《高考數(shù)學(xué) 17-18版 第9章 第49課 課時(shí)分層訓(xùn)練49》由會(huì)員分享,可在線(xiàn)閱讀,更多相關(guān)《高考數(shù)學(xué) 17-18版 第9章 第49課 課時(shí)分層訓(xùn)練49(6頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、
課時(shí)分層訓(xùn)練(四十九)
A組 基礎(chǔ)達(dá)標(biāo)
(建議用時(shí):30分鐘)
1.雙曲線(xiàn)x2-=1的兩條漸近線(xiàn)方程為_(kāi)_______.
y=±2x [由x2-=0得y=±2x,即雙曲線(xiàn)的兩條漸進(jìn)線(xiàn)方程為y=±2x.]
2.已知雙曲線(xiàn)-y2=1(a>0)的一條漸近線(xiàn)為x+y=0,則a=__________.
【導(dǎo)學(xué)號(hào):62172271】
[雙曲線(xiàn)-y2=1的漸近線(xiàn)為y=±,已知一條漸近線(xiàn)為x+y=0,即y=-x,因?yàn)閍>0,所以=,所以a=.]
3.雙曲線(xiàn)-=1的離心率為_(kāi)_______.
[∵a2=4,b2=5,
∴c2=9,∴e==.]
4.若雙曲線(xiàn)-=1的一條漸近線(xiàn)經(jīng)過(guò)點(diǎn)
2、(3,-4),則此雙曲線(xiàn)的離心率為_(kāi)_______. 【導(dǎo)學(xué)號(hào):62172272】
[由雙曲線(xiàn)的漸近線(xiàn)過(guò)點(diǎn)(3,-4)知=,∴=.
又b2=c2-a2,∴=,
即e2-1=,∴e2=,∴e=.]
5.已知點(diǎn)F1(-3,0)和F2(3,0),動(dòng)點(diǎn)P到F1,F(xiàn)2的距離之差為4,則點(diǎn)P的軌跡方程為_(kāi)_______.
-=1(x>0) [由題設(shè)知點(diǎn)P的軌跡方程是焦點(diǎn)在x軸上的雙曲線(xiàn)的右支,設(shè)其方程為-=1(x>0,a>0,b>0),由題設(shè)知c=3,a=2,b2=9-4=5.
所以點(diǎn)P的軌跡方程為-=1(x>0).]
6.已知F為雙曲線(xiàn)C:x2-my2=3m(m>0)的一個(gè)焦點(diǎn),則點(diǎn)F到
3、C的一條漸近線(xiàn)的距離為_(kāi)_______.
[由雙曲線(xiàn)方程知a2=3m,b2=3,
∴c==.
不妨設(shè)點(diǎn)F為右焦點(diǎn),則F(,0).
又雙曲線(xiàn)的一條漸近線(xiàn)為x-y=0,
∴d==.]
7.(2016·全國(guó)卷Ⅰ改編)已知方程-=1表示雙曲線(xiàn),且該雙曲線(xiàn)兩焦點(diǎn)間的距離為4,則n的取值范圍是________.
(-1,3) [∵原方程表示雙曲線(xiàn),且兩焦點(diǎn)間的距離為4.
∴則
因此-1
4、b=2,即2b=4.]
9.在平面直角坐標(biāo)系xOy中,已知方程-=1表示雙曲線(xiàn),則實(shí)數(shù)m的取值范圍為_(kāi)_______.
(-2,4) [由題意可知(4-m)(2+m)>0,即-2
5、的取值范圍是________.
[由題意知a=,b=1,c=,
∴F1(-,0),F(xiàn)2(,0),
∴=(--x0,-y0),=(-x0,-y0).
∵·<0,∴(--x0)(-x0)+y<0,
即x-3+y<0.∵點(diǎn)M(x0,y0)在雙曲線(xiàn)上,
∴-y=1,即x=2+2y,
∴2+2y-3+y<0,∴-0,b>0),若矩形ABCD的四個(gè)頂點(diǎn)在E上,AB,CD的中點(diǎn)為E的兩個(gè)焦點(diǎn),且2AB=3BC,則E的離心率是________.
2 [如圖,由題意知AB=,BC=2c.
又2AB=3BC,
∴2×=3×
6、2c,即2b2=3ac,
∴2(c2-a2)=3ac,兩邊同除以a2,并整理得2e2-3e-2=0,解得e=2(負(fù)值舍去).]
B組 能力提升
(建議用時(shí):15分鐘)
1.已知F為雙曲線(xiàn)C:-=1的左焦點(diǎn),P,Q為C上的點(diǎn).若PQ的長(zhǎng)等于虛軸長(zhǎng)的2倍,點(diǎn)A(5,0)在線(xiàn)段PQ上,則△PQF的周長(zhǎng)為_(kāi)_______.
44 [由雙曲線(xiàn)C的方程,知a=3,b=4,c=5,
∴點(diǎn)A(5,0)是雙曲線(xiàn)C的右焦點(diǎn),
且PQ=QA+PA=4b=16,
由雙曲線(xiàn)定義,得PF-PA=6,
QF-QA=6.
∴PF+QF=12+PA+QA=28,
因此△PQF的周長(zhǎng)為PF+QF+PQ=28
7、+16=44.]
2.已知點(diǎn)F是雙曲線(xiàn)-=1(a>0,b>0)的左焦點(diǎn),點(diǎn)E是該雙曲線(xiàn)的右頂點(diǎn),過(guò)F且垂直于x軸的直線(xiàn)與雙曲線(xiàn)交于A,B兩點(diǎn),若△ABE是銳角三角形,則該雙曲線(xiàn)的離心率e的取值范圍是________.
(1,2) [由題意易知點(diǎn)F的坐標(biāo)為(-c,0),A,B,E(a,0),∵△ABE是銳角三角形,∴·>0,
即·=·>0,整理得3e2+2e>e4,
∴e(e3-3e-3+1)<0,
∴e(e+1)2(e-2)<0,
解得e∈(0,2),又e>1,∴e∈(1,2).]
3.(2016·北京高考)雙曲線(xiàn)-=1(a>0,b>0)的漸近線(xiàn)為正方形OABC的邊OA,OC所在
8、的直線(xiàn),點(diǎn)B為該雙曲線(xiàn)的焦點(diǎn).若正方形OABC的邊長(zhǎng)為2,則a=__________.
2 [雙曲線(xiàn)-=1的漸近線(xiàn)方程為y=±x,易得兩條漸近線(xiàn)方程互相垂直,由雙曲線(xiàn)的對(duì)稱(chēng)性知=1.
又正方形OABC的邊長(zhǎng)為2,所以c=2,
所以a2+b2=c2=8,因此a=2.]
4.已知雙曲線(xiàn)-=1(a>0,b>0)的一個(gè)焦點(diǎn)為F(2,0),且雙曲線(xiàn)的漸近線(xiàn)與圓(x-2)2+y2=3相切,則雙曲線(xiàn)的方程為_(kāi)_________.
x2-=1 [由雙曲線(xiàn)的漸近線(xiàn)y=±x,即bx±ay=0與圓(x-2)2+y2=3相切,
∴=,則b2=3a2.①
又雙曲線(xiàn)的一個(gè)焦點(diǎn)為F(2,0),
∴a2+b2
9、=4,②
聯(lián)立①②,解得a2=1,b2=3.
故所求雙曲線(xiàn)的方程為x2-=1.]
5.(2017·南通三模)在平面直角坐標(biāo)系xOy中,雙曲線(xiàn)-y2=1與拋物線(xiàn)y2=-12x有相同的焦點(diǎn),則雙曲線(xiàn)的兩條漸近線(xiàn)的方程為_(kāi)_______.
y=±x [拋物線(xiàn)y2=-12x的焦點(diǎn)為(-3,0),∴a2+1=9,∴a=±2.
∴雙曲線(xiàn)的兩條漸近線(xiàn)方程為y=±=±x.]
6.(2016·天津高考改編)已知雙曲線(xiàn)-=1(b>0),以原點(diǎn)為圓心,雙曲線(xiàn)的實(shí)半軸長(zhǎng)為半徑長(zhǎng)的圓與雙曲線(xiàn)的兩條漸近線(xiàn)相交于A,B,C,D四點(diǎn),四邊形ABCD的面積為2b,則雙曲線(xiàn)的方程為_(kāi)_______.
-=1 [由題意知雙曲線(xiàn)的漸近線(xiàn)方程為y=±x,圓的方程為x2+y2=4,聯(lián)立
解得或
即第一象限的交點(diǎn)為.
由雙曲線(xiàn)和圓的對(duì)稱(chēng)性得四邊形ABCD為矩形,其相鄰兩邊長(zhǎng)為,,故=2b,得b2=12.
故雙曲線(xiàn)的方程為-=1.]