《高中數(shù)學(xué)人教A版必修一 學(xué)業(yè)分層測(cè)評(píng)九 Word版含答案》由會(huì)員分享,可在線閱讀,更多相關(guān)《高中數(shù)學(xué)人教A版必修一 學(xué)業(yè)分層測(cè)評(píng)九 Word版含答案(6頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、(人教版)精品數(shù)學(xué)教學(xué)資料
學(xué)業(yè)分層測(cè)評(píng)(九) 函數(shù)的單調(diào)性
(建議用時(shí):45分鐘)
[學(xué)業(yè)達(dá)標(biāo)]
一、選擇題
1.下列函數(shù)中,在區(qū)間(0,2)上為增函數(shù)的是( )
A.y=3-x B.y=x2+1
C.y= D.y=-|x|
【解析】 A.y=3-x=-x+3,是減函數(shù),故A錯(cuò)誤;
B.∵y=x2+1,y為偶函數(shù),圖象開口向上,關(guān)于y軸對(duì)稱,當(dāng)x>0,y為增函數(shù),故B正確;
C.∵y=,當(dāng)x>0,y為減函數(shù),故C錯(cuò)誤;
D.當(dāng)x>0,y=-|x|=-x,為減函數(shù),故D錯(cuò)誤.故選B.
【答案】 B
2.對(duì)于函數(shù)y=f(x)在給定區(qū)間上有兩個(gè)數(shù)x1,x2,且x1<
2、x2使f(x1)
3、不等式f(x)>f(8(x-2))的解集是( ) 【導(dǎo)學(xué)號(hào):97030050】
A.(0,+∞) B.(0,2)
C.(2,+∞) D.
【解析】 由f(x)是定義在(0,+∞)上的增函數(shù)得,?2<x<,選D.
【答案】 D
5.(2016六安高一檢測(cè))已知函數(shù)f(x)=4x2-mx+5在區(qū)間[-2,+∞)上是增函數(shù),則f(1)的范圍是( )
A.f(1)≥25 B.f(1)=25
C.f(1)≤25 D.f(1)>25
【解析】 由y=f(x)的對(duì)稱軸是x=,可知f(x)在上遞增,
由題設(shè)只需≤-2,即m≤-16,∴f(1)=9-m≥25.應(yīng)選A.
【答案】 A
4、
二、填空題
6.函數(shù)f(x)=2x2-3|x|的單調(diào)遞減區(qū)間是________.
【解析】 函數(shù)f(x)=2x2-3|x|=
圖象如圖所示,f(x)的單調(diào)遞減區(qū)間為和.
【答案】 和
7.函數(shù)y=在區(qū)間(0,+∞)上是增函數(shù),則實(shí)數(shù)m的取值范圍是________. 【導(dǎo)學(xué)號(hào):97030051】
【解析】 ∵函數(shù)y=在區(qū)間(0,+∞)上是增函數(shù),∴1-3m<0,解得m>.
【答案】
8.已知函數(shù)f(x)為區(qū)間[-1,1]上的增函數(shù),則滿足f(x)
5、:函數(shù)y=在(-1,+∞)上是增函數(shù).
【證明】 設(shè)x1>x2>-1,
則y1-y2=-=,
∵x1>x2>-1,∴x1-x2>0,x1+1>0,x2+1>0,
∴>0,即y1-y2>0,y1>y2,
∴y=在(-1,+∞)上是增函數(shù).
10.已知f(x)=
(1)畫出這個(gè)函數(shù)的圖象;
(2)求函數(shù)的單調(diào)區(qū)間.
【解】 (1)f(x)=作出其圖象如下:
(2)由f(x)的圖象可得,單調(diào)遞減區(qū)間為[-3,-2),[0,1),[3,6];單調(diào)遞增區(qū)間為[-2,0),[1,3).
[能力提升]
1.下列有關(guān)函數(shù)單調(diào)性的說法,不正確的是( )
A.若f(x)為增函數(shù),g
6、(x)為增函數(shù),則f(x)+g(x)為增函數(shù)
B.若f(x)為減函數(shù),g(x)為減函數(shù),則f(x)+g(x)為減函數(shù)
C.若f(x)為增函數(shù),g(x)為減函數(shù),則f(x)+g(x)為增函數(shù)
D.若f(x)為減函數(shù),g(x)為增函數(shù),則f(x)-g(x)為減函數(shù)
【解析】 ∵若f(x)為增函數(shù),g(x)為減函數(shù),則f(x)+g(x)的增減性不確定.
例如:f(x)=x+2為R上的增函數(shù),當(dāng)g(x)=-x時(shí),則f(x)+g(x)=+2為增函數(shù);
當(dāng)g(x)=-3x,則f(x)+g(x)=-2x+2在R上為減函數(shù).∴不能確定f(x)+g(x)的單調(diào)性.
【答案】 C
2.函數(shù)f(x)
7、=在(a,+∞)上單調(diào)遞減,則a的取值范圍是________. 【導(dǎo)學(xué)號(hào):97030052】
【解析】 函數(shù)f(x)=的單調(diào)遞減區(qū)間為(-1,+∞),(-∞,-1),
又f(x)在(a,+∞)上單調(diào)遞減,所以a≥-1.
【答案】 a≥-1
3.(2016常州高一檢測(cè))若f(x)=是R上的單調(diào)函數(shù),則實(shí)數(shù)a的取值范圍為________.
【解析】 ∵f(x)=是R上的單調(diào)函數(shù),
∴解得a≥,
故實(shí)數(shù)a的取值范圍為.
【答案】
4.(2016濟(jì)南高一檢測(cè))設(shè)函數(shù)f(x)的定義域?yàn)镽,當(dāng)x<0時(shí),f(x)>1,且對(duì)任意的實(shí)數(shù)x,y∈R,有f(x+y)=f(x)f(y).
(1)求f(0)的值;
(2)證明:f(x)在R上是減函數(shù).
【解】 (1)∵x,y∈R,f(x+y)=f(x)f(y),當(dāng)x<0時(shí),f(x)>1,令x=-1,y=0,
則f(-1)=f(-1)f(0).
∵f(-1)>1,∴f(0)=1.
(2)證明:若x>0,-x<0,
∴f(x-x)=f(0)=f(x)f(-x),
∴f(x)=∈(0,1),故x∈R,f(x)>0,
任取x1<x2,f(x2)=f(x1+x2-x1)=f(x1)f(x2-x1),
∵x2-x1>0,
∴0<f(x2-x1)<1,
∴f(x2)<f(x1).
故f(x)在R上是減函數(shù).