《湖北版高考數(shù)學(xué) 分項(xiàng)匯編 專題09 圓錐曲線含解析》由會員分享,可在線閱讀,更多相關(guān)《湖北版高考數(shù)學(xué) 分項(xiàng)匯編 專題09 圓錐曲線含解析(29頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
1、
【備戰(zhàn)20xx】(湖北版)高考數(shù)學(xué)分項(xiàng)匯編 專題09 圓錐曲線(含解析)
一.選擇題
1. 【2005年普通高等學(xué)校招生全國統(tǒng)一考試湖北卷6】雙曲線離心率為2,有一個(gè)焦點(diǎn)與拋物線的焦點(diǎn)重合,則mn的值為( )
A. B. C. D.
2. 【2006年普通高等學(xué)校招生全國統(tǒng)一考試湖北卷9】設(shè)過點(diǎn)P(x,y)的直線分別與x軸的正半軸和y軸的正半軸交于A、B兩點(diǎn),點(diǎn)與點(diǎn)關(guān)于軸對稱,為坐標(biāo)原點(diǎn),若,則點(diǎn)P的軌跡方程是( )
A. B.
C.
2、 D.
3. 【2008年普通高等學(xué)校招生全國統(tǒng)一考試湖北卷11】如圖所示,“嫦娥一號”探月衛(wèi)星沿地月轉(zhuǎn)移軌道飛向月球,在月球附近一點(diǎn)P軌進(jìn)入以月球球心F為一個(gè)焦點(diǎn)的橢圓軌道I繞月飛行,之后衛(wèi)星在P點(diǎn)第二次變軌進(jìn)入仍以F為一個(gè)焦點(diǎn)的橢圓軌道Ⅱ繞月飛行,最終衛(wèi)星在P點(diǎn)第三次變軌進(jìn)入以F為圓心的圓形軌道Ⅲ繞月飛行,若用2c1和2c2分別表示橢軌道Ⅰ和Ⅱ的焦距,用2a1和2a2分別表示橢圓軌道Ⅰ和Ⅱ的長軸的長,給出下列式子:①a1+c1=a2+c2;②a1-c1=a2-c2;③c1a2>a1c1;④<.其中正確式子的序號是( )
A.①③ B.②③ C.①④
3、 D.②④
【答案】B
【解析】
試題分析:由焦點(diǎn)到頂點(diǎn)的距離可知②正確,由橢圓的離心率知③正確,故應(yīng)選B.
4. 【2009年普通高等學(xué)校招生全國統(tǒng)一考試湖北卷5】已知雙曲線(b>0)的焦點(diǎn),則b=( )
A.3 B. C. D.
5. 【20xx年普通高等學(xué)校招生全國統(tǒng)一考試湖北卷4】將兩個(gè)頂點(diǎn)在拋物線上,另一個(gè)頂點(diǎn)是此拋物線焦點(diǎn)的正三角形個(gè)數(shù)記為n,則( )
A. B. C. D.
【答案】C
【解析】
試題分析:根
4、據(jù)拋物線的對稱性,正三角形的兩個(gè)頂點(diǎn)一定關(guān)于x軸對稱,且過焦點(diǎn)的兩條直線
6. 【20xx年普通高等學(xué)校招生全國統(tǒng)一考試湖北卷2】已知,則雙曲線:與:的( )
A.實(shí)軸長相等 B.虛軸長相等 C.離心率相等 D.焦距相等
【答案】D
【解析】
試題分析:對于θ∈,sin2θ+cos2θ=1,因而兩條雙曲線的焦距相等,故選D.
7. 【20xx年普通高等學(xué)校招生全國統(tǒng)一考試湖北卷8】設(shè)、是關(guān)于的方程的兩個(gè)不等實(shí)根,則過,兩點(diǎn)的直線與雙曲線的公共點(diǎn)的個(gè)數(shù)為( )
A. 0 B. 1 C. 2
5、 D. 3
顯然直線是雙曲線的一條漸近線,
所以直線與雙曲線無交點(diǎn),故選A.
考點(diǎn):一元二次方程的根與系數(shù)關(guān)系,直線的斜率,雙曲線的性質(zhì),直線與雙曲線的位置關(guān)系,中等題.
8. 【20xx高考湖北,文9】將離心率為的雙曲線的實(shí)半軸長和虛半軸長同時(shí)增加個(gè)單位長度,得到離心率為的雙曲線,則( )
A.對任意的, B.當(dāng)時(shí),;當(dāng)時(shí),
C.對任意的, D.當(dāng)時(shí),;當(dāng)時(shí),
二.填空題
1.【2007年普通高等學(xué)校招生全國統(tǒng)一考試湖北卷12】過雙曲線左焦點(diǎn)F的直線交雙曲線的左支于M、N兩點(diǎn),F(xiàn)2為其右
6、焦點(diǎn),則|MF2|+|NF2|-|MN|的值為 。
【答案】8
【解析】
試題分析:根據(jù)雙曲線定義有|MF2|-|MF|=2a,|NF2|-|NF|=2a,兩式相加得|MF2|+|NF2|-|MN|=4a=8.
2. 【20xx年普通高等學(xué)校招生全國統(tǒng)一考試湖北卷15】已知橢圓的兩焦點(diǎn)為,點(diǎn)滿足,則||+|的取值范圍為_______,直線與橢圓C的公共點(diǎn)個(gè)數(shù)_____.
三.解答題
1.【2005年普通高等學(xué)校招生全國統(tǒng)一考試湖北卷22】設(shè)A、B是橢圓上的兩點(diǎn),點(diǎn)N(1,3)是線段AB的中點(diǎn),線段AB的垂直平分線與橢圓相交于C、D兩點(diǎn).
(Ⅰ)確定的取值范
7、圍,并求直線AB的方程;
(Ⅱ)試判斷是否存在這樣的,使得A、B、C、D四點(diǎn)在同一個(gè)圓上?并說明理由.
依題意,
2. 【2006年普通高等學(xué)校招生全國統(tǒng)一考試湖北卷21】設(shè)分別為橢圓的左、右頂點(diǎn),橢圓長半軸的長等于焦距,且為它的右準(zhǔn)線。
(Ⅰ)、求橢圓的方程;
(Ⅱ)、設(shè)為右準(zhǔn)線上不同于點(diǎn)(4,0)的任意一點(diǎn),若直線分別與橢圓相交于異于的點(diǎn),證明點(diǎn)在以為直徑的圓內(nèi)。
(此題不要求在答題卡上畫圖)
點(diǎn)P在準(zhǔn)線x=4上,
,即. ⑦
又M點(diǎn)在橢圓上,+=1,即 ⑧
8、
于是將⑦、⑧式化簡可得-=.
從而B在以MN為直徑的圓內(nèi).
3. 【2007年普通高等學(xué)校招生全國統(tǒng)一考試湖北卷21】在平面直角坐標(biāo)系中,過定點(diǎn)作直線與拋物線相交于A、B兩點(diǎn).
(Ⅰ)若點(diǎn)N是點(diǎn)C關(guān)于坐標(biāo)原點(diǎn)O的對稱點(diǎn),求△ANB面積的最小值;
(Ⅱ)是否存在垂直于y軸的直線l,使得l被以AC為直徑的圓截得的張長恒為定值?
若存在,求出l的方程;若不存在,說明理由.(此題不要求在答題卡上畫圖)
N
O
A
C
B
y
x
【解法2】(Ⅰ)前同解法1,再由弦長公式得
,
又由點(diǎn)到直線的距離公式得.
從而,
當(dāng)時(shí),.
N
O
A
9、
C
B
y
x
l
4.【2008年普通高等學(xué)校招生全國統(tǒng)一考試湖北卷21】已知雙同線的兩個(gè)焦點(diǎn)為的曲線C上.
(Ⅰ)求雙曲線C的方程;
(Ⅱ)記O為坐標(biāo)原點(diǎn),過點(diǎn)Q (0,2)的直線l與雙曲線C相交于不同的兩點(diǎn)E、F,若△OEF的面積為求直線l的方程
而原點(diǎn)O到直線l的距離d=,
∴SΔOEF=
若SΔOEF=,即解得k=,
滿足②.故滿足條件的直線l有兩條,其方程分別為y=和
解法2:依題意,可設(shè)直線l的方程為y=kx+2,代入雙曲線C的方程并整理,
由|OQ|=2及③式,得SΔOEF=.
若SΔOEF=2,即,解得k=,滿足②.
10、
故滿足條件的直線l有兩條,即方程分別為y=和y=
5. 【2009年普通高等學(xué)校招生全國統(tǒng)一考試湖北卷21】如圖,過拋物線y2=2PX(P>0)的焦點(diǎn)F的直線與拋物線相交于M、N兩點(diǎn),自M、N向準(zhǔn)線L作垂線,垂足分別為M1、N1
(Ⅰ)求證:FM1⊥FN1:
(Ⅱ)記△FMM1、、△FM1N1、△FN N1的面積分別為S1、、S2、,S3,試判斷S22=4S1S3是否成立,并證明你的結(jié)論。
于是,,
,故
證法2:如圖,設(shè)直線M的傾角為,
則由拋物線的定義得
于是
在和中,由余弦定理可得
由(I)的結(jié)論,得
即,得證.
6.
11、【20xx年普通高等學(xué)校招生全國統(tǒng)一考試湖北卷20】已知一條曲線C在y軸右邊,C上沒一點(diǎn)到點(diǎn)F(1,0)的距離減去它到y(tǒng)軸距離的差都是1。
(Ⅰ)求曲線C的方程
(Ⅱ)是否存在正數(shù)m,對于過點(diǎn)M(m,0)且與曲線C有兩個(gè)交點(diǎn)A,B的任一直線,都有<0?若存在,求出m的取值范圍;若不存在,請說明理由.
,即。
由此可知,存在正數(shù)m,對于過點(diǎn)M(m,0)且與曲線C有兩個(gè)交點(diǎn)A,B的任一直線,都有,且m的取值范圍。
7. 【20xx年普通高等學(xué)校招生全國統(tǒng)一考試湖北卷21】平面內(nèi)與兩定點(diǎn)、連線的斜率之積等于非零常數(shù)的點(diǎn)的軌跡,加上、兩點(diǎn)所成的曲線可以是圓、橢圓或雙曲線.
(Ⅰ)求曲線的方
12、程,并討論的形狀與值的關(guān)系;
(Ⅱ)當(dāng)時(shí),對應(yīng)的曲線為;對給定的,對應(yīng)的曲線為.設(shè)、是
的兩個(gè)焦點(diǎn).試問:在上,是否存在點(diǎn),使得△的面積.若存在,求
的值;若不存在,請說明理由.
從而,于是由,
可得,即.
綜上可得:當(dāng)時(shí),在上,存在點(diǎn)N,使得,且;
當(dāng)時(shí),在上,存在點(diǎn),使得,且;
當(dāng)時(shí),在上,不存在滿足條件的點(diǎn)N.
8. 【20xx年普通高等學(xué)校招生全國統(tǒng)一考試湖北卷21】設(shè)是單位圓上的任意一點(diǎn),是過點(diǎn)與軸垂直的直線,是直線與 軸的交點(diǎn),點(diǎn)在直線上,且滿足. 當(dāng)點(diǎn)在圓上運(yùn)動時(shí),記點(diǎn)M的軌跡為曲線.
(Ⅰ)求曲線的方程,判斷曲
13、線為何種圓錐曲線,并求其焦點(diǎn)坐標(biāo);
(Ⅱ)過原點(diǎn)斜率為的直線交曲線于,兩點(diǎn),其中在第一象限,且它在軸上的射影為點(diǎn),直線交曲線于另一點(diǎn). 是否存在,使得對任意的,都有?若存在,求的值;若不存在,請說明理由.
都有.
圖2
圖3
圖1
O D x
y
A
M
第21題解答圖
9. 【20xx年普通高等學(xué)校招生全國統(tǒng)一考試湖
14、北卷22】如圖,已知橢圓與的中心在坐標(biāo)原點(diǎn),長軸均為且在軸上,短軸長分別為,,過原點(diǎn)且不與軸重合的直線與,的四個(gè)交點(diǎn)按縱坐標(biāo)從大到小依次為A,B,C,D.記,△和△的面積分別為和.
(Ⅰ)當(dāng)直線與軸重合時(shí),若,求的值;
(Ⅱ)當(dāng)變化時(shí),是否存在與坐標(biāo)軸不重合的直線l,使得?并說明理由.
第22題圖
解法2:如圖1,若直線l與y軸重合,則
|BD|=|OB|+|OD|=m+n,|AB|=|OA|-|OB|=m-n;
S1=|BD||OM|=a|BD|,
將l的方程分別與C1,C2的方程聯(lián)立,可求得
,.
根據(jù)對稱性可知xC
15、=-xB,xD=-xA,于是
=.②
從而由①和②式可得
.③
解法2:如圖2,
若存在與坐標(biāo)軸不重合的直線l,使得S1=λS2.根據(jù)對稱性,
不妨設(shè)直線l:y=kx(k>0),
點(diǎn)M(-a,0),N(a,0)到直線l的距離分別為d1,d2,則
因?yàn)椋?,所以d1=d2.
又S1=|BD|d1,S2=|AB|d2,
所以.
因?yàn)椋?
10. 【20xx年普通高等學(xué)校招生全國統(tǒng)一考試湖北卷22】在平面直角坐標(biāo)系中,點(diǎn)到點(diǎn)的距離比它到軸的距離多1,記點(diǎn)的軌跡為.
(1)求軌跡為的方程;
(2)設(shè)斜率為的直線過定點(diǎn),求直線與軌跡恰好有一個(gè)公共點(diǎn),兩個(gè)公共點(diǎn),三個(gè)公
16、共點(diǎn)時(shí)的相應(yīng)取值范圍.
【解析】(1)設(shè)點(diǎn),依題意,,即,
整理的,
所以點(diǎn)的軌跡的方程為.
(2)在點(diǎn)的軌跡中,記,,
依題意,設(shè)直線的方程為,
由方程組得 ①
(iii)若,由②③解得或,
即當(dāng)時(shí),直線與有兩個(gè)共點(diǎn),與有一個(gè)公共點(diǎn).
故當(dāng)時(shí),故此時(shí)直線與軌跡恰有三個(gè)公共點(diǎn).
綜上所述,當(dāng)時(shí)直線與軌跡恰有一個(gè)公共點(diǎn);
當(dāng)時(shí),故此時(shí)直線與軌跡恰有兩個(gè)公共點(diǎn);
當(dāng)時(shí),故此時(shí)直線與軌跡恰有三個(gè)公共點(diǎn).
考點(diǎn):兩點(diǎn)間的距離公式,拋物線方程,直線與拋物線的位置關(guān)系.
11. 【20xx高考湖北,文22】一種畫橢圓的工具如
17、圖1所示.是滑槽的中點(diǎn),短桿ON可繞O轉(zhuǎn)動,長桿MN通過N處鉸鏈與ON連接,MN上的栓子D可沿滑槽AB滑動,且,.當(dāng)栓子D在滑槽AB內(nèi)作往復(fù)運(yùn)動時(shí),帶動N繞轉(zhuǎn)動,M處的筆尖畫出的橢圓記為C.以為原點(diǎn),所在的直線為軸建立如圖2所示的平面直角坐標(biāo)系.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)動直線與兩定直線和分別交于兩點(diǎn).若直線總與橢圓有且只有一個(gè)公共點(diǎn),試探究:的面積是否存在最小值?若存在,求出該最小值;若不存在,說明理由.
x
D
O
M
N
y
第22題圖2
第22題圖1
時(shí),.因,則,,所以,當(dāng)且僅當(dāng)時(shí)取等號.所以當(dāng)時(shí),的最小值為8.
綜合(1)(2)可知,當(dāng)直線與橢圓在四個(gè)頂點(diǎn)處相切時(shí),的面積取得最小值8.
【考點(diǎn)定位】本題考查橢圓的標(biāo)準(zhǔn)方程與直線與橢圓相交綜合問題,屬高檔題.