2018年高考數(shù)學(xué)二輪復(fù)習(xí) 專題07 三角恒等變換與解三角形講學(xué)案 文



《2018年高考數(shù)學(xué)二輪復(fù)習(xí) 專題07 三角恒等變換與解三角形講學(xué)案 文》由會員分享,可在線閱讀,更多相關(guān)《2018年高考數(shù)學(xué)二輪復(fù)習(xí) 專題07 三角恒等變換與解三角形講學(xué)案 文(45頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、 專題07 三角恒等變換與解三角形 和差角公式、二倍角公式是高考的熱點(diǎn),常與三角函數(shù)式的求值、化簡交匯命題.既有選擇題、填空題,又有解答題,難度適中,主要考查公式的靈活運(yùn)用及三角恒等變換能力. 1.和差角公式 (1)cos(α±β)=cosαcosβ?sinαsinβ; (2)sin(α±β)=sinαcosβ±cosαsinβ; (3)tan(α±β)=. 2.倍角公式 (1)sin2α=2sinαcosα; (2)cos2α=cos2α-sin2α=2cos2α-1=1-2sin2α; (3) tan2α=. 3.半角公式 (1)sin=±; (2)cos
2、=±; (3)tan=±; (4)tan==. 4.正弦定理 ===2R(2R為△ABC外接圓的直徑). 5.余弦定理 a2=b2+c2-2bccosA, b2=a2+c2-2accosB, c2=a2+b2-2abcosC. 6.面積公式 S△ABC=bcsinA=acsinB=absinC. 7.解三角形 (1)已知兩角及一邊,利用正弦定理求解; (2)已知兩邊及一邊的對角,利用正弦定理或余弦定理求解,解的情況可能不唯一,需討論; (3)已知兩邊及其夾角,利用余弦定理求解; (4)已知三邊,利用余弦定理求解. 8.“變”是解決三角問題的主題,變角、變名、變表
3、達(dá)形式、變換次數(shù)等比比皆是,強(qiáng)化變換意識,抓住萬變不離其宗——即公式不變,方法不變,要通過分析、歸類把握其規(guī)律. 考點(diǎn)一 三角恒等變換及求值 例1、【2017山東,文7】函數(shù) 最小正周期為 A. B. C. D. 【答案】C 【解析】因?yàn)?所以其周期,故選C 【變式探究】(1)(2016·高考全國卷Ⅰ)已知θ是第四象限角,且sin=,則tan=________. 【答案】- ∴θ=α-, ∴tan=tan=-tan. 如圖,在Rt△ACB中,不妨設(shè)∠A=α,由sin α=可得, BC=3,AB=5,AC=
4、4, ∴∠B=-α,∴tan B=, ∴tan=-tan B=-. (2)(2016·高考全國卷Ⅲ)若tan α=,則cos2α+2sin 2α=( ) A. B. C.1 D. 【答案】A (3)設(shè)α∈,β∈,且tan α=,則( ) A.3α-β= B.3α+β= C.2α-β= D.2α+β= 【答案】C 【解析】通解:由tan α=得=,即sin αcos β=cos α+sin βcos α,所以sin(α-β)=cos α,又cos α=sin,所以sin(α-β)=sin,又因?yàn)棣痢?,β∈,所以-<α-β<?<-α<
5、,因?yàn)棣粒拢剑?,所?α-β=,故選C. 【方法規(guī)律】1.三角函數(shù)恒等變換“四大策略” (1)常值代換:特別是“1”的代換,1=sin2θ+cos2θ=tan 45°等; (2)項的分拆與角的配湊:如sin2α+2cos2α=(sin2α+cos2α)+cos2α,α=(α-β)+β等; (3)降冪與升冪:正用二倍角公式升冪,逆用二倍公式降冪; (4)弦、切互化:切化弦,弦化切,減少函數(shù)種類. 2.解決條件求值問題的三個關(guān)注點(diǎn) (1)分析已知角和未知角之間的關(guān)系,正確地用已知角來表示未知角. (2)正確地運(yùn)用有關(guān)公式將所求角的三角函數(shù)值用已知角的三角函數(shù)值來表示.
6、(3)求解三角函數(shù)中給值求角的問題時,要根據(jù)已知求這個角的某種三角函數(shù)值,然后結(jié)合角的取值范圍,求出角的大小. 【變式探究】已知sin=,cos 2α=,則sin α等于( ) A. B.- C.- D. 考點(diǎn)二 正、余弦定理的簡單應(yīng)用 例2、【2017課標(biāo)3,文15】△ABC的內(nèi)角A,B,C的對邊分別為a,b,c.已知C=60°,b=,c=3,則A=_________. 【答案】75° 【解析】由題意: ,即 ,結(jié)合 可得 ,則. 【變式探究】(1)(2016·高考全國卷Ⅲ)在△ABC中,B=,BC邊上的高等于BC,則sin A=( ) A. B.
7、C. D. 【答案】D 【解析】通解:設(shè)BC邊上的高為AD,則BC=3AD,DC=2AD,所以AC==AD.由正弦定理,知=,即=,解得sin A=,故選D. 優(yōu)解:設(shè)出BC長度求邊,用正弦定理求sin A. 設(shè)BC=3,則高AD=BD=1,DC=2. ∴AC=, ∴sin A==. (2)已知a,b,c分別為△ABC三個內(nèi)角A,B,C的對邊,a=2,且(2+b)(sin A-sin B)=(c-b)sin C,則△ABC面積的最大值為________. 【答案】 形時,S=×22×sin 60°=. 【方法技巧】 1.解三角形時,如果式子中含有角的余弦或邊的二
8、次式,要考慮用余弦定理;如果式子中含有角的正弦或邊的一次式時,則考慮用正弦定理;以上特征都不明顯時,則考慮兩個定理都有可能用到. 2.關(guān)于解三角形問題,一般要用到三角形的內(nèi)角和定理,正弦、余弦定理及有關(guān)三角形的性質(zhì),常見的三角恒等變換方法和原則都適用,同時要注意“三統(tǒng)一”,即“統(tǒng)一角、統(tǒng)一函數(shù)、統(tǒng)一結(jié)構(gòu)”. 【變式探究】在△ABC中,角A,B,C所對的邊分別是a,b,c,已知sin(B+A)+sin(B-A)=3sin 2A,且c=,C=,則△ABC的面積是( ) A. B. C. D.或 考點(diǎn)三 正余弦定理的綜合應(yīng)用 例3、【2017課標(biāo)1,文11】△ABC的內(nèi)角A
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 專題黨課講稿:以高質(zhì)量黨建保障國有企業(yè)高質(zhì)量發(fā)展
- 廉政黨課講稿材料:堅決打好反腐敗斗爭攻堅戰(zhàn)持久戰(zhàn)總體戰(zhàn)涵養(yǎng)風(fēng)清氣正的政治生態(tài)
- 在新錄用選調(diào)生公務(wù)員座談會上和基層單位調(diào)研座談會上的發(fā)言材料
- 總工會關(guān)于2025年維護(hù)勞動領(lǐng)域政治安全的工作匯報材料
- 基層黨建工作交流研討會上的講話發(fā)言材料
- 糧食和物資儲備學(xué)習(xí)教育工作部署會上的講話發(fā)言材料
- 市工業(yè)園區(qū)、市直機(jī)關(guān)單位、市紀(jì)委監(jiān)委2025年工作計劃
- 檢察院政治部關(guān)于2025年工作計劃
- 辦公室主任2025年現(xiàn)實(shí)表現(xiàn)材料
- 2025年~村農(nóng)村保潔員規(guī)范管理工作方案
- 在深入貫徹中央8項規(guī)定精神學(xué)習(xí)教育工作部署會議上的講話發(fā)言材料4篇
- 開展深入貫徹規(guī)定精神學(xué)習(xí)教育動員部署會上的講話發(fā)言材料3篇
- 在司法黨組中心學(xué)習(xí)組學(xué)習(xí)會上的發(fā)言材料
- 國企黨委關(guān)于推動基層黨建與生產(chǎn)經(jīng)營深度融合工作情況的報告材料
- 副書記在2025年工作務(wù)虛會上的發(fā)言材料2篇
相關(guān)資源
更多