《浙江省高三數(shù)學(xué)專(zhuān)題復(fù)習(xí)攻略 第一部分專(zhuān)題一 集合、常用邏輯用語(yǔ)、不等式、函數(shù)與導(dǎo)數(shù)課件 理 新人教版》由會(huì)員分享,可在線閱讀,更多相關(guān)《浙江省高三數(shù)學(xué)專(zhuān)題復(fù)習(xí)攻略 第一部分專(zhuān)題一 集合、常用邏輯用語(yǔ)、不等式、函數(shù)與導(dǎo)數(shù)課件 理 新人教版(10頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、專(zhuān)題一專(zhuān)題一 集合、常用邏輯用語(yǔ)、不等式、集合、常用邏輯用語(yǔ)、不等式、函數(shù)與導(dǎo)數(shù)函數(shù)與導(dǎo)數(shù)命題透視命題透視函數(shù)與導(dǎo)數(shù)是高中數(shù)學(xué)的核心知識(shí),是初等數(shù)學(xué)函數(shù)與導(dǎo)數(shù)是高中數(shù)學(xué)的核心知識(shí),是初等數(shù)學(xué)與高等數(shù)學(xué)的交匯點(diǎn),高中數(shù)學(xué)各章節(jié)的知識(shí)都與高等數(shù)學(xué)的交匯點(diǎn),高中數(shù)學(xué)各章節(jié)的知識(shí)都滲透著函數(shù)的思想與方法,因此函數(shù)與導(dǎo)數(shù)也就滲透著函數(shù)的思想與方法,因此函數(shù)與導(dǎo)數(shù)也就成為考生務(wù)必重視的內(nèi)容作為高考的必考內(nèi)容,成為考生務(wù)必重視的內(nèi)容作為高考的必考內(nèi)容,一般會(huì)命制一般會(huì)命制24道選擇題和填空題,道選擇題和填空題,12道解答道解答題,選擇題和填空題主要考查函數(shù)與導(dǎo)數(shù)的基本題,選擇題和填空題主要考查函數(shù)與導(dǎo)數(shù)的基
2、本概念和基本運(yùn)算、函數(shù)的性質(zhì)、概念和基本運(yùn)算、函數(shù)的性質(zhì)、與函數(shù)有關(guān)的方程和不等式問(wèn)題等;解答題主與函數(shù)有關(guān)的方程和不等式問(wèn)題等;解答題主要考查導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用、求函數(shù)解析要考查導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用、求函數(shù)解析式中的參數(shù)值或范圍、利用導(dǎo)數(shù)證明不等式、式中的參數(shù)值或范圍、利用導(dǎo)數(shù)證明不等式、求解函數(shù)的實(shí)際應(yīng)用問(wèn)題等集合與常用邏輯求解函數(shù)的實(shí)際應(yīng)用問(wèn)題等集合與常用邏輯用語(yǔ)也是高考的必考內(nèi)容,但一般難度不大,用語(yǔ)也是高考的必考內(nèi)容,但一般難度不大,主要以選擇題或填空題的形式出現(xiàn),以集合為主要以選擇題或填空題的形式出現(xiàn),以集合為載體的新定義試題是近幾年高考考查的熱點(diǎn),載體的新定義試題是近幾年高
3、考考查的熱點(diǎn),而常用邏輯用語(yǔ)一般會(huì)與三角、數(shù)列、不等式而常用邏輯用語(yǔ)一般會(huì)與三角、數(shù)列、不等式等知識(shí)結(jié)合在一起進(jìn)行考查等知識(shí)結(jié)合在一起進(jìn)行考查真題再現(xiàn)真題再現(xiàn)1(2011年高考課標(biāo)全國(guó)卷年高考課標(biāo)全國(guó)卷)已知集合已知集合M0,1,2,3,4,N1,3,5,PMN,則,則P的子集的子集共有共有()A2個(gè)個(gè)B4個(gè)個(gè)C6個(gè)個(gè) D8個(gè)個(gè)解析:選解析:選B.M0,1,2,3,4,N1,3,5,MN1,3MN的子集共有的子集共有224(個(gè)個(gè))2(2011年高考山東卷年高考山東卷)對(duì)于函數(shù)對(duì)于函數(shù)yf(x),xR,“y|f(x)|的圖象關(guān)于的圖象關(guān)于y軸對(duì)稱(chēng)軸對(duì)稱(chēng)”是是“yf(x)是奇函數(shù)是奇函數(shù)”的的()
4、A充分而不必要條件充分而不必要條件 B必要而不充分條件必要而不充分條件C充要條件充要條件 D既不充分也不必要條件既不充分也不必要條件解析:選解析:選B.若函數(shù)若函數(shù)yf(x)是奇函數(shù),則是奇函數(shù),則f(x)f(x)此時(shí)此時(shí)|f(x)|f(x)|f(x)|,因,因此此y|f(x)|是偶函數(shù),其圖象關(guān)于是偶函數(shù),其圖象關(guān)于y軸對(duì)稱(chēng),軸對(duì)稱(chēng),但當(dāng)?shù)?dāng)y|f(x)|的圖象關(guān)于的圖象關(guān)于y軸對(duì)稱(chēng)時(shí),未必能軸對(duì)稱(chēng)時(shí),未必能推出推出yf(x)為奇函數(shù),故為奇函數(shù),故“y|f(x)|的圖象關(guān)的圖象關(guān)于于y軸對(duì)稱(chēng)軸對(duì)稱(chēng)”是是“yf(x)是奇函數(shù)是奇函數(shù)”的必要而不充的必要而不充分條件分條件3(2011年高考北京
5、卷年高考北京卷)已知函數(shù)已知函數(shù)f(x)(xk)ex.(1)求求f(x)的單調(diào)區(qū)間;的單調(diào)區(qū)間;(2)求求f(x)在區(qū)間在區(qū)間0,1上的最小值上的最小值解:解:(1)f(x)(xk1)ex.令令f(x)0,得,得xk1.f(x)與與f(x)的變化情況如下:的變化情況如下:所以,所以,f(x)的單調(diào)遞減區(qū)間是的單調(diào)遞減區(qū)間是(,k1);單;單調(diào)遞增區(qū)間是調(diào)遞增區(qū)間是(k1,)(2)當(dāng)當(dāng)k10,即,即k1時(shí),函數(shù)時(shí),函數(shù)f(x)在在0,1上單上單調(diào)遞增,調(diào)遞增,所以所以f(x)在區(qū)間在區(qū)間0,1上的最小值為上的最小值為f(0)k;x(,k1)k1(k1,)f(x)0f(x) ek1 當(dāng)當(dāng)0k11,即,即1k2時(shí),時(shí),由由(1)知知f(x)在在0,k1)上單調(diào)遞減,在上單調(diào)遞減,在(k1,1上單調(diào)遞增,所以上單調(diào)遞增,所以f(x)在區(qū)間在區(qū)間0,1上的最小值為上的最小值為f(k1)ek1;當(dāng)當(dāng)k11,即,即k2時(shí),函數(shù)時(shí),函數(shù)f(x)在在0,1上單調(diào)遞上單調(diào)遞減,減,所以所以f(x)在區(qū)間在區(qū)間0,1上的最小值為上的最小值為f(1)(1k)e.本部分內(nèi)容講解結(jié)束本部分內(nèi)容講解結(jié)束按按ESC鍵退出全屏播放鍵退出全屏播放