全部初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)[共26頁(yè)]
《全部初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)[共26頁(yè)]》由會(huì)員分享,可在線(xiàn)閱讀,更多相關(guān)《全部初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)[共26頁(yè)](26頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、 網(wǎng)址: 七年級(jí)數(shù)學(xué)(上)知識(shí)點(diǎn) 人教版七年級(jí)數(shù)學(xué)上冊(cè)主要包含了有理數(shù)、整式的加減、一元一次方程、圖形的認(rèn)識(shí)初步四個(gè)章節(jié)的內(nèi)容. 有理數(shù) 一. 知識(shí)框架 二.知識(shí)概念 1.有理數(shù): (1)凡能寫(xiě)成形式的數(shù),都是有理數(shù).正整數(shù)、0、負(fù)整數(shù)統(tǒng)稱(chēng)整數(shù);正分?jǐn)?shù)、負(fù)分?jǐn)?shù)統(tǒng)稱(chēng)分?jǐn)?shù);整數(shù)和分?jǐn)?shù)統(tǒng)稱(chēng)有理數(shù).注意:0即不是正數(shù),也不是負(fù)數(shù);-a不一定是負(fù)數(shù),+a也不一定是正數(shù);p不是有理數(shù); (2)有理數(shù)的分類(lèi): ① ② 2.?dāng)?shù)軸:數(shù)軸是規(guī)定了原點(diǎn)、正方向、單位長(zhǎng)度的一條直線(xiàn). 3.相反數(shù): (1)只有符號(hào)不同的兩個(gè)數(shù),我們說(shuō)其中一個(gè)
2、是另一個(gè)的相反數(shù);0的相反數(shù)還是0; (2)相反數(shù)的和為0 a+b=0 a、b互為相反數(shù). 4.絕對(duì)值: (1)正數(shù)的絕對(duì)值是其本身,0的絕對(duì)值是0,負(fù)數(shù)的絕對(duì)值是它的相反數(shù);注意:絕對(duì)值的意義是數(shù)軸上表示某數(shù)的點(diǎn)離開(kāi)原點(diǎn)的距離; (2) 絕對(duì)值可表示為:或 ;絕對(duì)值的問(wèn)題經(jīng)常分類(lèi)討論; 5.有理數(shù)比大小:(1)正數(shù)的絕對(duì)值越大,這個(gè)數(shù)越大;(2)正數(shù)永遠(yuǎn)比0大,負(fù)數(shù)永遠(yuǎn)比0??;(3)正數(shù)大于一切負(fù)數(shù);(4)兩個(gè)負(fù)數(shù)比大小,絕對(duì)值大的反而小;(5)數(shù)軸上的兩個(gè)數(shù),右邊的數(shù)總比左邊的數(shù)大;(6)大數(shù)-小數(shù) > 0,小數(shù)-大數(shù) < 0. 6.互為倒數(shù):乘積為1的兩個(gè)數(shù)互為倒數(shù);注意
3、:0沒(méi)有倒數(shù);若 a≠0,那么的倒數(shù)是;若ab=1 a、b互為倒數(shù);若ab=-1 a、b互為負(fù)倒數(shù). 7. 有理數(shù)加法法則: (1)同號(hào)兩數(shù)相加,取相同的符號(hào),并把絕對(duì)值相加; (2)異號(hào)兩數(shù)相加,取絕對(duì)值較大的符號(hào),并用較大的絕對(duì)值減去較小的絕對(duì)值; (3)一個(gè)數(shù)與0相加,仍得這個(gè)數(shù). 8.有理數(shù)加法的運(yùn)算律: (1)加法的交換律:a+b=b+a ;(2)加法的結(jié)合律:(a+b)+c=a+(b+c). 9.有理數(shù)減法法則:減去一個(gè)數(shù),等于加上這個(gè)數(shù)的相反數(shù);即a-b=a+(-b). 10 有理數(shù)乘法法則: (1)兩數(shù)相乘,同號(hào)為正,異號(hào)為負(fù),并把絕對(duì)值相乘; (2)任何數(shù)
4、同零相乘都得零; (3)幾個(gè)數(shù)相乘,有一個(gè)因式為零,積為零;各個(gè)因式都不為零,積的符號(hào)由負(fù)因式的個(gè)數(shù)決定. 11 有理數(shù)乘法的運(yùn)算律: (1)乘法的交換律:ab=ba;(2)乘法的結(jié)合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac . 12.有理數(shù)除法法則:除以一個(gè)數(shù)等于乘以這個(gè)數(shù)的倒數(shù);注意:零不能做除數(shù),. 13.有理數(shù)乘方的法則: (1)正數(shù)的任何次冪都是正數(shù); (2)負(fù)數(shù)的奇次冪是負(fù)數(shù);負(fù)數(shù)的偶次冪是正數(shù);注意:當(dāng)n為正奇數(shù)時(shí): (-a)n=-an或(a -b)n=-(b-a)n , 當(dāng)n為正偶數(shù)時(shí): (-a)n =an 或 (a-b)n=(
5、b-a)n . 14.乘方的定義: (1)求相同因式積的運(yùn)算,叫做乘方; (2)乘方中,相同的因式叫做底數(shù),相同因式的個(gè)數(shù)叫做指數(shù),乘方的結(jié)果叫做冪; 15.科學(xué)記數(shù)法:把一個(gè)大于10的數(shù)記成a10n的形式,其中a是整數(shù)數(shù)位只有一位的數(shù),這種記數(shù)法叫科學(xué)記數(shù)法. 16.近似數(shù)的精確位:一個(gè)近似數(shù),四舍五入到那一位,就說(shuō)這個(gè)近似數(shù)的精確到那一位. 17.有效數(shù)字:從左邊第一個(gè)不為零的數(shù)字起,到精確的位數(shù)止,所有數(shù)字,都叫這個(gè)近似數(shù)的有效數(shù)字. 18.混合運(yùn)算法則:先乘方,后乘除,最后加減. 本章內(nèi)容要求學(xué)生正確認(rèn)識(shí)有理數(shù)的概念,在實(shí)際生活和學(xué)習(xí)數(shù)軸的基礎(chǔ)上,理解正負(fù)數(shù)、相反數(shù)
6、、絕對(duì)值的意義所在。重點(diǎn)利用有理數(shù)的運(yùn)算法則解決實(shí)際問(wèn)題. 第二章 整式的加減 一.知識(shí)框架 二.知識(shí)概念 1.單項(xiàng)式:在代數(shù)式中,若只含有乘法(包括乘方)運(yùn)算?;螂m含有除法運(yùn)算,但除式中不含字母的一類(lèi)代數(shù)式叫單項(xiàng)式. 2.單項(xiàng)式的系數(shù)與次數(shù):?jiǎn)雾?xiàng)式中不為零的數(shù)字因數(shù),叫單項(xiàng)式的數(shù)字系數(shù),簡(jiǎn)稱(chēng)單項(xiàng)式的系數(shù);系數(shù)不為零時(shí),單項(xiàng)式中所有字母指數(shù)的和,叫單項(xiàng)式的次數(shù). 3.多項(xiàng)式:幾個(gè)單項(xiàng)式的和叫多項(xiàng)式. 4.多項(xiàng)式的項(xiàng)數(shù)與次數(shù):多項(xiàng)式中所含單項(xiàng)式的個(gè)數(shù)就是多項(xiàng)式的項(xiàng)數(shù),每個(gè)單項(xiàng)式叫多項(xiàng)式的項(xiàng);多項(xiàng)式里,次數(shù)最高項(xiàng)的次數(shù)叫多項(xiàng)式的次數(shù)。 通過(guò)本章學(xué)習(xí),
7、應(yīng)使學(xué)生達(dá)到以下學(xué)習(xí)目標(biāo): 1.理解并掌握單項(xiàng)式、多項(xiàng)式、整式等概念,弄清它們之間的區(qū)別與聯(lián)系。 2.理解同類(lèi)項(xiàng)概念,掌握合并同類(lèi)項(xiàng)的方法,掌握去括號(hào)時(shí)符號(hào)的變化規(guī)律,能正確地進(jìn)行同類(lèi)項(xiàng)的合并和去括號(hào)。在準(zhǔn)確判斷、正確合并同類(lèi)項(xiàng)的基礎(chǔ)上,進(jìn)行整式的加減運(yùn)算。 3.理解整式中的字母表示數(shù),整式的加減運(yùn)算建立在數(shù)的運(yùn)算基礎(chǔ)上;理解合并同類(lèi)項(xiàng)、去括號(hào)的依據(jù)是分配律;理解數(shù)的運(yùn)算律和運(yùn)算性質(zhì)在整式的加減運(yùn)算中仍然成立。 4.能夠分析實(shí)際問(wèn)題中的數(shù)量關(guān)系,并用還有字母的式子表示出來(lái)。 在本章學(xué)習(xí)中,教師可以通過(guò)讓學(xué)生小組討論、合作學(xué)習(xí)等方式,經(jīng)歷概念的形成過(guò)程,初步培養(yǎng)學(xué)生觀察、分析、抽象、概
8、括等思維能力和應(yīng)用意識(shí)。 一元一次方程 一. 知識(shí)框架 二.知識(shí)概念 1.一元一次方程:只含有一個(gè)未知數(shù),并且未知數(shù)的次數(shù)是1,并且含未知數(shù)項(xiàng)的系數(shù)不是零的整式方程是一元一次方程. 2.一元一次方程的標(biāo)準(zhǔn)形式: ax+b=0(x是未知數(shù),a、b是已知數(shù),且a≠0). 3.一元一次方程解法的一般步驟: 整理方程 …… 去分母 …… 去括號(hào) …… 移項(xiàng) …… 合并同類(lèi)項(xiàng) …… 系數(shù)化為1 …… (檢驗(yàn)方程的解). 4.列一元一次方程解應(yīng)用題: (1)讀題分析法:………… 多用于“和,差,倍,分問(wèn)題” 仔細(xì)讀題,找出表示相等關(guān)系的關(guān)鍵字,例如:“大,小,多,少,是,共,合
9、,為,完成,增加,減少,配套-----”,利用這些關(guān)鍵字列出文字等式,并且據(jù)題意設(shè)出未知數(shù),最后利用題目中的量與量的關(guān)系填入代數(shù)式,得到方程. (2)畫(huà)圖分析法: ………… 多用于“行程問(wèn)題” 利用圖形分析數(shù)學(xué)問(wèn)題是數(shù)形結(jié)合思想在數(shù)學(xué)中的體現(xiàn),仔細(xì)讀題,依照題意畫(huà)出有關(guān)圖形,使圖形各部分具有特定的含義,通過(guò)圖形找相等關(guān)系是解決問(wèn)題的關(guān)鍵,從而取得布列方程的依據(jù),最后利用量與量之間的關(guān)系(可把未知數(shù)看做已知量),填入有關(guān)的代數(shù)式是獲得方程的基礎(chǔ). 11.列方程解應(yīng)用題的常用公式: (1)行程問(wèn)題: 距離=速度時(shí)間 ; (2)工程問(wèn)題: 工作量=工效工時(shí) ;
10、(3)比率問(wèn)題: 部分=全體比率 ; (4)順逆流問(wèn)題: 順流速度=靜水速度+水流速度,逆流速度=靜水速度-水流速度; (5)商品價(jià)格問(wèn)題: 售價(jià)=定價(jià)折 ,利潤(rùn)=售價(jià)-成本, ; (6)周長(zhǎng)、面積、體積問(wèn)題:C圓=2πR,S圓=πR2,C長(zhǎng)方形=2(a+b),S長(zhǎng)方形=ab, C正方形=4a, S正方形=a2,S環(huán)形=π(R2-r2),V長(zhǎng)方體=abc ,V正方體=a3,V圓柱=πR2h ,V圓錐=πR2h. 本章內(nèi)容是代數(shù)學(xué)的核心,也是所有代數(shù)方程的基礎(chǔ)。豐富多彩的問(wèn)題情境和解決問(wèn)題的快樂(lè)很容易激起學(xué)生對(duì)數(shù)學(xué)的樂(lè)趣,所以要注意引導(dǎo)學(xué)生從身邊的問(wèn)題研究起,進(jìn)
11、行有效的數(shù)學(xué)活動(dòng)和合作交流,讓學(xué)生在主動(dòng)學(xué)習(xí)、探究學(xué)習(xí)的過(guò)程中獲得知識(shí),提升能力,體會(huì)數(shù)學(xué)思想方法。 圖形的認(rèn)識(shí)初步 知識(shí)框架 本章的主要內(nèi)容是圖形的初步認(rèn)識(shí),從生活周?chē)煜さ奈矬w入手,對(duì)物體的形狀的認(rèn)識(shí)從感性逐步上升到抽象的幾何圖形.通過(guò)從不同方向看立體圖形和展開(kāi)立體圖形,初步認(rèn)識(shí)立體圖形與平面圖形的聯(lián)系.在此基礎(chǔ)上,認(rèn)識(shí)一些簡(jiǎn)單的平面圖形——直線(xiàn)、射線(xiàn)、線(xiàn)段和角. 本章書(shū)涉及的數(shù)學(xué)思想: 1.分類(lèi)討論思想。在過(guò)平面上若干個(gè)點(diǎn)畫(huà)直線(xiàn)時(shí),應(yīng)注意對(duì)這些點(diǎn)分情況討論;在畫(huà)圖形時(shí),應(yīng)注意圖形的各種可能性。 2.方程思想。在處理有關(guān)角的大小,線(xiàn)段大小的計(jì)算時(shí),常需要通過(guò)列方程來(lái)解決。
12、 3.圖形變換思想。在研究角的概念時(shí),要充分體會(huì)對(duì)射線(xiàn)旋轉(zhuǎn)的認(rèn)識(shí)。在處理圖形時(shí)應(yīng)注意轉(zhuǎn)化思想的應(yīng)用,如立體圖形與平面圖形的互相轉(zhuǎn)化。 4.化歸思想。在進(jìn)行直線(xiàn)、線(xiàn)段、角以及相關(guān)圖形的計(jì)數(shù)時(shí),總要?jiǎng)潥w到公式n(n-1)/2的具體運(yùn)用上來(lái)。 七年級(jí)數(shù)學(xué)(下)知識(shí)點(diǎn) 人教版七年級(jí)數(shù)學(xué)下冊(cè)主要包括相交線(xiàn)與平行線(xiàn)、平面直角坐標(biāo)系、三角形、二元一次方程組、不等式與不等式組和數(shù)據(jù)的收集、整理與表述六章內(nèi)容。 第五章 相交線(xiàn)與平行線(xiàn) 一、知識(shí)框架 二、知識(shí)概念 1.鄰補(bǔ)角:兩條直線(xiàn)相交所構(gòu)成的四個(gè)角中,有公共頂點(diǎn)且有一條公共邊的兩個(gè)角是鄰補(bǔ)角。 2.對(duì)頂角:一個(gè)角的兩邊分別是另一個(gè)叫
13、的兩邊的反向延長(zhǎng)線(xiàn),像這樣的兩個(gè)角互為對(duì)頂角。 3.垂線(xiàn):兩條直線(xiàn)相交成直角時(shí),叫做互相垂直,其中一條叫做另一條的垂線(xiàn)。 4.平行線(xiàn):在同一平面內(nèi),不相交的兩條直線(xiàn)叫做平行線(xiàn)。 5.同位角、內(nèi)錯(cuò)角、同旁?xún)?nèi)角: 同位角:∠1與∠5像這樣具有相同位置關(guān)系的一對(duì)角叫做同位角。 內(nèi)錯(cuò)角:∠2與∠6像這樣的一對(duì)角叫做內(nèi)錯(cuò)角。 同旁?xún)?nèi)角:∠2與∠5像這樣的一對(duì)角叫做同旁?xún)?nèi)角。 6.命題:判斷一件事情的語(yǔ)句叫命題。 7.平移:在平面內(nèi),將一個(gè)圖形沿某個(gè)方向移動(dòng)一定的距離,圖形的這種移動(dòng)叫做平移平移變換,簡(jiǎn)稱(chēng)平移。 8.對(duì)應(yīng)點(diǎn):平移后得到的新圖形中每一點(diǎn),都是由原圖形中的某一點(diǎn)移動(dòng)后得到的,
14、這樣的兩個(gè)點(diǎn)叫做對(duì)應(yīng)點(diǎn)。 9.定理與性質(zhì) 對(duì)頂角的性質(zhì):對(duì)頂角相等。 10垂線(xiàn)的性質(zhì): 性質(zhì)1:過(guò)一點(diǎn)有且只有一條直線(xiàn)與已知直線(xiàn)垂直。 性質(zhì)2:連接直線(xiàn)外一點(diǎn)與直線(xiàn)上各點(diǎn)的所有線(xiàn)段中,垂線(xiàn)段最短。 11.平行公理:經(jīng)過(guò)直線(xiàn)外一點(diǎn)有且只有一條直線(xiàn)與已知直線(xiàn)平行。 平行公理的推論:如果兩條直線(xiàn)都與第三條直線(xiàn)平行,那么這兩條直線(xiàn)也互相平行。 12.平行線(xiàn)的性質(zhì): 性質(zhì)1:兩直線(xiàn)平行,同位角相等。 性質(zhì)2:兩直線(xiàn)平行,內(nèi)錯(cuò)角相等。 性質(zhì)3:兩直線(xiàn)平行,同旁?xún)?nèi)角互補(bǔ)。 13.平行線(xiàn)的判定: 判定1:同位角相等,兩直線(xiàn)平行。 判定2:內(nèi)錯(cuò)角相等,兩直線(xiàn)平行。 判定3:同旁?xún)?nèi)角
15、相等,兩直線(xiàn)平行。 本章使學(xué)生了解在平面內(nèi)不重合的兩條直線(xiàn)相交與平行的兩種位置關(guān)系,研究了兩條直線(xiàn)相交時(shí)的形成的角的特征,兩條直線(xiàn)互相垂直所具有的特性,兩條直線(xiàn)平行的長(zhǎng)期共存條件和它所有的特征以及有關(guān)圖形平移變換的性質(zhì),利用平移設(shè)計(jì)一些優(yōu)美的圖案.重點(diǎn):垂線(xiàn)和它的性質(zhì),平行線(xiàn)的判定方法和它的性質(zhì),平移和它的性質(zhì),以及這些的組織運(yùn)用.難點(diǎn):探索平行線(xiàn)的條件和特征,平行線(xiàn)條件與特征的區(qū)別,運(yùn)用平移性質(zhì)探索圖形之間的平移關(guān)系,以及進(jìn)行圖案設(shè)計(jì)。 第六章 平面直角坐標(biāo)系 一.知識(shí)框架 二.知識(shí)概念 1.有序數(shù)對(duì):有順序的兩個(gè)數(shù)a與b組成的數(shù)對(duì)叫做有序數(shù)對(duì),記做(a,b) 2.平面
16、直角坐標(biāo)系:在平面內(nèi),兩條互相垂直且有公共原點(diǎn)的數(shù)軸組成平面直角坐標(biāo)系。 3.橫軸、縱軸、原點(diǎn):水平的數(shù)軸稱(chēng)為x軸或橫軸;豎直的數(shù)軸稱(chēng)為y軸或縱軸;兩坐標(biāo)軸的交點(diǎn)為平面直角坐標(biāo)系的原點(diǎn)。 4.坐標(biāo):對(duì)于平面內(nèi)任一點(diǎn)P,過(guò)P分別向x軸,y軸作垂線(xiàn),垂足分別在x軸,y軸上,對(duì)應(yīng)的數(shù)a,b分別叫點(diǎn)P的橫坐標(biāo)和縱坐標(biāo)。 5.象限:兩條坐標(biāo)軸把平面分成四個(gè)部分,右上部分叫第一象限,按逆時(shí)針?lè)较蛞淮谓械诙笙?、第三象限、第四象限。坐?biāo)軸上的點(diǎn)不在任何一個(gè)象限內(nèi)。 平面直角坐標(biāo)系是數(shù)軸由一維到二維的過(guò)渡,同時(shí)它又是學(xué)習(xí)函數(shù)的基礎(chǔ),起到承上啟下的作用。另外,平面直角坐標(biāo)系將平面內(nèi)的點(diǎn)與數(shù)結(jié)合起來(lái),體現(xiàn)
17、了數(shù)形結(jié)合的思想。掌握本節(jié)內(nèi)容對(duì)以后學(xué)習(xí)和生活有著積極的意義。教師在講授本章內(nèi)容時(shí)應(yīng)多從實(shí)際情形出發(fā),通過(guò)對(duì)平面上的點(diǎn)的位置確定發(fā)展學(xué)生創(chuàng)新能力和應(yīng)用意識(shí)。 第七章 三角形 一.知識(shí)框架 二.知識(shí)概念 1.三角形:由不在同一直線(xiàn)上的三條線(xiàn)段首尾順次相接所組成的圖形叫做三角形。 2.三邊關(guān)系:三角形任意兩邊的和大于第三邊,任意兩邊的差小于第三邊。 3.高:從三角形的一個(gè)頂點(diǎn)向它的對(duì)邊所在直線(xiàn)作垂線(xiàn),頂點(diǎn)和垂足間的線(xiàn)段叫做三角形的高。 4.中線(xiàn):在三角形中,連接一個(gè)頂點(diǎn)和它的對(duì)邊中點(diǎn)的線(xiàn)段叫做三角形的中線(xiàn)。 5.角平分線(xiàn)
18、:三角形的一個(gè)內(nèi)角的平分線(xiàn)與這個(gè)角的對(duì)邊相交,這個(gè)角的頂點(diǎn)和交點(diǎn)之間的線(xiàn)段叫做三角形的角平分線(xiàn)。 6.三角形的穩(wěn)定性:三角形的形狀是固定的,三角形的這個(gè)性質(zhì)叫三角形的穩(wěn)定性。 6.多邊形:在平面內(nèi),由一些線(xiàn)段首尾順次相接組成的圖形叫做多邊形。 7.多邊形的內(nèi)角:多邊形相鄰兩邊組成的角叫做它的內(nèi)角。 8.多邊形的外角:多邊形的一邊與它的鄰邊的延長(zhǎng)線(xiàn)組成的角叫做多邊形的外角。 9.多邊形的對(duì)角線(xiàn):連接多邊形不相鄰的兩個(gè)頂點(diǎn)的線(xiàn)段,叫做多邊形的對(duì)角線(xiàn)。 10.正多邊形:在平面內(nèi),各個(gè)角都相等,各條邊都相等的多邊形叫做正多邊形。 11.平面鑲嵌:用一些不重疊擺放的多邊形把平面的一部分完全
19、覆蓋,叫做用多邊形覆蓋平面。 12.公式與性質(zhì) 三角形的內(nèi)角和:三角形的內(nèi)角和為180 三角形外角的性質(zhì): 性質(zhì)1:三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和。 性質(zhì)2:三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角。 多邊形內(nèi)角和公式:n邊形的內(nèi)角和等于(n-2)180 多邊形的外角和:多邊形的內(nèi)角和為360。 多邊形對(duì)角線(xiàn)的條數(shù):(1)從n邊形的一個(gè)頂點(diǎn)出發(fā)可以引(n-3)條對(duì)角線(xiàn),把多邊形分詞(n-2)個(gè)三角形。 (2)n邊形共有條對(duì)角線(xiàn)。 三角形是初中數(shù)學(xué)中幾何部分的基礎(chǔ)圖形,在學(xué)習(xí)過(guò)程中,教師應(yīng)該多鼓勵(lì)學(xué)生動(dòng)腦動(dòng)手,發(fā)現(xiàn)和探索其中的知識(shí)奧秘。注重培養(yǎng)學(xué)生正確的數(shù)學(xué)
20、情操和幾何思維能力。 第八章 二元一次方程組 一.知識(shí)結(jié)構(gòu)圖 二、知識(shí)概念 1.二元一次方程:含有兩個(gè)未知數(shù),并且未知數(shù)的指數(shù)都是1,像這樣的方程叫做二元一次。方程,一般形式是 ax+by=c(a≠0,b≠0)。 2.二元一次方程組:把兩個(gè)二元一次方程合在一起,就組成了一個(gè)二元一次方程組。 3.二元一次方程的解:一般地,使二元一次方程兩邊的值相等的未知數(shù)的值叫做二元一次方程組的解。 4.二元一次方程組的解:一般地,二元一次方程組的兩個(gè)方程的公共解叫做二元一次方程組。 5.消元:將未知數(shù)的個(gè)數(shù)由多化少,逐一解決的想法,叫做消元思想。
21、 6.代入消元:將一個(gè)未知數(shù)用含有另一個(gè)未知數(shù)的式子表示出來(lái),再代入另一個(gè)方程,實(shí)現(xiàn)消元,進(jìn)而求得這個(gè)二元一次方程組的解,這種方法叫做代入消元法,簡(jiǎn)稱(chēng)代入法。 7.加減消元法:當(dāng)兩個(gè)方程中同一未知數(shù)的系數(shù)相反或相等時(shí),將兩個(gè)方程的兩邊分別相加或相減,就能消去這個(gè)未知數(shù),這種方法叫做加減消元法,簡(jiǎn)稱(chēng)加減法。 本章通過(guò)實(shí)例引入二元一次方程,二元一次方程組以及二元一次方程組的概念,培養(yǎng)學(xué)生對(duì)概念的理解和完整性和深刻性,使學(xué)生掌握好二元一次方程組的兩種解法.重點(diǎn):二元一次方程組的解法,列二元一次方程組解決實(shí)際問(wèn)題.難點(diǎn):二元一次方程組解決實(shí)際問(wèn)題 第九章 不等式與不等式組 一.知識(shí)框架
22、 二、知識(shí)概念 1.用符號(hào)“<”“>”“≤ ”“≥”表示大小關(guān)系的式子叫做不等式。 2.不等式的解:使不等式成立的未知數(shù)的值,叫做不等式的解。 3.不等式的解集:一個(gè)含有未知數(shù)的不等式的所有解,組成這個(gè)不等式的解集。 4.一元一次不等式:不等式的左、右兩邊都是整式,只有一個(gè)未知數(shù),并且未知數(shù)的最高次數(shù)是1,像這樣的不等式,叫做一元一次不等式。 5.一元一次不等式組:一般地,關(guān)于同一未知數(shù)的幾個(gè)一元一次不等式合在一起,就組成6.了一個(gè)一元一次不等式組。 7.定理與性質(zhì) 不等式的性質(zhì): 不等式的基本性質(zhì)1:不等式的兩邊都加上(或減去)同一個(gè)數(shù)(或式子),不等號(hào)的方向不變。
23、不等式的基本性質(zhì)2:不等式的兩邊都乘以(或除以)同一個(gè)正數(shù),不等號(hào)的方向不變。 不等式的基本性質(zhì)3:不等式的兩邊都乘以(或除以)同一個(gè)負(fù)數(shù),不等號(hào)的方向改變。 本章內(nèi)容要求學(xué)生經(jīng)歷建立一元一次不等式(組)這樣的數(shù)學(xué)模型并應(yīng)用它解決實(shí)際問(wèn)題的過(guò)程,體會(huì)不等式(組)的特點(diǎn)和作用,掌握運(yùn)用它們解決問(wèn)題的一般方法,提高分析問(wèn)題、解決問(wèn)題的能力,增強(qiáng)創(chuàng)新精神和應(yīng)用數(shù)學(xué)的意識(shí)。 第十章 數(shù)據(jù)的收集、整理與描述 一.知識(shí)框架 全面調(diào)查 抽樣調(diào)查 收集數(shù)據(jù) 描述數(shù)據(jù) 整理數(shù)據(jù) 分析數(shù)據(jù) 得出結(jié)論 二.知識(shí)概念 1.
24、全面調(diào)查:考察全體對(duì)象的調(diào)查方式叫做全面調(diào)查。 2.抽樣調(diào)查:調(diào)查部分?jǐn)?shù)據(jù),根據(jù)部分來(lái)估計(jì)總體的調(diào)查方式稱(chēng)為抽樣調(diào)查。 3.總體:要考察的全體對(duì)象稱(chēng)為總體。 4.個(gè)體:組成總體的每一個(gè)考察對(duì)象稱(chēng)為個(gè)體。 5.樣本:被抽取的所有個(gè)體組成一個(gè)樣本。 6.樣本容量:樣本中個(gè)體的數(shù)目稱(chēng)為樣本容量。 7.頻數(shù):一般地,我們稱(chēng)落在不同小組中的數(shù)據(jù)個(gè)數(shù)為該組的頻數(shù)。 8.頻率:頻數(shù)與數(shù)據(jù)總數(shù)的比為頻率。 9.組數(shù)和組距:在統(tǒng)計(jì)數(shù)據(jù)時(shí),把數(shù)據(jù)按照一定的范圍分成若干各組,分成組的個(gè)數(shù)稱(chēng)為組數(shù),每一組兩個(gè)端點(diǎn)的差叫做組距。 本章要求通過(guò)實(shí)際參與收集、整理、描述和分析數(shù)據(jù)的活動(dòng),經(jīng)歷統(tǒng)計(jì)的一般過(guò)程
25、,感受統(tǒng)計(jì)在生活和生產(chǎn)中的作用,增強(qiáng)學(xué)習(xí)統(tǒng)計(jì)的興趣,初步建立統(tǒng)計(jì)的觀念,培養(yǎng)重視調(diào)查研究的良好習(xí)慣和科學(xué)態(tài)度。 八年級(jí)數(shù)學(xué)(上)知識(shí)點(diǎn) 人教版八年級(jí)上冊(cè)主要包括全等三角形、軸對(duì)稱(chēng)、實(shí)數(shù)、一次函數(shù)和 整式的乘除與分解因式五個(gè)章節(jié)的內(nèi)容。 第十一章 全等三角形 一.知識(shí)框架 二.知識(shí)概念 1.全等三角形:兩個(gè)三角形的形狀、大小、都一樣時(shí),其中一個(gè)可以經(jīng)過(guò)平移、旋轉(zhuǎn)、對(duì)稱(chēng)等運(yùn)動(dòng)(或稱(chēng)變換)使之與另一個(gè)重合,這兩個(gè)三角形稱(chēng)為全等三角形。 2.全等三角形的性質(zhì): 全等三角形的對(duì)應(yīng)角相等、對(duì)應(yīng)邊相等。 3.三角形全等的判定公理及推論有: (1)“邊角邊”簡(jiǎn)稱(chēng)“
26、SAS” (2)“角邊角”簡(jiǎn)稱(chēng)“ASA” (3)“邊邊邊”簡(jiǎn)稱(chēng)“SSS” (4)“角角邊”簡(jiǎn)稱(chēng)“AAS” (5)斜邊和直角邊相等的兩直角三角形(HL)。 4.角平分線(xiàn)推論:角的內(nèi)部到角的兩邊的距離相等的點(diǎn)在叫的平分線(xiàn)上。 5.證明兩三角形全等或利用它證明線(xiàn)段或角的相等的基本方法步驟:①、確定已知條件(包括隱含條件,如公共邊、公共角、對(duì)頂角、角平分線(xiàn)、中線(xiàn)、高、等腰三角形、等所隱含的邊角關(guān)系),②、回顧三角形判定,搞清我們還需要什么,③、正確地書(shū)寫(xiě)證明格式(順序和對(duì)應(yīng)關(guān)系從已知推導(dǎo)出要證明的問(wèn)題). 在學(xué)習(xí)三角形的全等時(shí),教師應(yīng)該從實(shí)際生活中的圖形出發(fā),引出全等圖形
27、進(jìn)而引出全等三角形。通過(guò)直觀的理解和比較發(fā)現(xiàn)全等三角形的奧妙之處。在經(jīng)歷三角形的角平分線(xiàn)、中線(xiàn)等探索中激發(fā)學(xué)生的集合思維,啟發(fā)他們的靈感,使學(xué)生體會(huì)到集合的真正魅力。 第十二章 軸對(duì)稱(chēng) 一.知識(shí)框架 二.知識(shí)概念 1.對(duì)稱(chēng)軸:如果一個(gè)圖形沿某條直線(xiàn)折疊后,直線(xiàn)兩旁的部分能夠互相重合,那么這個(gè)圖形叫做軸對(duì)稱(chēng)圖形;這條直線(xiàn)叫做對(duì)稱(chēng)軸。 2.性質(zhì): (1)軸對(duì)稱(chēng)圖形的對(duì)稱(chēng)軸,是任何一對(duì)對(duì)應(yīng)點(diǎn)所連線(xiàn)段的垂直平分線(xiàn)。 (2)角平分線(xiàn)上的點(diǎn)到角兩邊距離相等。 (3)線(xiàn)段垂直平分線(xiàn)上的任意一點(diǎn)到線(xiàn)段兩個(gè)端點(diǎn)的距離相等。 (4)與一條線(xiàn)段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線(xiàn)段的垂直平分線(xiàn)上
28、。 (5)軸對(duì)稱(chēng)圖形上對(duì)應(yīng)線(xiàn)段相等、對(duì)應(yīng)角相等。 3.等腰三角形的性質(zhì):等腰三角形的兩個(gè)底角相等,(等邊對(duì)等角) 4.等腰三角形的頂角平分線(xiàn)、底邊上的高、底邊上的中線(xiàn)互相重合,簡(jiǎn)稱(chēng)為“三線(xiàn)合一”。 5.等腰三角形的判定:等角對(duì)等邊。 6.等邊三角形角的特點(diǎn):三個(gè)內(nèi)角相等,等于60, 7.等邊三角形的判定: 三個(gè)角都相等的三角形是等腰三角形。 有一個(gè)角是60的等腰三角形是等邊三角形 有兩個(gè)角是60的三角形是等邊三角形。 8.直角三角形中,30角所對(duì)的直角邊等于斜邊的一半。 9.直角三角形斜邊上
29、的中線(xiàn)等于斜邊的一半。 本章內(nèi)容要求學(xué)生在建立在軸對(duì)稱(chēng)概念的基礎(chǔ)上,能夠?qū)ι钪械膱D形進(jìn)行分析鑒賞,親身經(jīng)歷數(shù)學(xué)美,正確理解等腰三角形、等邊三角形等的性質(zhì)和判定,并利用這些性質(zhì)來(lái)解決一些數(shù)學(xué)問(wèn)題。 第十三章 實(shí)數(shù) 1.算術(shù)平方根:一般地,如果一個(gè)正數(shù)x的平方等于a,即x2=a,那么正數(shù)x叫做a的算術(shù)平方根,記作。0的算術(shù)平方根為0;從定義可知,只有當(dāng)a≥0時(shí),a才有算術(shù)平方根。 2.平方根:一般地,如果一個(gè)數(shù)x的平方根等于a,即x2=a,那么數(shù)x就叫做a的平方根。 3.正數(shù)有兩個(gè)平方根(一正一負(fù))它們互為相反數(shù);0只有一個(gè)平方根,就是它本身;負(fù)數(shù)沒(méi)有平方根。 4.正數(shù)的立方根
30、是正數(shù);0的立方根是0;負(fù)數(shù)的立方根是負(fù)數(shù)。 5.數(shù)a的相反數(shù)是-a,一個(gè)正實(shí)數(shù)的絕對(duì)值是它本身,一個(gè)負(fù)數(shù)的絕對(duì)值是它的相反數(shù),0的絕對(duì)值是0 實(shí)數(shù)部分主要要求學(xué)生了解無(wú)理數(shù)和實(shí)數(shù)的概念,知道實(shí)數(shù)和數(shù)軸上的點(diǎn)一一對(duì)應(yīng),能估算無(wú)理數(shù)的大??;了解實(shí)數(shù)的運(yùn)算法則及運(yùn)算律,會(huì)進(jìn)行實(shí)數(shù)的運(yùn)算。重點(diǎn)是實(shí)數(shù)的意義和實(shí)數(shù)的分類(lèi);實(shí)數(shù)的運(yùn)算法則及運(yùn)算律。 第十四章 一次函數(shù) 一.知識(shí)框架 二.知識(shí)概念 (1) (3) (2) (1) (2) (3) 1.一次函數(shù):若兩個(gè)變量x,y間的關(guān)系式可以表示成y=kx+b(k≠0)的形式,則稱(chēng)y是x的一次函數(shù)(x為
31、自變量,y為因變量)。特別地,當(dāng)b=0時(shí),稱(chēng)y是x的正比例函數(shù)。 2.正比例函數(shù)一般式:y=kx(k≠0),其圖象是經(jīng)過(guò)原點(diǎn)(0,0)的一條直線(xiàn)。 3.正比例函數(shù)y=kx(k≠0)的圖象是一條經(jīng)過(guò)原點(diǎn)的直線(xiàn),當(dāng)k>0時(shí),直線(xiàn)y=kx經(jīng)過(guò)第一、三象限,y隨x的增大而增大,當(dāng)k<0時(shí),直線(xiàn)y=kx經(jīng)過(guò)第二、四象限,y隨x的增大而減小,在一次函數(shù)y=kx+b中:當(dāng)k>0時(shí),y隨x的增大而增大; 當(dāng)k<0時(shí),y隨x的增大而減小。 4.已知兩點(diǎn)坐標(biāo)求函數(shù)解析式:待定系數(shù)法 一次函數(shù)是初中學(xué)生學(xué)習(xí)函數(shù)的開(kāi)始,也是今后學(xué)習(xí)其它函數(shù)知識(shí)的基石。在學(xué)習(xí)本章內(nèi)容時(shí),教師應(yīng)該多從實(shí)際
32、問(wèn)題出發(fā),引出變量,從具體到抽象的認(rèn)識(shí)事物。培養(yǎng)學(xué)生良好的變化與對(duì)應(yīng)意識(shí),體會(huì)數(shù)形結(jié)合的思想。在教學(xué)過(guò)程中,應(yīng)更加側(cè)重于理解和運(yùn)用,在解決實(shí)際問(wèn)題的同時(shí),讓學(xué)習(xí)體會(huì)到數(shù)學(xué)的實(shí)用價(jià)值和樂(lè)趣。 第十五章 整式的乘除與分解因式 1.同底數(shù)冪的乘法法則: (m,n都是正數(shù)) 2.. 冪的乘方法則:(m,n都是正數(shù)) 3. 整式的乘法 (1) 單項(xiàng)式乘法法則:單項(xiàng)式相乘,把它們的系數(shù)、相同字母分別相乘,對(duì)于只在一個(gè)單項(xiàng)式里含有的字母,連同它的指數(shù)作為積的一個(gè)因式。 (2)單項(xiàng)式與多項(xiàng)式相乘:單項(xiàng)式乘以多項(xiàng)式,是通過(guò)乘法對(duì)加法的分配律,把它轉(zhuǎn)化為單項(xiàng)式乘以單項(xiàng)式,即單項(xiàng)式與多項(xiàng)式相
33、乘,就是用單項(xiàng)式去乘多項(xiàng)式的每一項(xiàng),再把所得的積相加。 (3).多項(xiàng)式與多項(xiàng)式相乘 多項(xiàng)式與多項(xiàng)式相乘,先用一個(gè)多項(xiàng)式中的每一項(xiàng)乘以另一個(gè)多項(xiàng)式的每一項(xiàng),再把所得的積相加。 4.平方差公式: 5.完全平方公式: 6. 同底數(shù)冪的除法法則:同底數(shù)冪相除,底數(shù)不變,指數(shù)相減,即 (a≠0,m、n都是正數(shù),且m>n). 在應(yīng)用時(shí)需要注意以下幾點(diǎn): ①法則使用的前提條件是“同底數(shù)冪相除”而且0不能做除數(shù),所以法則中a≠0. ②任何不等于0的數(shù)的0次冪等于1,即,如,(-2.50=1),則00無(wú)意義. ③任何不等于0的數(shù)的-p次冪(p是正整數(shù)),等于這個(gè)數(shù)的p的次冪的倒數(shù),即(
34、a≠0,p是正整數(shù)), 而0-1,0-3都是無(wú)意義的;當(dāng)a>0時(shí),a-p的值一定是正的; 當(dāng)a<0時(shí),a-p的值可能是正也可能是負(fù)的,如, ④運(yùn)算要注意運(yùn)算順序. 7.整式的除法 單項(xiàng)式除法單項(xiàng)式:單項(xiàng)式相除,把系數(shù)、同底數(shù)冪分別相除,作為商的因式,對(duì)于只在被除式里含有的字母,則連同它的指數(shù)作為商的一個(gè)因式; 多項(xiàng)式除以單項(xiàng)式: 多項(xiàng)式除以單項(xiàng)式,先把這個(gè)多項(xiàng)式的每一項(xiàng)除以單項(xiàng)式,再把所得的商相加. 8.分解因式:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式,這種變形叫做把這個(gè)多項(xiàng)式分解因式. 分解因式的一般方法:1. 提公共因式法2. 運(yùn)用公式法3.十字相乘法 分解因式的步驟:(1)先
35、看各項(xiàng)有沒(méi)有公因式,若有,則先提取公因式; (2)再看能否使用公式法; (3)用分組分解法,即通過(guò)分組后提取各組公因式或運(yùn)用公式法來(lái)達(dá)到分解的目的; (4)因式分解的最后結(jié)果必須是幾個(gè)整式的乘積,否則不是因式分解; (5)因式分解的結(jié)果必須進(jìn)行到每個(gè)因式在有理數(shù)范圍內(nèi)不能再分解為止. 整式的乘除與分解因式這章內(nèi)容知識(shí)點(diǎn)較多,表面看來(lái)零碎的概念和性質(zhì)也較多,但實(shí)際上是密不可分的整體。在學(xué)習(xí)本章內(nèi)容時(shí),應(yīng)多準(zhǔn)備些小組合作與交流活動(dòng),培養(yǎng)學(xué)生推理能力、計(jì)算能力。在做題中體驗(yàn)數(shù)學(xué)法則、公式的簡(jiǎn)潔美、和諧美,提高做題效率。 八年級(jí)數(shù)學(xué)(下)知識(shí)點(diǎn) 人教版八年級(jí)下冊(cè)主要包括了分式、反比
36、例函數(shù)、勾股定理、四邊形、數(shù)據(jù)的分析五章內(nèi)容。 第十六章 分式 一.知識(shí)框架 二.知識(shí)概念 1.分式:形如A/B,A、B是整式,B中含有未知數(shù)且B不等于0的整式叫做分式(fraction)。其中A叫做分式的分子,B叫做分式的分母。 2.分式有意義的條件:分母不等于0 3.約分:把一個(gè)分式的分子和分母的公因式(不為1的數(shù))約去,這種變形稱(chēng)為約分。 4.通分:異分母的分式可以化成同分母的分式,這一過(guò)程叫做通分。 分式的基本性質(zhì):分式的分子和分母同時(shí)乘以(或除以)同一個(gè)不為0的整式,分式的值不變。用式子表示為:A/B=A*C/B*C A/B=AC/BC (A,B,C為整式
37、,且C≠0) 5.最簡(jiǎn)分式:一個(gè)分式的分子和分母沒(méi)有公因式時(shí),這個(gè)分式稱(chēng)為最簡(jiǎn)分式.約分時(shí),一般將一個(gè)分式化為最簡(jiǎn)分式. 6.分式的四則運(yùn)算:1.同分母分式加減法則:同分母的分式相加減,分母不變,把分子相加減.用字母表示為:a/cb/c=ab/c 2.異分母分式加減法則:異分母的分式相加減,先通分,化為同分母的分式,然后再按同分母分式的加減法法則進(jìn)行計(jì)算.用字母表示為:a/bc/d=adcb/bd 3.分式的乘法法則:兩個(gè)分式相乘,把分子相乘的積作為積的分子,把分母相乘的積作為積的分母.用字母表示為:a/b * c/d=ac/bd 4.分式的除法法則:(1).兩
38、個(gè)分式相除,把除式的分子和分母顛倒位置后再與被除式相乘.a/bc/d=ad/bc (2).除以一個(gè)分式,等于乘以這個(gè)分式的倒數(shù):a/bc/d=a/b*d/c 7.分式方程的意義:分母中含有未知數(shù)的方程叫做分式方程. 8.分式方程的解法:①去分母(方程兩邊同時(shí)乘以最簡(jiǎn)公分母,將分式方程化為整式方程);②按解整式方程的步驟求出未知數(shù)的值;③驗(yàn)根(求出未知數(shù)的值后必須驗(yàn)根,因?yàn)樵诎逊质椒匠袒癁檎椒匠痰倪^(guò)程中,擴(kuò)大了未知數(shù)的取值范圍,可能產(chǎn)生增根). 分式和分?jǐn)?shù)有著許多相似點(diǎn)。教師在講授本章內(nèi)容時(shí),可以對(duì)比分?jǐn)?shù)的特點(diǎn)及性質(zhì),讓學(xué)生自主學(xué)習(xí)。重點(diǎn)在于分式方程解實(shí)際應(yīng)用問(wèn)題。
39、第十七章 反比例函數(shù) 第十七章反比例函數(shù) 一.知識(shí)框架 二.知識(shí)概念 1.反比例函數(shù):形如y=(k為常數(shù),k≠0)的函數(shù)稱(chēng)為反比例函數(shù)。其他形式xy=k 2.圖像:反比例函數(shù)的圖像屬于雙曲線(xiàn)。反比例函數(shù)的圖象既是軸對(duì)稱(chēng)圖形又是中心對(duì)稱(chēng)圖形。有兩條對(duì)稱(chēng)軸:直線(xiàn)y=x和 y=-x。對(duì)稱(chēng)中心是:原點(diǎn) 3.性質(zhì):當(dāng)k>0時(shí)雙曲線(xiàn)的兩支分別位于第一、第三象限,在每個(gè)象限內(nèi)y值隨x值的增大而減??; 當(dāng)k<0時(shí)雙曲線(xiàn)的兩支分別位于第二、第四象限,在每個(gè)象限內(nèi)y值隨x值的增大而增大。 4.|k|的幾何意義:表示反比例函數(shù)圖像上
40、的點(diǎn)向兩坐標(biāo)軸所作的垂線(xiàn)段與兩坐標(biāo)軸圍成的矩形的面積。 在學(xué)習(xí)反比例函數(shù)時(shí),教師可讓學(xué)生對(duì)比之前所學(xué)習(xí)的一次函數(shù)啟發(fā)學(xué)生進(jìn)行對(duì)比性學(xué)習(xí)。在做題時(shí),培養(yǎng)和養(yǎng)成數(shù)形結(jié)合的思想。 第十八章勾股定理 一.知識(shí)框架 2二 1.勾股定理:如果直角三角形的兩直角邊長(zhǎng)分別為a,b,斜邊長(zhǎng)為c,那么a2+b2=c2。 勾股定理逆定理:如果三角形三邊長(zhǎng)a,b,c滿(mǎn)足a2+b2=c2。,那么這個(gè)三角形是直角三角形。 2.定理:經(jīng)過(guò)證明被確認(rèn)正確的命題叫做定理。 3.我們把題設(shè)、結(jié)論正好相反的兩個(gè)命題叫做互逆命題。如果把其中一個(gè)叫做原命題,
41、那么另一個(gè)叫做它的逆命題。(例:勾股定理與勾股定理逆定理) 勾股定理是直角三角形具備的重要性質(zhì)。本章要求學(xué)生在理解勾股定理的前提下,學(xué)會(huì)利用這個(gè)定理解決實(shí)際問(wèn)題??梢酝ㄟ^(guò)自主學(xué)習(xí)的發(fā)展體驗(yàn)獲取數(shù)學(xué)知識(shí)的感受。 第十九章四邊形 一.知識(shí)框架 二.知識(shí)概念 1.平行四邊形定義: 有兩組對(duì)邊分別平行的四邊形叫做平行四邊形。 2.平行四邊形的性質(zhì):平行四邊形的對(duì)邊相等;平行四邊形的對(duì)角相等。平行四邊形的對(duì)角線(xiàn)互相平分。 3.平行四邊形的判定 .兩組對(duì)邊分別相等的四邊形是平行四邊形 .對(duì)角線(xiàn)互相平分的四邊形是平行四邊形;
42、 .兩組對(duì)角分別相等的四邊形是平行四邊形; 一組對(duì)邊平行且相等的四邊形是平行四邊形。 4.三角形的中位線(xiàn)平行于三角形的第三邊,且等于第三邊的一半。 5.直角三角形斜邊上的中線(xiàn)等于斜邊的一半。 6.矩形的定義:有一個(gè)角是直角的平行四邊形。 7.矩形的性質(zhì): 矩形的四個(gè)角都是直角;矩形的對(duì)角線(xiàn)平分且相等。AC=BD 8.矩形判定定理: .有一個(gè)角是直角的平行四邊形叫做矩形。 .對(duì)角線(xiàn)相等的平行四邊形是矩形。 .有三個(gè)角是直角的四邊形是矩形。 9.菱形的定義 :鄰邊相等的平行四邊形。
43、10.菱形的性質(zhì):菱形的四條邊都相等;菱形的兩條對(duì)角線(xiàn)互相垂直,并且每一條對(duì)角線(xiàn)平分一組對(duì)角。 11.菱形的判定定理:.一組鄰邊相等的平行四邊形是菱形。 對(duì)角線(xiàn)互相垂直的平行四邊形是菱形。 四條邊相等的四邊形是菱形。 12.S菱形=1/2ab(a、b為兩條對(duì)角線(xiàn)) 13.正方形定義:一個(gè)角是直角的菱形或鄰邊相等的矩形。 14.正方形的性質(zhì):四條邊都相等,四個(gè)角都是直角。 正方形既是矩形,又是菱形。 15.正方形判定定理: 1.鄰邊相等的矩形是正方形。 2.有一個(gè)角是直角的菱形是正方形。 16.梯形的定義:
44、一組對(duì)邊平行,另一組對(duì)邊不平行的四邊形叫做梯形。 17.直角梯形的定義:有一個(gè)角是直角的梯形 18.等腰梯形的定義:兩腰相等的梯形。 19.等腰梯形的性質(zhì):等腰梯形同一底邊上的兩個(gè)角相等;等腰梯形的兩條對(duì)角線(xiàn)相等。 20.等腰梯形判定定理:同一底上兩個(gè)角相等的梯形是等腰梯形。 本章內(nèi)容是對(duì)平面上四邊形的分類(lèi)及性質(zhì)上的研究,要求學(xué)生在學(xué)習(xí)過(guò)程中多動(dòng)手多動(dòng)腦,把自己的發(fā)現(xiàn)和知識(shí)帶入做題中。因此教師在教學(xué)時(shí)可以多鼓勵(lì)學(xué)生自己總結(jié)四邊形的特點(diǎn),這樣有利于學(xué)生對(duì)知識(shí)的把握。 第二十章 數(shù)據(jù)的分析 一.知識(shí)框架 二.知識(shí)概念 1.加權(quán)平均數(shù):加權(quán)平均數(shù)的計(jì)算公式。
45、權(quán)的理解:反映了某個(gè)數(shù)據(jù)在整個(gè)數(shù)據(jù)中的重要程度。 2.中位數(shù):將一組數(shù)據(jù)按照由小到大(或由大到?。┑捻樞蚺帕?,如果數(shù)據(jù)的個(gè)數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù)(median);如果數(shù)據(jù)的個(gè)數(shù)是偶數(shù),則中間兩個(gè)數(shù)據(jù)的平均數(shù)就是這組數(shù)據(jù)的中位數(shù)。 3. 眾數(shù):一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)就是這組數(shù)據(jù)的眾數(shù)(mode)。 4. 極差:組數(shù)據(jù)中的最大數(shù)據(jù)與最小數(shù)據(jù)的差叫做這組數(shù)據(jù)的極差(range)。 5.方差越大,數(shù)據(jù)的波動(dòng)越大;方差越小,數(shù)據(jù)的波動(dòng)越小,就越穩(wěn)定。 本章內(nèi)容要求學(xué)生在經(jīng)歷數(shù)據(jù)的收集、整理、分析過(guò)程中發(fā)展學(xué)生的統(tǒng)計(jì)意識(shí)和數(shù)據(jù)處
46、理的方法與能力。在教學(xué)過(guò)程中,以生活實(shí)例為主,讓學(xué)生體會(huì)到數(shù)據(jù)在生活中的重要性。 第二十一章 二次根式 一.知識(shí)框架 二.知識(shí)概念 二次根式:一般地,形如√?。╝≥0)的代數(shù)式叫做二次根式。當(dāng)a>0時(shí),√a表示a的算數(shù)平方根,其中√0=0 對(duì)于本章內(nèi)容,教學(xué)中應(yīng)達(dá)到以下幾方面要求: 1. 理解二次根式的概念,了解被開(kāi)方數(shù)必須是非負(fù)數(shù)的理由; 2. 了解最簡(jiǎn)二次根式的概念; 3. 理解并掌握下列結(jié)論: 1)是非負(fù)數(shù);?。?);?。?); 4. 掌握二次根式的加、減、乘、除運(yùn)算法則,會(huì)用它們進(jìn)行有關(guān)實(shí)數(shù)的簡(jiǎn)單四則運(yùn)算; 5. 了解代數(shù)式的概念,進(jìn)一步體會(huì)代數(shù)式在表示
47、數(shù)量關(guān)系方面的作用。 第二十二章 一元二次根式 一.知識(shí)框架 二.知識(shí)概念 一元二次方程:方程兩邊都是整式,只含有一個(gè)未知數(shù)(一元),并且未知數(shù)的最高次數(shù)是2(二次)的方程,叫做一元二次方程. 一般地,任何一個(gè)關(guān)于x的一元二次方程,經(jīng)過(guò)整理,都能化成如下形式ax2+bx+c=0(a≠0).這種形式叫做一元二次方程的一般形式. 一個(gè)一元二次方程經(jīng)過(guò)整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次項(xiàng),a是二次項(xiàng)系數(shù);bx是一次項(xiàng),b是一次項(xiàng)系數(shù);c是常數(shù)項(xiàng). 本章內(nèi)容主要要求學(xué)生在理解一元二次方程的前提下,通過(guò)解方程來(lái)解決一些實(shí)際問(wèn)題。 (1)
48、運(yùn)用開(kāi)平方法解形如(x+m)2=n(n≥0)的方程;領(lǐng)會(huì)降次──轉(zhuǎn)化的數(shù)學(xué)思想. (2)配方法解一元二次方程的一般步驟:現(xiàn)將已知方程化為一般形式;化二次項(xiàng)系數(shù)為1;常數(shù)項(xiàng)移到右邊;方程兩邊都加上一次項(xiàng)系數(shù)的一半的平方,使左邊配成一個(gè)完全平方式;變形為(x+p)2=q的形式,如果q≥0,方程的根是x=-p√q;如果q<0,方程無(wú)實(shí)根. 介紹配方法時(shí),首先通過(guò)實(shí)際問(wèn)題引出形如的方程。這樣的方程可以化為更為簡(jiǎn)單的形如的方程,由平方根的概念,可以得到這個(gè)方程的解。進(jìn)而舉例說(shuō)明如何解形如的方程。然后舉例說(shuō)明一元二次方程可以化為形如的方程,引出配方法。最后安排運(yùn)用配方法解一元二次方程的例題。在例題中,
49、涉及二次項(xiàng)系數(shù)不是1的一元二次方程,也涉及沒(méi)有實(shí)數(shù)根的一元二次方程。對(duì)于沒(méi)有實(shí)數(shù)根的一元二次方程,學(xué)了“公式法”以后,學(xué)生對(duì)這個(gè)內(nèi)容會(huì)有進(jìn)一步的理解。 (3)一元二次方程ax2+bx+c=0(a≠0)的根由方程的系數(shù)a、b、c而定,因此: 解一元二次方程時(shí),可以先將方程化為一般形式ax2+bx+c=0,當(dāng)b2-4ac≥0時(shí),將a、b、c代入式子x=就得到方程的根.(公式所出現(xiàn)的運(yùn)算,恰好包括了所學(xué)過(guò)的六中運(yùn)算,加、減、乘、除、乘方、開(kāi)方,這體現(xiàn)了公式的統(tǒng)一性與和諧性。)這個(gè)式子叫做一元二次方程的求根公式.利用求根公式解一元二次方程的方法叫公式法. 第二十三章 旋轉(zhuǎn) 一.
50、知識(shí)框架 二.知識(shí)概念 1.旋轉(zhuǎn):在平面內(nèi),將一個(gè)圖形繞一個(gè)圖形按某個(gè)方向轉(zhuǎn)動(dòng)一個(gè)角度,這樣的運(yùn)動(dòng)叫做圖形的旋轉(zhuǎn)。這個(gè)定點(diǎn)叫做旋轉(zhuǎn)中心,轉(zhuǎn)動(dòng)的角度叫做旋轉(zhuǎn)角。(圖形的旋轉(zhuǎn)是圖形上的每一點(diǎn)在平面上繞著某個(gè)固定點(diǎn)旋轉(zhuǎn)固定角度的位置移動(dòng),其中對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等,對(duì)應(yīng)線(xiàn)段的長(zhǎng)度、對(duì)應(yīng)角的大小相等,旋轉(zhuǎn)前后圖形的大小和形狀沒(méi)有改變。) 2.旋轉(zhuǎn)對(duì)稱(chēng)中心:把一個(gè)圖形繞著一個(gè)定點(diǎn)旋轉(zhuǎn)一個(gè)角度后,與初始圖形重合,這種圖形叫做旋轉(zhuǎn)對(duì)稱(chēng)圖形,這個(gè)定點(diǎn)叫做旋轉(zhuǎn)對(duì)稱(chēng)中心,旋轉(zhuǎn)的角度叫做旋轉(zhuǎn)角(旋轉(zhuǎn)角小于0,大于360)。 3.中心對(duì)稱(chēng)圖形與中心對(duì)稱(chēng): 中心對(duì)稱(chēng)圖形:如果把一個(gè)圖形繞著某一點(diǎn)旋
51、轉(zhuǎn)180度后能與自身重合,那么我們就說(shuō),這個(gè)圖形成中心對(duì)稱(chēng)圖形。 中心對(duì)稱(chēng):如果把一個(gè)圖形繞著某一點(diǎn)旋轉(zhuǎn)180度后能與另一個(gè)圖形重合,那么我們就說(shuō),這兩個(gè)圖形成中心對(duì)稱(chēng)。 4.中心對(duì)稱(chēng)的性質(zhì): 關(guān)于中心對(duì)稱(chēng)的兩個(gè)圖形是全等形。 關(guān)于中心對(duì)稱(chēng)的兩個(gè)圖形,對(duì)稱(chēng)點(diǎn)連線(xiàn)都經(jīng)過(guò)對(duì)稱(chēng)中心,并且被對(duì)稱(chēng)中心平分。 關(guān)于中心對(duì)稱(chēng)的兩個(gè)圖形,對(duì)應(yīng)線(xiàn)段平行(或者在同一直線(xiàn)上)且相等。 第二十四章 圓 一.知識(shí)框架 二.知識(shí)概念 1.圓:平面上到定點(diǎn)的距離等于定長(zhǎng)的所有點(diǎn)組成的圖形叫做圓。定點(diǎn)稱(chēng)為圓心,定長(zhǎng)稱(chēng)為半徑。 2.圓弧和弦:圓上任意兩點(diǎn)間的部分叫做圓弧,簡(jiǎn)稱(chēng)弧。大
52、于半圓的弧稱(chēng)為優(yōu)弧,小于半圓的弧稱(chēng)為劣弧。連接圓上任意兩點(diǎn)的線(xiàn)段叫做弦。經(jīng)過(guò)圓心的弦叫做直徑。 3.圓心角和圓周角:頂點(diǎn)在圓心上的角叫做圓心角。頂點(diǎn)在圓周上,且它的兩邊分別與圓有另一個(gè)交點(diǎn)的角叫做圓周角。 4.內(nèi)心和外心:過(guò)三角形的三個(gè)頂點(diǎn)的圓叫做三角形的外接圓,其圓心叫做三角形的外心。和三角形三邊都相切的圓叫做這個(gè)三角形的內(nèi)切圓,其圓心稱(chēng)為內(nèi)心。 5.扇形:在圓上,由兩條半徑和一段弧圍成的圖形叫做扇形。 6.圓錐側(cè)面展開(kāi)圖是一個(gè)扇形。這個(gè)扇形的半徑稱(chēng)為圓錐的母線(xiàn)。 7.圓和點(diǎn)的位置關(guān)系:以點(diǎn)P與圓O的為例(設(shè)P是一點(diǎn),則PO是點(diǎn)到圓心的距離),P在⊙O外,PO>r;P在⊙O上
53、,PO=r;P在⊙O內(nèi),PO<r。 8.直線(xiàn)與圓有3種位置關(guān)系:無(wú)公共點(diǎn)為相離;有兩個(gè)公共點(diǎn)為相交,這條直線(xiàn)叫做圓的割線(xiàn);圓與直線(xiàn)有唯一公共點(diǎn)為相切,這條直線(xiàn)叫做圓的切線(xiàn),這個(gè)唯一的公共點(diǎn)叫做切點(diǎn)。 9.兩圓之間有5種位置關(guān)系:無(wú)公共點(diǎn)的,一圓在另一圓之外叫外離,在之內(nèi)叫內(nèi)含;有唯一公共點(diǎn)的,一圓在另一圓之外叫外切,在之內(nèi)叫內(nèi)切;有兩個(gè)公共點(diǎn)的叫相交。兩圓圓心之間的距離叫做圓心距。兩圓的半徑分別為R和r,且R≥r,圓心距為P:外離P>R+r;外切P=R+r;相交R-r<P<R+r;內(nèi)切P=R-r;內(nèi)含P<R-r。 10.切線(xiàn)的判定方法:經(jīng)過(guò)半徑外端并且垂直于這條半徑的直線(xiàn)是圓的切線(xiàn)。
54、 11.切線(xiàn)的性質(zhì):(1)經(jīng)過(guò)切點(diǎn)垂直于這條半徑的直線(xiàn)是圓的切線(xiàn)。(2)經(jīng)過(guò)切點(diǎn)垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)圓心。(3)圓的切線(xiàn)垂直于經(jīng)過(guò)切點(diǎn)的半徑。 12.垂徑定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧。 13.有關(guān)定理: 平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條?。? 在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦也相等. 在同圓或等圓中,同弧等弧所對(duì)的圓周角相等,都等于這條弧所對(duì)的圓心角的一半. 半圓(或直徑)所對(duì)的圓周角是直角,90的圓周角所對(duì)的弦是直徑. 14.圓的計(jì)算公式 1.圓的周長(zhǎng)C=2πr=πd 2.圓的面積S=πr^2
55、; 3.扇形弧長(zhǎng)l=nπr/180 15.扇形面積S=π(R^2-r^2) 5.圓錐側(cè)面積S=πrl 第二十五章 概率 知識(shí)框架 第二十六章 二次函數(shù) 一.知識(shí)框架 二..知識(shí)概念 1.二次函數(shù):一般地,自變量x和因變量y之間存在如下關(guān)系:一般式:y=ax^2+bx+c(a≠0,a、b、c為常數(shù)),則稱(chēng)y為x的二次函數(shù)。 2.二次函數(shù)的解析式三種形式。 一般式 y=ax2 +bx+c(a≠0) 頂點(diǎn)式 y x O 交點(diǎn)式 3.二次函數(shù)圖像與性質(zhì) 對(duì)稱(chēng)軸: 頂點(diǎn)坐標(biāo): 與y軸
56、交點(diǎn)坐標(biāo)(0,c) 4.增減性:當(dāng)a>0時(shí),對(duì)稱(chēng)軸左邊,y隨x增大而減??;對(duì)稱(chēng)軸右邊,y隨x增大而增大 當(dāng)a<0時(shí),對(duì)稱(chēng)軸左邊,y隨x增大而增大;對(duì)稱(chēng)軸右邊,y隨x增大而減小 5.二次函數(shù)圖像畫(huà)法: 勾畫(huà)草圖關(guān)鍵點(diǎn):開(kāi)口方向 對(duì)稱(chēng)軸 頂點(diǎn) 與x軸交點(diǎn) 與y軸交點(diǎn) 6.圖像平移步驟 (1)配方 ,確定頂點(diǎn)(h,k) (2)對(duì)x軸 左加右減;對(duì)y軸 上加下減 7.二次函數(shù)的對(duì)稱(chēng)性 二次函數(shù)是軸對(duì)稱(chēng)圖形,有這樣一個(gè)結(jié)論:當(dāng)橫坐標(biāo)為x1, x2 其對(duì)應(yīng)的縱坐標(biāo)相等那么對(duì)稱(chēng)軸 8.根據(jù)圖像判斷a,b,c的符號(hào) (1)a ——開(kāi)口方向 (2)b ——對(duì)稱(chēng)軸與a 左
57、同右異 9.二次函數(shù)與一元二次方程的關(guān)系 拋物線(xiàn)y=ax2 +bx+c與x軸交點(diǎn)的橫坐標(biāo)x1, x2 是一元二次方程ax2 +bx+c=0(a≠0)的根。 拋物線(xiàn)y=ax2 +bx+c,當(dāng)y=0時(shí),拋物線(xiàn)便轉(zhuǎn)化為一元二次方程ax2 +bx+c=0 >0時(shí),一元二次方程有兩個(gè)不相等的實(shí)根,二次函數(shù)圖像與x軸有兩個(gè)交點(diǎn); =0時(shí),一元二次方程有兩個(gè)相等的實(shí)根,二次函數(shù)圖像與x軸有一個(gè)交點(diǎn); <0時(shí),一元二次方程有不等的實(shí)根,二次函數(shù)圖像與x軸沒(méi)有交點(diǎn) 二次函數(shù)知識(shí)很容易與其它知識(shí)綜合應(yīng)用,而形成較為復(fù)雜的綜合題目。因此,以二次函數(shù)知識(shí)為主的綜合性題目是中考的熱點(diǎn)考題,往往以大題形式
58、出現(xiàn).教師在講解本章內(nèi)容時(shí)應(yīng)注重培養(yǎng)學(xué)生數(shù)形結(jié)合的思想和獨(dú)立思考問(wèn)題的能力。 第二十七章 相似 一.知識(shí)框架 二.知識(shí)概念: 1.相似三角形:對(duì)應(yīng)角相等,對(duì)應(yīng)邊成比例的兩個(gè)三角形叫做相似三角形?;橄嗨菩蔚娜切谓凶鱿嗨迫切? 2.相似三角形的判定方法: 根據(jù)相似圖形的特征來(lái)判斷。(對(duì)應(yīng)邊成比例,對(duì)應(yīng)角相等) .平行于三角形一邊的直線(xiàn)(或兩邊的延長(zhǎng)線(xiàn))和其他兩邊相交,所構(gòu)成的三角形與原三角形相似; .如果一個(gè)三角形的兩個(gè)角與另一個(gè)三角形的兩個(gè)角對(duì)應(yīng)相等,那么這兩個(gè)三角形相似; 如果兩個(gè)三角形的兩組對(duì)應(yīng)邊的比相等,并且相應(yīng)的夾角相等,那么這兩個(gè)三角形
59、相似; 如果兩個(gè)三角形的三組對(duì)應(yīng)邊的比相等,那么這兩個(gè)三角形相似; 3.直角三角形相似判定定理: .斜邊與一條直角邊對(duì)應(yīng)成比例的兩直角三角形相似。 .直角三角形被斜邊上的高分成的兩個(gè)直角三角形與原直角三角形相似,并且分成的兩個(gè)直角三角形也相似。 4.相似三角形的性質(zhì): .相似三角形的一切對(duì)應(yīng)線(xiàn)段(對(duì)應(yīng)高、對(duì)應(yīng)中線(xiàn)、對(duì)應(yīng)角平分線(xiàn)、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比。 相似三角形周長(zhǎng)的比等于相似比。 .相似三角形面積的比等于相似比的平方。 第二十八章 銳角三角函數(shù) 一.知識(shí)框架 二.知識(shí)概念 1.Rt△ABC中
60、 (1)∠A的對(duì)邊與斜邊的比值是∠A的正弦,記作sinA= (2)∠A的鄰邊與斜邊的比值是∠A的余弦,記作cosA= (3)∠A的對(duì)邊與鄰邊的比值是∠A的正切,記作tanA= (4)∠A的鄰邊與對(duì)邊的比值是∠A的余切,記作cota= 2.特殊值的三角函數(shù): a sina cosa tana cota 30 45 1 1 60 本章內(nèi)容使學(xué)生了解在直角三角形中,銳角的對(duì)邊與斜邊、鄰邊與斜邊、對(duì)邊與鄰邊、鄰邊與對(duì)邊的比值是固定的;通過(guò)實(shí)例認(rèn)識(shí)正弦、余弦、正切、余切四個(gè)三角函數(shù)的定義。并能應(yīng)用這些概念解決一些實(shí)際問(wèn)題。 第二十九章 投影與視圖 知識(shí)框架 本章內(nèi)容要求學(xué)生經(jīng)歷實(shí)踐探索,了解投影、投影面、平行投影和中心投影的概念;會(huì)畫(huà)事物的三視圖,學(xué)會(huì)關(guān)注生活中有關(guān)投影的數(shù)學(xué)問(wèn)題,提高數(shù)學(xué)的應(yīng)用意識(shí)。 第 26 頁(yè) 共 26 頁(yè)
- 溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 6.煤礦安全生產(chǎn)科普知識(shí)競(jìng)賽題含答案
- 2.煤礦爆破工技能鑒定試題含答案
- 3.爆破工培訓(xùn)考試試題含答案
- 2.煤礦安全監(jiān)察人員模擬考試題庫(kù)試卷含答案
- 3.金屬非金屬礦山安全管理人員(地下礦山)安全生產(chǎn)模擬考試題庫(kù)試卷含答案
- 4.煤礦特種作業(yè)人員井下電鉗工模擬考試題庫(kù)試卷含答案
- 1 煤礦安全生產(chǎn)及管理知識(shí)測(cè)試題庫(kù)及答案
- 2 各種煤礦安全考試試題含答案
- 1 煤礦安全檢查考試題
- 1 井下放炮員練習(xí)題含答案
- 2煤礦安全監(jiān)測(cè)工種技術(shù)比武題庫(kù)含解析
- 1 礦山應(yīng)急救援安全知識(shí)競(jìng)賽試題
- 1 礦井泵工考試練習(xí)題含答案
- 2煤礦爆破工考試復(fù)習(xí)題含答案
- 1 各種煤礦安全考試試題含答案