《《物流管理定量分析方法》模擬試題》由會(huì)員分享,可在線閱讀,更多相關(guān)《《物流管理定量分析方法》模擬試題(5頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、《物流管理定量分析方法》模擬試題
一、單項(xiàng)選擇題(每小題3分,共18分)
1 .若某物資的總供應(yīng)量()總需求量,可增設(shè)一個(gè)虛銷地,其需求量取總供應(yīng)量與總需求量的差額,
并取各產(chǎn)地到該銷地的單位運(yùn)價(jià)為0,則可將該不平衡運(yùn)輸問題化為平衡運(yùn)輸問題。
(A)等于(B)小于(C)大于(D)不超過
2 .某物資調(diào)運(yùn)問題,在用最小元素法編制初始調(diào)運(yùn)方案過程中,第一步安排了運(yùn)輸量后,其運(yùn)輸平衡表
(單位:噸)與運(yùn)價(jià)表(單位:百元/噸)如下表所示:
運(yùn)輸平衡表與運(yùn)價(jià)表
銷地
產(chǎn)地
B1
B2
B3
供應(yīng)量
B1
B2
B3
A1
13
2
4
3
A2
2、
7
8
12
8
A3
8
15
1
8
12
需求量
8
17
10
35
第二步所選的最小元素為()
(A) 1
(B) 2
(C) 3
(D) 4
3 .某物流公司有三種化學(xué)原料
Ai, A2, A3。每斤原料Ai含Bi, B2, B3三種化學(xué)成分的含量分別為 0.7
斤、0.2斤和0.1斤;每斤原料 A2含Bi, B2, B3的含量分別為
0.1斤、0.3斤和0.6斤;每斤原料 A3含B1,
B2, B3的含量分別為 0.3斤、0.4斤和0.3斤。每斤原料 A1, A2, A3的成本分別為500元、300元和4
3、00元。
今需要B1成分至少100斤,B2成分至少
50斤,B3成分至少80斤。為列出使總成本最小的線性規(guī)劃模型,
設(shè)原料A1, A2, A3的用量分別為
(A) 0.2x1+ 0.3x2+ 0.4x3^50
(C) 0.2x1+ 0.3x2+ 0.4x3= 50
X1斤、
X2斤和X3斤,則化學(xué)成分 B2應(yīng)滿足的約束條件為(
(B) 0.2x1 + 0.3x2+0.4x3^50
(D) min S= 500x1 + 300x2+400x3
4 .設(shè)A
,并且A=B,則x
(A) 4
(B) 3
(C) 2
(D) 1
5.設(shè)運(yùn)輸某物品的成本函數(shù)為
C(q
4、)=q2+50q+ 2000,則運(yùn)輸量為100單位時(shí)的成本為(
(A)17000
(B)1700
(C) 170
(D) 250
6.某產(chǎn)品的成本函數(shù)、收入函數(shù)、利潤(rùn)函數(shù)分別為
(A) L(q)
q
°L(q)dq C(0)
(B)
C(q)
C(q), R(q)
q
C (q)dq
0
L(q),則下列等式成立的是(
C(0)
(C) R(q)
q
R (q)dq
0
(D)
L(q)
q
L (q)dq
0
L(0)
、填空題(每小題2分,共10分)
1 .設(shè)某平衡運(yùn)輸問題有4個(gè)產(chǎn)地和5個(gè)銷地,則用最小元素法編制的初始調(diào)運(yùn)方案
5、中填數(shù)字的格子數(shù)
2 .某物資調(diào)運(yùn)方案如下表所示:
銷地
產(chǎn)地
Bi
B2
B3
供應(yīng)量
Bi
B2
B3
Ai
8
5
13
2
4
6
A2
2
10
12
7
5
8
需求量
8
7
10
25
o
則空格(A2, B1)對(duì)應(yīng)的檢驗(yàn)數(shù)為
3.在單純形法中,最小比值原則是為了確定
,然后對(duì)該元素進(jìn)行旋轉(zhuǎn)變換,即該元素化為
1,同列其它元素化為0
4.有一物流公司每年需要某種材料9000噸,這個(gè)公司對(duì)該材料的使用是均勻的。已知這種材料每噸每
年庫(kù)存費(fèi)為2元,每次訂貨費(fèi)為40元,則年總成本對(duì)訂貨批量
6、q的函數(shù)關(guān)系式C(q)=
5.已知運(yùn)輸某物品q噸的成本函數(shù)為C(q)4002q5Jq,則運(yùn)輸該物品的邊際成本函數(shù)為MC(q)
三、計(jì)算題(每小題6分,共18分)
1 .已知線性方程組AX=B的增廣矩陣經(jīng)初等行變換化為階梯形矩陣:求方程組的解。
ln(2x)
、1
2 .設(shè)y—
e
3.計(jì)算定積分:
2
1(1
1 eX)dx x
四、編程題
(每小題
4分,
共12分)
10
23
1.
試寫出用
MATLAB
軟件求矩陣A
18
2.
試寫出用
MATLAB
軟件繪函數(shù)y
3.
試寫出用
MATLAB
軟件計(jì)算定積分
五、應(yīng)用題:
7、
(第1題21分,第2題
20
30的逆矩陣的命令語(yǔ)句。
13
10g2 Jx| x3的圖形(繪圖區(qū)間?。邸?, 5])的命令語(yǔ)句。
e、xdx的命令語(yǔ)句。
0
11分,第3題10分,共42分)
/噸)如下表所示:
1.某物流公司從Ai,A2和A3三個(gè)產(chǎn)地,運(yùn)送一批物資到Bi,B2,B3和B4四個(gè)銷地。已知各產(chǎn)地的供
應(yīng)量、各銷地的需求量(單位:噸)及各產(chǎn)地到各銷地的單位運(yùn)價(jià)(單位:元
運(yùn)輸平衡表與運(yùn)價(jià)表
'銷地產(chǎn)地、
Bi
B2
B3
B4
供應(yīng)量
Bi
B2
B3
B4
Ai
300
30
20
30
50
A2
8、
700
70
80
40
10
A3
800
50
40
30
60
需求量
400
600
300
500
1800
3.運(yùn)輸某物品q百臺(tái)的成本函數(shù)為 C(q) = 4q2+20O 運(yùn)輸量為多少時(shí)利潤(rùn)最大?
參考答案:
一、單項(xiàng)選擇題
(萬(wàn)元),收入函數(shù) R(q) = 100q —q2 (萬(wàn)元),問:
1. C 2. C
二、填空題
3. A
4. C
5. A
6. C
1. 8
2. 4
3.主元
360000
4.q
5.2 25q
定運(yùn)輸計(jì)劃,使總
(1)問如何制
9、
運(yùn)輸費(fèi)用最???
(2)先寫出數(shù)學(xué)模型,再寫出用MATLAB軟件求解上述問題的命令語(yǔ)句。
2.某物流公司經(jīng)過對(duì)近期銷售資料分析及市場(chǎng)預(yù)測(cè)得知,該公司生產(chǎn)的甲、乙、丙三種產(chǎn)品,均為市場(chǎng)緊俏產(chǎn)品,銷售量一直持續(xù)上升經(jīng)久不衰。今已知上述三種產(chǎn)品的單位產(chǎn)品原材料消耗定額分別為
6臺(tái)時(shí)、3臺(tái)時(shí)和6臺(tái)時(shí)。另外,三種產(chǎn)品的利
斤、4公斤和5公斤;三種產(chǎn)品的單位產(chǎn)品所需工時(shí)分別為潤(rùn)分別為400元/件、250元/件和300元/件。由于生產(chǎn)該三種產(chǎn)品的原材料和工時(shí)的供應(yīng)有一定限制,原材料每天只能供應(yīng)180公斤,工時(shí)每天只有150臺(tái)時(shí)。試問在上述條件下,如何安排生產(chǎn)計(jì)劃,使公司生產(chǎn)這三種產(chǎn)品所能獲得的利潤(rùn)最
10、大?試建立線性規(guī)劃模型,并用單純形法計(jì)算。
三、計(jì)算題
1.
Xi
X2
32
1
X4
X3
X4
5x4
X5
3x5 (X4
2x5
X5為自由未知數(shù))
2.
3.
In2
四、編程題
1.
>>A=[10235;61830;20813]
>>B=inv(A)
2.
>>clear
>>symsxy
>>y=Iog2(sqrt(abs(x)+xA3))
>>fpIot(y,[-55])
3.
>>clear
>>symsxy
>>y=eXp(sqrt(X))
>>int(y,0,2)
五、應(yīng)用題
1.(
11、1)用最小元素法編制初始調(diào)運(yùn)方案:
按行列順序?qū)?格找閉回路,計(jì)算 負(fù)檢驗(yàn)數(shù):
11 = 0, 13=20, 14 =
10
已出現(xiàn)負(fù)檢驗(yàn) 整,調(diào)整量為:
= 200 (噸)
銷地
產(chǎn)地
B1
B2
B3
B4
供應(yīng)量
B1
B2
B3
B4
Ai
300
300
30
20
30
50
A2
200
500
700
70
80
40
10
A3
200
300
300
800
50
40
30
60
需求量
400
600
300
500
1800
數(shù),方案需要調(diào)
12、初始調(diào)運(yùn)方案中空 檢驗(yàn)數(shù),直到出現(xiàn)
80, 22= 20, 23
調(diào)整后的第二個(gè)調(diào)運(yùn)方案為:
求第二個(gè)調(diào)運(yùn)
11 = 0, 13= 20 , 14 =
30, 34 = 60
所有檢驗(yàn)數(shù)非 方案最優(yōu),最低運(yùn)
S=
+ 500X10
十
銷地
產(chǎn)地
B1
B2
B3
B4
供應(yīng)量
B1
B2
B3
B4
方案的檢驗(yàn)數(shù):
70 , 21 = 10, 22 =
Ai
300
300
30
20
30
50
負(fù),故第二個(gè)調(diào)運(yùn) 輸總費(fèi)用為
A2
200
500
700
70
80
40
10
A3
4
13、00
300
100
800
50
40
30
60
300 X 20+200 X40
需求量
400
600
300
500
1800
400 X 50+ 300 X40
運(yùn)輸平衡表與運(yùn)價(jià)表
+100X30=54000(元)
(2)上述物資調(diào)運(yùn)問題的線性規(guī)劃模型為:用MATLAB軟件求解該問題的命令語(yǔ)句為:
>>C=[302030507080401050403060];
>>Aeq=[111100000000
000011110000
000000001111
100010001
14、000010001000100
001000100010
000100010001];
>>Beq=[300700800400600300500];
>>LB=[000000000000];
>>[X,fval,exitflag]=linprog(C,口口Aeq,Beq,LB)
2.設(shè)生產(chǎn)甲、乙、丙三種產(chǎn)品分別為X1件、X2件和X3件。
顯然,變量非負(fù),即
X1,X2,X3>0
目標(biāo)函數(shù)為:
maxS=400X1+250X2+300X3由原材料的限制,有
4X1+4X2+5X3<180由工時(shí)限制,有
6x1+3x2+6x3<150
線性規(guī)劃模型為:
線性規(guī)劃模型的標(biāo)準(zhǔn)形式為:
線性規(guī)劃模型的矩陣形式為:
選主元,并將主元化為1,同列其他元素化為0:
最優(yōu)解xi=5,X2=40,X3=0;最優(yōu)值maxS=12000。即生產(chǎn)甲產(chǎn)品5件、乙產(chǎn)品40件,不生產(chǎn)丙產(chǎn)品,可得最大利潤(rùn)12000元。
3.利潤(rùn)函數(shù)為:
L(q)=R(q)—C(q)=100q—5q2—200
邊際利潤(rùn)為:
ML(q)=100—10q
令ML(q)=0,得
q=10(百臺(tái))
因?yàn)閝=10是利潤(rùn)函數(shù)L(q)的惟一駐點(diǎn),故當(dāng)運(yùn)輸量為10百臺(tái),可得最大利潤(rùn)。