(x)=-xlg(2+x)(x>0).
∴f(x)=
7、即f(x)=-xlg(2+|x|)(x∈R).
10.(12分)設定義在[-2,2]上的偶函數(shù)f(x)在區(qū)間[-2,0]上單調遞減,若f(1-m)
8、,且a≠1).若g(2)=a,則f(2)=( ).
A.2 B. C. D.a2
解析 (直接法)∵g(x)為偶函數(shù),f(x)為奇函數(shù),
∴g(2)=g(-2)=a,f(-2)=-f(2),
∴f(2)+g(2)=a2-a-2+2, ①
f(-2)+g(-2)=-f(2)+g(2)=a-2-a2+2, ②
聯(lián)立①②解得g(2)=2=a,f(2)=a2-a-2=22-2-2=.故選B.
答案 B
【點評】 本題采用直接法,所謂直接法,就是直接從題設的條件出發(fā),運用有關的概念、定義、性質、定理、
9、法則和公式等知識,通過嚴密的推理與計算來得出題目的結論,然后再對照題目所給的四個選項來“對號入座”.其基本策略是由因導果,直接求解.
2.(20xx山東)已知f(x)是R上最小正周期為2的周期函數(shù),且當0≤x<2時,f(x)=x3-x,則函數(shù)y=f(x)的圖象在區(qū)間[0,6]上與x軸的交點的個數(shù)為( ).
A.6 B.7 C.8 D.9
解析 當0≤x<2時,令f(x)=x3-x=0,得x=0或x=1或x=-1(舍去),又f(x)的最小正周期為2,∴f(0)=f(2)=f(4)=f(6)=0,f(1)=f(3)=f(5)=0,
∴y=f(x)的圖象在區(qū)間[0,6]上與x軸的交點
10、個數(shù)為7.
答案 B
二、填空題(每小題4分,共8分)
3.(20xx重慶改編)已知函數(shù)f(x)滿足:f(1)=,4f(x)f(y)=f(x+y)+f(x-y)(x,y∈R),則f(2 013)=________.
解析 法一 當x=1,y=0時,f(0)=;當x=1,y=1時,f(2)=-;當x=2,y=1時,f(3)=-;當x=2,y=2時,f(4)=-;當x=3,y=2時,f(5)=;當x=3,y=3時,f(6)=;當x=4,y=3時,f(7)=;當x=4,y=4時,f(8)=-;….
∴f(x)是以6為周期的函數(shù),
∴f(2 013)=f(3+3356)=f(3)=-.
11、法二 ∵f(1)=,4f(x)f(y)=f(x+y)+f(x-y),
∴構造符合題意的函數(shù)f(x)=cos x,
∴f(2 013)=cos=-.
答案?。?
4.設函數(shù)f(x)是定義在R上的偶函數(shù),且對任意的x∈R恒有f(x+1)=f(x-1),已知當x∈[0,1]時f(x)=1-x,則
①2是函數(shù)f(x)的周期;
②函數(shù)f(x)在(1,2)上遞減,在(2,3)上遞增;
③函數(shù)f(x)的最大值是1,最小值是0;
④當x∈(3,4)時,f(x)=x-3.
其中所有正確命題的序號是________.
解析 由已知條件:f(x+2)=f(x),
則y=f(x)是以2為周期的周期
12、函數(shù),①正確;
當-1≤x≤0時0≤-x≤1,
f(x)=f(-x)=1+x,函數(shù)y=f(x)的圖象
如圖所示:
當3
13、0,所以f(x)為奇函數(shù).
(2)解 任取x1<x2,則x2-x1>0,所以f(x2-x1)=f[x2+(-x1)]=f(x2)+f(-x1)=f(x2)-f(x1)<0,所以f(x)為減函數(shù).而f(3)=f(2+1)=f(2)+f(1)=3f(1)=-6,f(-3)=-f(3)=6.
所以f(x)max=f(-3)=6,f(x)min=f(3)=-6.
6.(12分)已知函數(shù)f(x)=x2+(x≠0,常數(shù)a∈R)
(1)討論函數(shù)f(x)的奇偶性,并說明理由;
(2)若函數(shù)f(x)在x∈[2,+∞)上為增函數(shù),求實數(shù)a的取值范圍.
解 (1)函數(shù)f(x)的定義域為{x|x≠0},
當a=0時,f(x)=x2,(x≠0)
顯然為偶函數(shù);當a≠0時,f(1)=1+a,f(-1)=1-a,
因此f(1)≠f(-1),且f(-1)≠-f(1),
所以函數(shù)f(x)=x2+既不是奇函數(shù),也不是偶函數(shù).
(2)f′(x)=2x-=,
當a≤0,f′(x)>0,則f(x)在(2,+∞)上是增函數(shù),
當a>0時,由f′(x)=>0,解得x> ,由f(x)在[2,+∞)上是增函數(shù),
可知 ≤2.解得0<a≤16
綜上可知實數(shù)a的取值范圍是(-∞,16].