九九热最新网址,777奇米四色米奇影院在线播放,国产精品18久久久久久久久久,中文有码视频,亚洲一区在线免费观看,国产91精品在线,婷婷丁香六月天

高考數(shù)學(xué)一輪復(fù)習(xí)學(xué)案訓(xùn)練課件北師大版理科: 第4章 平面向量、數(shù)系的擴(kuò)充與復(fù)數(shù)的引入 第4節(jié) 數(shù)系的擴(kuò)充與復(fù)數(shù)的引入學(xué)案 理 北師大版

上傳人:無*** 文檔編號:62083092 上傳時間:2022-03-14 格式:DOC 頁數(shù):6 大小:170.50KB
收藏 版權(quán)申訴 舉報 下載
高考數(shù)學(xué)一輪復(fù)習(xí)學(xué)案訓(xùn)練課件北師大版理科: 第4章 平面向量、數(shù)系的擴(kuò)充與復(fù)數(shù)的引入 第4節(jié) 數(shù)系的擴(kuò)充與復(fù)數(shù)的引入學(xué)案 理 北師大版_第1頁
第1頁 / 共6頁
高考數(shù)學(xué)一輪復(fù)習(xí)學(xué)案訓(xùn)練課件北師大版理科: 第4章 平面向量、數(shù)系的擴(kuò)充與復(fù)數(shù)的引入 第4節(jié) 數(shù)系的擴(kuò)充與復(fù)數(shù)的引入學(xué)案 理 北師大版_第2頁
第2頁 / 共6頁
高考數(shù)學(xué)一輪復(fù)習(xí)學(xué)案訓(xùn)練課件北師大版理科: 第4章 平面向量、數(shù)系的擴(kuò)充與復(fù)數(shù)的引入 第4節(jié) 數(shù)系的擴(kuò)充與復(fù)數(shù)的引入學(xué)案 理 北師大版_第3頁
第3頁 / 共6頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《高考數(shù)學(xué)一輪復(fù)習(xí)學(xué)案訓(xùn)練課件北師大版理科: 第4章 平面向量、數(shù)系的擴(kuò)充與復(fù)數(shù)的引入 第4節(jié) 數(shù)系的擴(kuò)充與復(fù)數(shù)的引入學(xué)案 理 北師大版》由會員分享,可在線閱讀,更多相關(guān)《高考數(shù)學(xué)一輪復(fù)習(xí)學(xué)案訓(xùn)練課件北師大版理科: 第4章 平面向量、數(shù)系的擴(kuò)充與復(fù)數(shù)的引入 第4節(jié) 數(shù)系的擴(kuò)充與復(fù)數(shù)的引入學(xué)案 理 北師大版(6頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、 高考數(shù)學(xué)精品復(fù)習(xí)資料 2019.5 第四節(jié) 數(shù)系的擴(kuò)充與復(fù)數(shù)的引入 [考綱傳真] (教師用書獨(dú)具)1.理解復(fù)數(shù)的概念,理解復(fù)數(shù)相等的充要條件.2.了解復(fù)數(shù)的代數(shù)表示法及其幾何意義.3.能進(jìn)行復(fù)數(shù)代數(shù)形式的四則運(yùn)算,了解兩個具體復(fù)數(shù)相加、減的幾何意義. (對應(yīng)學(xué)生用書第77頁) [基礎(chǔ)知識填充] 1.復(fù)數(shù)的有關(guān)概念 (1)復(fù)數(shù)的概念:形如a+bi(a,b∈R)的數(shù)叫復(fù)數(shù),其中a,b分別是它的實(shí)部和虛部.若b=0,則a+bi為實(shí)數(shù),若b≠0,則a+bi為虛數(shù),若a=0且b≠0,則a+bi為純虛數(shù). (2)復(fù)數(shù)相等

2、:a+bi=c+di?a=c,b=d(a,b,c,d∈R). (3)共軛復(fù)數(shù):a+bi與c+di共軛?a=c,b=-d(a,b,c,d∈R). (4)復(fù)數(shù)的模:向量的模r叫作復(fù)數(shù)z=a+bi的模,即|z|=|a+bi|=. 2.復(fù)數(shù)的幾何意義 復(fù)數(shù)z=a+bi復(fù)平面內(nèi)的點(diǎn)Z(a,b) 平面向量=(a,b). 3.復(fù)數(shù)的運(yùn)算 (1)復(fù)數(shù)的加、減、乘、除運(yùn)算法則 設(shè)z1=a+bi,z2=c+di(a,b,c,d∈R),則 ①加法:z1+z2=(a+bi)+(c+di)=(a+c)+(b+d)i; ②減法:z1-z2=(a+bi)-(c+di)=(a-c)+(b-d)i; ③乘法

3、:z1·z2=(a+bi)·(c+di)=(ac-bd)+(ad+bc)i; ④除法:===+i(c+di≠0). (2)復(fù)數(shù)加法的運(yùn)算定律 復(fù)數(shù)的加法滿足交換律、結(jié)合律,即對任何z1,z2,z3∈C,有z1+z2=z2+z1,(z1+z2)+z3=z1+(z2+z3). [基本能力自測] 1.(思考辨析)判斷下列結(jié)論的正誤.(正確的打“√”,錯誤的打“×”) (1)方程x2+x+1=0沒有解.(  ) (2)復(fù)數(shù)z=a+bi(a,b∈R)中,虛部為bi.(  ) (3)復(fù)數(shù)中有相等復(fù)數(shù)的概念,因此復(fù)數(shù)可以比較大?。?  ) (4)在復(fù)平面內(nèi),原點(diǎn)是實(shí)軸與虛軸的交點(diǎn).(  )

4、 (5)復(fù)數(shù)的模實(shí)質(zhì)上就是復(fù)平面內(nèi)復(fù)數(shù)對應(yīng)的點(diǎn)到原點(diǎn)的距離,也就是復(fù)數(shù)對應(yīng)的向量的模.(  ) [答案] (1)× (2)× (3)× (4)√ (5)√ 2. (教材改編)如圖4-4-1,在復(fù)平面內(nèi),點(diǎn)A表示復(fù)數(shù)z,則圖中表示z的共軛復(fù)數(shù)的點(diǎn)是(  ) 圖4-4-1 A.A       B.B C.C D.D B [共軛復(fù)數(shù)對應(yīng)的點(diǎn)關(guān)于實(shí)軸對稱.] 3.(20xx·全國卷Ⅲ)復(fù)平面內(nèi)表示復(fù)數(shù)z=i(-2+i)的點(diǎn)位于(  ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 C [∵z=i(-2+i)=-1-2i,∴復(fù)數(shù)z=-1-2i所對應(yīng)的復(fù)平面內(nèi)的點(diǎn)為

5、Z(-1,-2),位于第三象限. 故選C.] 4.(20xx·全國卷Ⅱ)=(  ) A.1+2i B.1-2i C.2+i D.2-i D [===2-i. 故選D.] 5.設(shè)i是虛數(shù)單位,若復(fù)數(shù)(2+ai)i的實(shí)部與虛部互為相反數(shù),則實(shí)數(shù)a的值為________. 2 [因?yàn)?2+ai)i=-a+2i,又其實(shí)部與虛部互為相反數(shù),所以-a+2=0,即a=2.] (對應(yīng)學(xué)生用書第77頁) 復(fù)數(shù)的有關(guān)概念  (1)(20xx·合肥一檢)設(shè)i為虛數(shù)單位,復(fù)數(shù)z=的虛部是(  ) A.       B.- C.1 D.-1 (2)(20xx·全國卷Ⅰ)設(shè)有下

6、面四個命題: p1:若復(fù)數(shù)z滿足∈R,則z∈R; p2:若復(fù)數(shù)z滿足z2∈R,則z∈R; p3:若復(fù)數(shù)z1,z2滿足z1z2∈R,則z1=2; p4:若復(fù)數(shù)z∈R,則∈R. 其中的真命題為(  ) A.p1,p3 B.p1,p4 C.p2,p3 D.p2,p4 (1)B (2)B [(1)復(fù)數(shù)z===-i,則z的虛部為-,故選B. (2)設(shè)z=a+bi(a,b∈R),z1=a1+b1i(a1,b1∈R),z2=a2+b2i(a2,b2∈R). 對于p1,若∈R,即=∈R,則b=0?z=a+bi=a∈R,所以p1為真命題. 對于p2,若z2∈R,即(a+bi)2=a2+2a

7、bi-b2∈R,則ab=0. 當(dāng)a=0,b≠0時,z=a+bi=bi?R,所以p2為假命題. 對于p3,若z1z2∈R,即(a1+b1i)(a2+b2i)=(a1a2-b1b2)+(a1b2+a2b1)i∈R,則a1b2+a2b1=0.而z1=2,即a1+b1i=a2-b2i?a1=a2,b1=-b2.因?yàn)閍1b2+a2b1=0a1=a2,b1=-b2,所以p3為假命題. 對于p4,若z∈R,即a+bi∈R,則b=0?=a-bi=a∈R,所以p4為真命題.故選B.] [規(guī)律方法] 與復(fù)數(shù)概念相關(guān)問題的求解方法 (1)復(fù)數(shù)的概念問題都可以轉(zhuǎn)化為復(fù)數(shù)的實(shí)部與虛部應(yīng)該滿足的條件問題,只需

8、把復(fù)數(shù)化為代數(shù)形式,列出實(shí)部和虛部滿足的方程(不等式)組即可. (2)解決復(fù)數(shù)模的問題可以根據(jù)模的性質(zhì)把積、商的模轉(zhuǎn)化為模的積、商. 易錯警示:解題時一定要先看復(fù)數(shù)是否為a+bi(a,b∈R)的形式,以確定實(shí)部和虛部. [跟蹤訓(xùn)練] (1)(20xx·全國卷Ⅲ)若z=1+2i,則=(  ) A.1 B.-1 C.i D.-i (2)(20xx·長沙模擬(二))已知a是實(shí)數(shù),是純虛數(shù),則a=(  ) A. B.- C.1 D.-1 (1)C (2)A [(1)因?yàn)閦=1+2i,則=1-2i,所以z=(1+2i)(1-2i)=5,則==i.故選C. (2)復(fù)數(shù)==-i是純虛數(shù),

9、則=0且-≠0,解得a=,故選A.] 復(fù)數(shù)的幾何意義  (1)(20xx·石家莊質(zhì)檢(二))在復(fù)平面中,復(fù)數(shù)對應(yīng)的點(diǎn)在(  ) 【導(dǎo)學(xué)號:79140161】 A.第一象限 B.第二象限 C.第三象限 D.第四象限 (2)(20xx·全國卷Ⅱ)已知z=(m+3)+(m-1)i在復(fù)平面內(nèi)對應(yīng)的點(diǎn)在第四象限,則實(shí)數(shù)m的取值范圍是(  ) A.(-3,1) B.(-1,3) C.(1,+∞) D.(-∞,-3) (1)D (2)A [(1)復(fù)數(shù)===-i,其在復(fù)平面內(nèi)對應(yīng)的點(diǎn)為,位于第四象限,故選D. (2)由題意知即-3<m<1.故實(shí)數(shù)m的取值范圍為(-3,1).]

10、 [規(guī)律方法] 對復(fù)數(shù)幾何意義的理解及應(yīng)用,(1)復(fù)數(shù)z、復(fù)平面上的點(diǎn)Z及向量相互聯(lián)系,即z=a+bi(a,b∈R)?Z(a,b)?.,(2)由于復(fù)數(shù)、點(diǎn)、向量之間建立了一一對應(yīng)的關(guān)系,因此可把復(fù)數(shù)、向量與解析幾何聯(lián)系在一起,解題時可運(yùn)用數(shù)形結(jié)合的方法,使問題的解決更加直觀. [跟蹤訓(xùn)練] (1)若復(fù)數(shù)z=(a-1)+3i(a∈R)在復(fù)平面內(nèi)對應(yīng)的點(diǎn)在直線y=x+2上,則a的值等于(  ) A.1   B.2    C.5    D.6 (2)設(shè)復(fù)數(shù)z1,z2在復(fù)平面內(nèi)的對應(yīng)點(diǎn)關(guān)于虛軸對稱,z1=2+i,則z1z2=(  ) A.-5 B.5 C.-4+i D.-4-i (

11、1)B (2)A [(1)復(fù)數(shù)z=(a-1)+3i在復(fù)平面內(nèi)對應(yīng)的點(diǎn)(a-1,3)在直線y=x+2上,3=a-1+2,a=2,故選B. (2)∵z1=2+i在復(fù)平面內(nèi)的對應(yīng)點(diǎn)的坐標(biāo)為(2,1),又z1與z2在復(fù)平面內(nèi)的對應(yīng)點(diǎn)關(guān)于虛軸對稱,則z2的對應(yīng)點(diǎn)的坐標(biāo)為(-2,1)即z2=-2+i, ∴z1z2=(2+i)(-2+i)=i2-4=-5.] 復(fù)數(shù)的代數(shù)運(yùn)算  (1)(20xx·廣州綜合測試(二))若復(fù)數(shù)z滿足(3+4i-z)i=2+i,則z=(  ) A.4+6i B.4+2i C.-4-2i D.2+6i (2)(20xx·石家莊一模)若z是復(fù)數(shù),z=,則z·=

12、(  ) A. B. C.1 D. (1)D (2)D [(1)由題意得3+4i-z===1-2i,所以z=2+6i,故選D. (2)因?yàn)閦===--i,所以=-+i,所以z·==,故選D.] [規(guī)律方法] 復(fù)數(shù)代數(shù)運(yùn)算問題的求解方法 (1)復(fù)數(shù)的加法、減法、乘法運(yùn)算可以類比多項式運(yùn)算,除法關(guān)鍵是分子分母同乘以分母的共軛復(fù)數(shù),注意要把i的冪寫成最簡形式. (2)記住以下結(jié)論,可提高運(yùn)算速度 ①(1±i)2=±2i;②=i;③=-i;④-b+ai=i(a+bi);⑤i4n=1;i4n+1=i;i4n+2=-1; i4n+3=-i(n∈N). [跟蹤訓(xùn)練] (1)已知i是虛數(shù)單位,+=________. 【導(dǎo)學(xué)號:79140162】 (2)已知a,b∈R,i是虛數(shù)單位,若(1+i)(1-bi)=a,則的值為________. (1)1+i (2)2 [(1)原式=+ =i8+=i8+i1 009 =1+i4×252+1=1+i. (2)∵(1+i)(1-bi)=1+b+(1-b)i=a,又a,b∈R, ∴1+b=a且1-b=0,得a=2,b=1,∴=2.]

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!