某混凝土泵車泵送系統(tǒng)設(shè)計(jì)
某混凝土泵車泵送系統(tǒng)設(shè)計(jì),混凝土泵,車泵送,系統(tǒng),設(shè)計(jì)
Simulation and Optimization of the Driving Forces of Hydraulic Cylinders for Boom of Truck Mounted Concrete PumpZHONG Zhihong, WU Yunxin, MA ChangxunCollege of Mechanical and Electrical Engineering, Central South University, Changsha 410083, ChinaE-mail: Abstract-In order to obtain the maximum driving forces of hydraulic cylinders in the process of boom design, the solid model was built in Pro/E and then imported into ADAMS where the dynamic simulation model was established.Processes of the boom transforming from horizontal to typical poses were simulated and driving force variation curves of the hydraulic cylinders were generated. Accordingto the results, location of the joint connecting cylinder 2 and the links was optimized in ADAMS and the driving force decreased as a result. It is instructive to structure design of boom.Keywords-simulation;optimization;drivingforce;hydraulic cylinder; boom; Pro/E; ADAMSI.INTRODUCTIONTruck mounted concrete pump is a large engineering machinery used for concrete pouring. It is mainly composed of chassis, concrete pump and boom system,among which boom system best reflects characteristics of a truck mounted concrete pump. Boom systems safety, reliability and advancement are key factors that determine the competence of a truck mounted concrete pump 1 and its structure is as shown in Figure1. In order to study the boom system better, a laboratory designed a four-arm boom model which is approximately 13 meters long. After devisingthe boom structure and hydraulic system principle preliminarily, dynamic simulation and structure optimization are necessary in order to determine the oil pressure and cylinder dimensions et al.There are many previous literatures studying the structural strength 1-4 and dynamics 5-7 on boom of truck mounted pump, but less concerning structural design and optimization. In this paper virtual prototype of the boom was established with combination of Pro/E and ADAMS, and processes of the boom transforming from horizontal which is traditionally treated as the most dangerous working case to several typical poses in afour-arm-rotate-together way were simulated. Then the structure was optimized according to the simulation results.1 Turret 2 Arm 3 Hydraulic cylinder 4 LinkFigure 1. Structure of boomII.ESTABLISHMENT OF SIMULATION MODELA.3-D model building in Pro/EIn order to obtain accurate mass attributes including mass, centroid and moment of inertia, 3-D model should be built according to the dimension formerly designed as much as possible. Synchronously, details which have insignificant influence on overall mechanical property of the model should be simplified because too complicatedmodel may result in curves or surfaces missing in ADAMS. Based on this, in this paper each arm of the boom is built as a part and some details are simplified.According to the preliminarily designed drawings,turret, arms, hydraulic cylinders and links are built in powerful 3-D model building software Pro/E respectively,and then assemble them in bottom to top way into a boom which presents a horizontal pose as shown in Figure 2. 1 2 3 4 2011 Fourth International Conference on Intelligent Computation Technology and Automation978-0-7695-4353-6/11 $26.00 2011 IEEEDOI 10.1109/ICICTA.2011.2309412011 Fourth International Conference on Intelligent Computation Technology and Automation978-0-7695-4353-6/11 $26.00 2011 IEEEDOI 10.1109/ICICTA.2011.230915Figure 2. Solid model of the boomB.Model transfer and simulation model building inADAMS3-D model built in Pro/E can be imported into ADAMS by means of Mechanism/Pro which is the exclusive interface software between Pro/E and ADAMS provided by MSC. After installation and initial settings, Mechanism/ProwillappearinPro/Esassembly environment as a cascading menu in which rigid body definition, constraints applying, data transfer parameter settings and simple simulation et al. can be performed. Here we define each part of the boom as a rigid body, and establish a marker at every center of all the shafts for convenient positioning where a revolute joint will becreated later. Then the model can be transferred to ADAMS by Mechanism/Pro. There may be problems with the model that it does not display but its mass and moment of inertia et al. exist. This can be solved by returning to Pro/E to simplify the model further or doing as what is introduced in reference 8, which the paper will not elaborate.Firstly the materials of the boom and the gravity should be defined in ADAMS. Then constraints between parts should be created according to actual situations oftruck mounted concrete pump: the rotational degree of freedom of the boom as an entirety will not be consideredin this paper, so we fix the turret to the ground; we establish revolute joints at each center of all the shafts connecting different parts and translational joints between every pair of cylinder and piston rod. Whats more, four translational joint motions are applied on the four translational joints respectively.III.SIMULATION OF DRIVING FORCESDynamic simulations include forward simulation and reverse simulation: the forward studies dynamic responsesincluding accelerations, velocities, displacements and constraint forces et al. of a mechanical system under external forces or couples; the reverse solves forces with known motion parameters such as velocities, accelerationsand trajectories el al. In this paper we carry out reverse simulation of the boom model in ADAMS, that is, we define velocities of the four cylinders according to actual situation and simulate them in order to obtain their driving force variation curves in different motions.Boom works in diverse poses which usually can bedivided into several typical working poses such as foundation, roof, wall and so on. The boom can transform poses in a four-arm-rotate-together way; also it can rotateeach arm independently. So there are thousands of movement combinations. It is not only unnecessary but also impossible to simulate all cases. In this paperprocesses of the boom transforming from horizontal to the above three typical poses and vertical are simulated.A typical working pose does not mean a unique attitude. In this paper we define the angle combinationsbetween arms and the horizontal of the three above typical poses as 75,15,-15,-75 ? 75,45,15,-45 ?75,75,45,-30 respectively. According to the preliminary design of the hydraulic system, the maximumvelocity of piston is 20 mm/s with which in simulation velocity settings should comply. Regulating the velocities of each piston, simulations of the four processesmentioned above can be accomplished. After that, driving force variation curves of the cylinders in these processes are generated as shown in Figure 3-Figure 6.Figure 3.Driving force curve from horizontal to foundation942916Figure 4. Driving force curve from horizontal to roofFigure 5. Driving force curve from horizontal to wallFigure 6. Driving force curve from horizontal to verticalFrom the graphs shown above we can find that driving forces of cylinder 2, 3 and 4 reach their maximums when the boom is horizontal, while cylinder 1 is not the case. Therefore, designing a boom just as the traditional opinion that the horizontal pose is the most dangerous is not reasonable. Considering the special structure, driving force of cylinder 4 is far lower than the others is easy to understand. However, the maximum driving force of cylinder 2 reaches 90000 N which is much larger thancylinder 1 and 3. This may result in excessive high oilpressure or too large cylinder by tentative calculation. The former is unfavorable to design of hydraulic system; the later may lead to interference. As a result, structure of cylinder 2 and the links should be optimized in order to diminish the driving force.IV.OPTIMIZATIONAccording to mechanism theory, the structure which is comprised of two arms, two links, a cylinder and a piston rod as shown in Figure7 is a planar six-bar mechanism anddiminishing the driving force of cylinder 2 can be realizedby changing the location of joint A. We may build several groups of links with different lengths and reassemble the model and simulate them respectively, then select the best. However this is not an efficient approach. ADAMS provides convenient parameterization and optimization function. In this paper we perform the optimization of location of joint A in ADAMS.Figure 7. Structure of cylinder 2 and the linksSolid model imported in ADAMS cannot be optimized directly. The method we take is as follows: firstly deletecylinder 2 and the two links which are to be parameterizedand substitute standard components such as links in ADAMS for them; then parameterize coordinates of joint A and their lengths can be optimized by doing so.Optimization is a process of finding the objective function extrema under the condition that all design variables meet the constraints during their value ranges.A.Design variablesHere we define coordinates of joint A as design variables and mark them as DVX, DVYB.Constraintfunctionsrespectively.In order to meet requirements of the booms arbitrary transformation, folding and avoid interference after optimization, coordinates of joint A should be restricted and some constraints should be set as follows:3750 ? ? 4100,0 ? ?Y? 175 ?1?943917s.t. ? f1(?,?) = 200 ? ? 0 (2)f2(?,?) = ? 400 ? 0 (3)f3(?,?) = 200? ? 0 (4)f4(?,?) = ? 400 ? 0 (5)f5(?,?) = Abs(? ?)? 20 ? 0 (6)?where s.t. means subject to; LABand LACC.Objective functionare the lengths of the two links which are functions of coordinates of joint A;(2)(5) limit the two links lengths between 200 mm and 400 mm; (6) restricts the link length deference no more than 20 mm.According to the previousresults generated by simulation we know that driving force of cylinder 2 is largest when it is horizontal, so we replace cylinder 2 witha link and just perform static optimization when it is horizontal so as to simplify the process. So we can define the objective function as minimizing of the reaction force measurement function of the substitute link:min(Force_MEA(DVX,DVYD.Outcome of optimization)Optimization in ADAMS shows that the optimum location of joint A is?4013.10?43.89?, when lengths of the two links are 344.07 mm and 324.04 mm. Round the lengths to 344 mm and 324 mm, rebuild the solid models of the links, reassemble the boom and simulate the several processes mentioned above as before. Results generatedare as shown in Figure 8-Figure 11.Figure 8. Driving force curve from horizontal to foundation after optimizationFigure 9. Driving force curve from horizontal to roof after optimizationFigure 10. Driving force curve from horizontal to wall after optimizationFigure 11. Driving force curve from horizontal to vertical after optimizationFrom the above graphs we know that the curve shapesof driving forces after optimization resemble the ones before optimization, and driving force of cylinder 2 decreased to the same level with cylinder 1 and 3.V.CONCLUSIONIn this paper a complete procedure of simulation and optimization of the driving forces of hydraulic cylinders for boom of truck mounted concrete pump has been presented. Firstly establish the virtual prototype by 944918combination of Pro/E and ADAMS with Mechanism/Prowhich is the exclusive interface software between the two;then simulate several processes of the boom transforming from horizontal to typical poses and generate the driving force curves; lastly optimize the structure according to the simulation results. With this approach, we could carry out design, simulation and optimization of mechanical system conveniently without complex mathematic formula derivation and get satisfactory results.REFERENCE1SHI Xianxin, ZHENG Yongsheng, XU Huaiyu, FENG Min, ZHANGPengcheng, Finite Element Analysis on the Boom of Truck Mounted Concrete Pump Based on ANSYS, Construction Machinery, 2009, “”(04): 79-82. (In Chinese)2YAN Lijuan, FENG Min, XU Huaiyu, Finite Element Calculation and Analysis for Placing Boom of Model HB37 Concrete Pump Truck,Construction Machinery and Equipment, 2005, 36(1): 30-32. (InChinese)3 ZHANG Yanwei, TONG Li, SUN Guozheng, A Structure Analysis of Concrete Pumps Boom Based on ANSYS, Journal of Wuhan University of Technology (Transportation Science & Engineering),2004, 28(4): 536-539. (In Chinese)4ZHANG Daqing, LU Pengmin, HE Qinghua, HAO Peng,Experimental Research on Structural Dynamic Strength of a Concrete Pump Auto, Journal of Vibration and Shock, 2005, 24(3):111-113. (In Chinese)5LU Pengmin, WANF Hongbing, ZHANG Daqing, Influence of Structural Dynamic Characteristic by Concrete Pump Trucks Impact Load, China Journal of Highway and Transport, 2003, 16(4): 115-117.(In Chinese)6 LIU Jie, DAI Li, ZHAO Lijuan, CAI Juan, ZHANG Jing, Modeling and Simulation of Flexible Multi-Body Dynamics of Concrete Pump Truck Arm, Chinese Journal of Mechanical Engineering, 2007, 43(11): 131-135. (In Chinese)7SU Xiaoping, YIN Chenbo, WANG Dongfang, JIANG Tao, XU Cheng, Simulation of the Boom of Concrete Bump Truck Based on Multi-body Dynamics, Chinese Journal of Construction Mechanery,2004, 2(2): 167-170. (In Chinese)8NI Jinfeng, XU Cheng, The Method of Transforming Complex Model from Pro/E to ADAMS, Mechanical Engineer, 2004, “”(9): 15-16. (In Chinese)945919
畢業(yè)設(shè)計(jì)(論文)外文資料翻譯
系 別:
專 業(yè):
班 級(jí):
姓 名:
學(xué) 號(hào):
外文出處: 2011 Fourth International Conference on Intelligent Computation Technology and Automation
附 件: 1. 原文; 2. 譯文
2019年03月
載重混凝土泵臂架液壓缸驅(qū)動(dòng)力的仿真與優(yōu)化
為了獲得最大的驅(qū)動(dòng)力液壓缸在臂架設(shè)計(jì)過程中,在 Pro/E 中建立實(shí)體模型,然后導(dǎo)入 ADAMS 中建立動(dòng)力學(xué)仿真模型。對(duì)臂架從水平向典型姿態(tài)的轉(zhuǎn)換過程進(jìn)行了模擬,得到了液壓缸的驅(qū)動(dòng)力變化曲線。根據(jù)計(jì)算結(jié)果,在 ADAMS 中優(yōu)化了關(guān)節(jié)連接缸 2 和連桿的位置,降低了驅(qū)動(dòng)力。對(duì)臂架結(jié)構(gòu)設(shè)計(jì)具有指導(dǎo)意義。
1.介紹
混凝土泵車是一種用于混凝土澆筑的大型工程機(jī)械。它主要由底盤、混凝土泵和臂架系統(tǒng)組成,其中臂架系統(tǒng)最能反映卡車安裝混凝土泵的特點(diǎn)。臂架系統(tǒng)的安全,可靠性和進(jìn)步是決定卡車安裝混凝土泵 [1] 的能力的關(guān)鍵因素,其結(jié)構(gòu)如圖 1 所示。為了更好地研究臂架系統(tǒng),一個(gè)實(shí)驗(yàn)室設(shè)計(jì)了一個(gè)四臂臂架模型,大約 13米長(zhǎng)。在初步設(shè)計(jì)了動(dòng)臂結(jié)構(gòu)和液壓系統(tǒng)原理后,為了確定油壓和油缸尺寸等,有必要進(jìn)行動(dòng)態(tài)仿真和結(jié)構(gòu)優(yōu)化。
以往的研究文獻(xiàn)很多,對(duì)載重泵臂架的結(jié)構(gòu)強(qiáng)度 [1-4] 和動(dòng)力學(xué) [5-7] 進(jìn)行研究,但對(duì)結(jié)構(gòu)設(shè)計(jì)和優(yōu)化的研究較少。本文虛擬樣機(jī)大臂成立結(jié)合 Pro/E ADAMS,并模擬了從傳統(tǒng)上被視為最危險(xiǎn)的工況的 水平向四臂旋轉(zhuǎn)方式的幾個(gè)典型姿勢(shì)轉(zhuǎn)換的過程。然后根據(jù)仿真結(jié)果對(duì)結(jié)構(gòu)進(jìn)行了優(yōu)化。
2
4
3
1
1 炮塔 2 臂 3 液壓缸 4 鏈接
圖 1.臂架結(jié)構(gòu)
II. E仿真模型的建立
A. Pro/E 中的三維模型構(gòu)建
為了獲得精確的質(zhì)量屬性,包括
質(zhì)量、質(zhì)心和轉(zhuǎn)動(dòng)慣量,三維模型應(yīng)根據(jù)以往設(shè)計(jì)的尺寸盡可能多的建立。同時(shí),由于過于復(fù)雜的模型可能會(huì)導(dǎo)致 ADAMS 中曲線或曲面丟失,對(duì)模型整體力學(xué)性
能影響不大的細(xì)節(jié)應(yīng)予以簡(jiǎn)化。基于此,本文將臂架的各個(gè)臂架作為一個(gè)部分建立起來,并對(duì)其一些細(xì)節(jié)進(jìn)行了簡(jiǎn)化。
根據(jù)初步設(shè)計(jì)的圖紙,在強(qiáng)大的三維模型構(gòu)建軟件 Pro/E 中分別建立了炮塔、武器、液壓缸和連桿。然后在底部到頂部組裝它們到一個(gè)繁榮,提出了一個(gè)水平姿態(tài)如圖 2 所示。
圖 2.繁榮的實(shí)體模型
B. 模型傳遞與仿真模型構(gòu)建
亞當(dāng)斯
在 Pro/E 中建立的三維模型可以通過 MSC 提供的 Pro/E 與 ADAMS 專用接口軟件的機(jī)構(gòu)/Pro 導(dǎo)入 ADAMS 中。安裝和初始設(shè)置后,機(jī)制/Pro 將顯示在 Pro/E 的裝配環(huán)境作為一個(gè)級(jí)聯(lián)菜單,其中剛體定義,約束應(yīng)用, 數(shù)據(jù)傳輸參數(shù)設(shè)置和簡(jiǎn)單的仿真等??梢詧?zhí)行。在這里,我們定義了每個(gè)部分的繁榮作為剛體,并建立了一個(gè)標(biāo)記在所有軸的中心,方便定位,旋轉(zhuǎn)接頭將創(chuàng)建后。然后,該模型可以通過機(jī)構(gòu)/Pro 轉(zhuǎn)移到 ADAMS。模型可能存在不顯示的問題,但它的質(zhì)量和慣性矩等。這可以通過返回 Pro/E 進(jìn)一步簡(jiǎn)化模型來解決或做什么是介紹參考 [8],這篇論文將不會(huì)闡述。
首先應(yīng)在 ADAMS 中定義臂架的材料和重力。然后根據(jù)卡車安裝混凝土泵的實(shí)際情況,在零件之間的約束應(yīng)該被創(chuàng)建: 作為一個(gè)整體的繁榮的轉(zhuǎn)動(dòng)自由度不會(huì)被考慮在本文中, 所以我們把炮塔固定在地上;在連接不同零件的所有軸的每個(gè)中心建立旋轉(zhuǎn)接頭,并在每一對(duì)氣缸和活塞桿之間建立平移接頭。此外,四個(gè)平移關(guān)節(jié)運(yùn)動(dòng)分別應(yīng)用于四個(gè)平移關(guān)節(jié)。
III. S驅(qū)動(dòng)力的設(shè)定
動(dòng)態(tài)仿真包括正演模擬和反演模擬: 正演研究了機(jī)械系統(tǒng)的加速度、速度、位移和約束力等動(dòng)態(tài)響應(yīng)。
外力或夫婦; 反向解決與已知的運(yùn)動(dòng)參數(shù),如速度,加速度和軌跡 el al 的力量。本文在 ADAMS 中對(duì)臂架模型進(jìn)行了逆向仿真,即根據(jù)實(shí)際情況定義四缸的速度,并對(duì)其進(jìn)行仿真,得到四缸在不同運(yùn)動(dòng)下的驅(qū)動(dòng)力變化曲線。
臂架工作在不同的姿勢(shì),通??梢苑譃閹讉€(gè)典型的工作姿勢(shì),如基礎(chǔ),屋頂,墻壁等。繁榮可以變換姿勢(shì)在一個(gè)四臂旋轉(zhuǎn)一起的方式; 也可以獨(dú)立旋轉(zhuǎn)每個(gè)臂。所以有成千上萬的運(yùn)動(dòng)組合。它不僅是不必要的,而且也不可能模擬所有的情況。本文模擬了臂架從水平向以上三個(gè)典型姿態(tài)和垂直方向的轉(zhuǎn)換過程。
典型的工作姿勢(shì)并不意味著一種獨(dú)特的態(tài)度。在本文中,我們定義了手臂和水平的三個(gè)以上典型的角度組合姿勢(shì)為 [75 °,15 °,-15 °,-75 °] [75 °,45 °,15 °,-45 °] [75 °,75 °, 45 °,-30 °] 分別。根據(jù)液壓系統(tǒng)的初步設(shè)計(jì),活塞最大速度為 20 mm/s,仿真速度設(shè)置應(yīng)符合要求。調(diào)節(jié)每個(gè)活塞的速度,模擬上述四個(gè)過程可以完成。之后,在這些過程中的氣缸的驅(qū)動(dòng)力變化曲線生成如圖 3-圖 6 所示。
圖 3.從水平到基礎(chǔ)的驅(qū)動(dòng)力曲線圖 4.從水平到屋頂?shù)尿?qū)動(dòng)力曲線
圖 5.從水平到墻的驅(qū)動(dòng)力曲線 圖 6.從水平到垂直的驅(qū)動(dòng)力曲線
從上面所示的圖表我們可以發(fā)現(xiàn),當(dāng)繁榮水平時(shí),氣缸 2,3 和 4 的驅(qū)動(dòng)力達(dá)到最大值,而氣缸 1 不是情況。因此,設(shè)計(jì)一個(gè)繁榮就像傳統(tǒng)的觀點(diǎn)認(rèn)為水平姿態(tài)是最危險(xiǎn)的是不合理的??紤]到特殊的結(jié)構(gòu),氣缸 4 的驅(qū)動(dòng)力遠(yuǎn)低于其他人是容易理解的。然而,2 缸最大驅(qū)動(dòng)力達(dá)到 90000,比 1 缸和 3 缸大很多,這可能會(huì)導(dǎo)致過高的油壓或過大的缸通過初步計(jì)算。前者不利于液壓系統(tǒng)的設(shè)計(jì);
以后可能會(huì)導(dǎo)致干擾。因此,應(yīng)優(yōu)化氣缸 2 和連桿的結(jié)構(gòu),以減少驅(qū)動(dòng)力。
根據(jù)機(jī)理理論,由兩個(gè)臂、兩個(gè)環(huán)節(jié)組成的結(jié)構(gòu),如圖 7 所示的氣缸和活塞桿是平面六桿機(jī)構(gòu),通過改變關(guān)節(jié) a 的位置可以實(shí)現(xiàn)降低氣缸 2 的驅(qū)動(dòng)力。我們可以建立幾個(gè)不同長(zhǎng)度的鏈接組,并重新組裝模型,并分別模擬它們,然后選擇最佳的。然而,這不是一個(gè)有效的方法。ADAMS 提供了方便的參數(shù) i z 和優(yōu)化功能。本文在 ADAMS 中對(duì)關(guān)節(jié) A 的位置進(jìn)行了優(yōu)化。
圖 7.圓柱體 2 和連桿的結(jié)構(gòu)
在 ADAMS 中導(dǎo)入的實(shí)體模型不能直接進(jìn)行優(yōu)化。我們所采取的方法是: 首先刪除圓柱 2 和兩個(gè)鏈接是參數(shù)化和替代標(biāo)準(zhǔn)組件,如在 ADAMS 中的鏈接; 然后參數(shù)化關(guān)節(jié) A 的坐標(biāo)和它們的長(zhǎng)度可以通過這樣做進(jìn)行優(yōu)化。優(yōu)化是在所有設(shè)計(jì)變量在其值范圍內(nèi)滿足約束條件下尋找目標(biāo)函數(shù)極值的過程。
A. 設(shè)計(jì)變量
在這里,我們定義關(guān)節(jié) A 的坐標(biāo)作為設(shè)計(jì)變量,并將它們標(biāo)記為DVX,DVY分別。
B. 約束 函數(shù)
為了滿足臂架任意變換、折疊和優(yōu)化后避免干擾的要求,應(yīng)限制節(jié)理 A 的坐標(biāo)。
和一些約束應(yīng)設(shè)置如下:
F1(,) = 200
0
(2)
F2
(
,) =
400 0
(3)
F
(
,) = 200
0
(4)
3
(5)
F
(
,) =
400 0
4
(6)
哪里 s.t.受限制的手段;LAB和L交流是兩個(gè)鏈接的長(zhǎng)度,它們是關(guān)節(jié) A 的坐標(biāo)函數(shù);
(2) ~ (5) 限制 200 和 400 之間的兩個(gè)鏈接長(zhǎng)度; (6) 限制鏈路長(zhǎng)度不超過 20 姐妹。
C. 目標(biāo)函數(shù):根據(jù)前面的仿真結(jié)果,我們知道 2 缸的驅(qū)動(dòng)力是最大的,當(dāng)它是水平, 因此,我們用一個(gè)鏈接替換圓柱 2,并在水平時(shí)執(zhí)行靜態(tài)優(yōu)化,以簡(jiǎn)化過程。因此,我們可以將目標(biāo)函數(shù)定義為替代鏈路的反作用力測(cè)量函數(shù)的最小化:
Min (force e_mea (DVX,DVY)
D. 優(yōu)化的結(jié)果:在 ADAMS 中優(yōu)化表明,當(dāng)兩個(gè)鏈接的長(zhǎng)度為 344.07 姐妹和 324.04 姐妹時(shí),接頭 A 的最佳位置為 4013.10 43.89。輪長(zhǎng)度為 344 姐妹和 324 姐妹,重建鏈接的實(shí)體模型,重新組裝繁榮和模擬前面提到的幾個(gè)過程。生成的結(jié)果如圖 8-圖 11 所示。
圖 8.從水平到基礎(chǔ)的驅(qū)動(dòng)力曲線 圖 9.優(yōu)化后從水平到屋頂?shù)尿?qū)動(dòng)力曲線
圖 10.從水平到墻的驅(qū)動(dòng)力曲線 圖 11.驅(qū)動(dòng)力曲線從水平到垂直后
從上述圖可知,優(yōu)化后的驅(qū)動(dòng)力曲線形狀與優(yōu)化前的曲線形狀相似,2 缸的驅(qū)動(dòng)力與 1 缸和 3 缸下降到同一水平。
V. CONCLUSION
本文介紹了一種完整的卡車混凝土泵臂架液壓缸驅(qū)動(dòng)力的仿真和優(yōu)化過程。首先建立虛擬樣機(jī)
Pro/E 和 ADAMS 與機(jī)構(gòu)/Pro 的結(jié)合
這是兩者之間的獨(dú)家接口軟件;
然后模擬幾個(gè)過程的繁榮轉(zhuǎn)換
從水平到典型姿勢(shì),并生成驅(qū)動(dòng)
力曲線; 最后根據(jù)
仿真結(jié)果。
用這種方法,我們可以進(jìn)行設(shè)計(jì),
仿真和優(yōu)化的機(jī)械系統(tǒng)
方便沒有復(fù)雜數(shù)學(xué)公式
推導(dǎo)并得到滿意的結(jié)果。
引用:
[1] 施先欣,鄭永生,徐懷玉,馮敏,張永生
彭城,載貨汽車臂架有限元分析基于 ANSYS 的混凝土泵,工程機(jī)械,2009, (04): 79-82。(中文)
[2] 嚴(yán)麗娟,馮敏,徐懷宇
有限元計(jì)算并對(duì) HB37 型混凝土泵車的動(dòng)臂進(jìn)行了分析工程機(jī)械設(shè)備,2005,36 (1): 30-32.(在中文)
[3] 張燕偉,唐麗,孫國(guó)正
[4] 基于 ANSYS 的混凝土泵臂架結(jié)構(gòu)分析,武漢理工大 學(xué)學(xué)報(bào) (交通科學(xué)與工程),2004,28 (4): 536-539。(中文)
[4] 張大慶, LU 彭敏, 清華, 浩 彭,
混凝土結(jié)構(gòu)動(dòng)力強(qiáng)度試驗(yàn)研究泵自動(dòng),振動(dòng)與沖擊學(xué)報(bào),2005,24 (3): 111-113。(在
中文)
[5] 陸彭民,萬夫紅兵,張大慶,
影響混凝土泵車沖擊下的結(jié)構(gòu)動(dòng)力特性《中國(guó)公路運(yùn)輸學(xué)報(bào)》,2003,16 (4): 115-117.
(中文)
[6] 劉杰,戴麗,趙麗娟,蔡娟,張晶
[7] 混凝土泵車臂柔性多體動(dòng)力學(xué)建模與仿真,中國(guó)機(jī)械工程學(xué)報(bào),2007,43 (11): 131-135。(中文)
[7] 蘇曉平,殷晨波,王東芳,蔣濤,徐程
基于仿真的混凝土凸輪車臂架多體動(dòng)力學(xué),中國(guó)建筑機(jī)械學(xué)報(bào),
2004,2 (2): 167-170。(中文)
[8] NI 金豐,徐成,
轉(zhuǎn)化絡(luò)合物的方法模型從 Pro/E 到 ADAMS,機(jī)械工程師,2004,“” (9):
收藏