九九热最新网址,777奇米四色米奇影院在线播放,国产精品18久久久久久久久久,中文有码视频,亚洲一区在线免费观看,国产91精品在线,婷婷丁香六月天

2年中考1年模擬備戰(zhàn)2018年中考數(shù)學(xué) 第四篇 圖形的性質(zhì) 專題18 等腰三角形與直角三角形(含解析)

上傳人:Sc****h 文檔編號:81859394 上傳時間:2022-04-28 格式:DOC 頁數(shù):84 大?。?.21MB
收藏 版權(quán)申訴 舉報 下載
2年中考1年模擬備戰(zhàn)2018年中考數(shù)學(xué) 第四篇 圖形的性質(zhì) 專題18 等腰三角形與直角三角形(含解析)_第1頁
第1頁 / 共84頁
2年中考1年模擬備戰(zhàn)2018年中考數(shù)學(xué) 第四篇 圖形的性質(zhì) 專題18 等腰三角形與直角三角形(含解析)_第2頁
第2頁 / 共84頁
2年中考1年模擬備戰(zhàn)2018年中考數(shù)學(xué) 第四篇 圖形的性質(zhì) 專題18 等腰三角形與直角三角形(含解析)_第3頁
第3頁 / 共84頁

下載文檔到電腦,查找使用更方便

118 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2年中考1年模擬備戰(zhàn)2018年中考數(shù)學(xué) 第四篇 圖形的性質(zhì) 專題18 等腰三角形與直角三角形(含解析)》由會員分享,可在線閱讀,更多相關(guān)《2年中考1年模擬備戰(zhàn)2018年中考數(shù)學(xué) 第四篇 圖形的性質(zhì) 專題18 等腰三角形與直角三角形(含解析)(84頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、 第四篇 圖形的性質(zhì) 專題18 等腰三角形與直角三角形 ?解讀考點 知 識 點 名師點晴 等腰三角形 等腰三角形的性質(zhì) 理解等腰三角形的性質(zhì),并能解決等腰三角形的有關(guān)計算 等腰三角形的判定 掌握等腰三角形的判定方法,會證明一個三角形是等腰三角形 等邊三角形 等邊三角形的性質(zhì) 理解等邊三角形的性質(zhì) 等邊三角形的判定 掌握等邊三角形的判定方法,會證明一個三角形是等邊三角形 直角三角形 直角三角形的性質(zhì) 理解直角三角形的有關(guān)性質(zhì) 直角三角形的判定 掌握直角三角形的判定方法,會證明一個三角形是直角三角形 勾股定理 理解并掌握勾股定理及其逆定

2、理 ?2年中考 【2017年題組】 一、選擇題 1.(2017內(nèi)蒙古包頭市)若等腰三角形的周長為10cm,其中一邊長為2cm,則該等腰三角形的底邊長為( ?。? A.2cm      B.4cm      C.6cm      D.8cm 【答案】A. 【解析】 試題分析:若2cm為等腰三角形的腰長,則底邊長為10﹣2﹣2=6(cm),2+2<6,不符合三角形的三邊關(guān)系; 若2cm為等腰三角形的底邊,則腰長為(10﹣2)÷2=4(cm),此時三角形的三邊長分別為2cm,4cm,4cm,符合三角形的三邊關(guān)系;故選A. 考點:1.等腰三角形的性質(zhì);2.三角形三邊關(guān)系;3.

3、分類討論. 2.(2017天津)如圖,在△ABC中,AB=AC,AD、CE是△ABC的兩條中線,P是AD上一個動點,則下列線段的長度等于BP+EP最小值的是( ?。? A.BC      B.CE      C.AD      D.AC 【答案】B. 【解析】 考點:1.軸對稱﹣最短路線問題;2.等腰三角形的性質(zhì);3.最值問題. 3.(2017山東省淄博市)如圖,在Rt△ABC中,∠ABC=90°,AB=6,BC=8,∠BAC,∠ACB的平分線相交于點E,過點E作EF∥BC交AC于點F,則EF的長為( ?。? A.    B.    C.     D. 【答案】C.

4、 【解析】 考點:1.相似三角形的判定與性質(zhì);2.角平分線的性質(zhì);3.等腰三角形的判定與性質(zhì);4.綜合題. 4.(2017湖北省武漢市)如圖,在Rt△ABC中,∠C=90°,以△ABC的一邊為邊畫等腰三角形,使得它的第三個頂點在△ABC的其他邊上,則可以畫出的不同的等腰三角形的個數(shù)最多為( ?。? A.4      B.5      C.6      D.7 【答案】D. 【解析】 試題分析:如圖: 故選D. 考點:1.等腰三角形的判定與性質(zhì);2.分類討論;3.綜合題;4.操作型. 5.(2017湖北省荊州市)如圖,在△ABC中,AB=AC,∠A=30°,A

5、B的垂直平分線l交AC于點D,則∠CBD的度數(shù)為( ?。? A.30°      B.45°      C.50°      D.75° 【答案】B. 【解析】 考點:1.等腰三角形的性質(zhì);2.線段垂直平分線的性質(zhì). 6.(2017湖北省鄂州市)如圖,AB∥CD,E為CD上一點,射線EF經(jīng)過點A,EC=EA.若∠CAE=30°,則∠BAF=( ?。? A.30°      B.40°      C.50°      D.60° 【答案】D. 【解析】 考點:1.平行線的性質(zhì);2.等腰三角形的性質(zhì). 7.(2017貴州省畢節(jié)市)如圖,在正方形ABCD中,點E,F(xiàn)分

6、別在BC,CD上,且∠EAF=45°,將△ABE繞點A順時針旋轉(zhuǎn)90°,使點E落在點E'處,則下列判斷不正確的是( ?。? A.△AEE′是等腰直角三角形      B.AF垂直平分EE' C.△E′EC∽△AFD      D.△AE′F是等腰三角形 【答案】D. 【解析】 試題分析:∵將△ABE繞點A順時針旋轉(zhuǎn)90°,使點E落在點E'處,∴AE′=AE,∠E′AE=90°,∴△AEE′是等腰直角三角形,故A正確; ∵將△ABE繞點A順時針旋轉(zhuǎn)90°,使點E落在點E'處,∴∠E′AD=∠BAE,∵四邊形ABCD是正方形,∴∠DAB=90°,∵∠EAF=45°,∴∠BAE+∠DA

7、F=45°,∴∠E′AD+∠FAD=45°,∴∠E′AF=∠EAF,∵AE′=AE,∴AF垂直平分EE',故B正確; ∵AF⊥E′E,∠ADF=90°,∴∠FE′E+∠AFD=∠AFD+∠DAF,∴∠FE′E=∠DAF,∴△E′EC∽△AFD,故C正確; ∵AD⊥E′F,但∠E′AD不一定等于∠DAE′,∴△AE′F不一定是等腰三角形,故D錯誤; 故選D. 考點:1.旋轉(zhuǎn)的性質(zhì);2.線段垂直平分線的性質(zhì);3.等腰三角形的判定;4.等腰直角三角形;5.正方形的性質(zhì);6.相似三角形的判定. 8.(2017遼寧省營口市)如圖,在△ABC中,AB=AC,E,F(xiàn)分別是BC,AC的中點,以AC

8、為斜邊作Rt△ADC,若∠CAD=∠CAB=45°,則下列結(jié)論不正確的是( ?。? A.∠ECD=112.5°      B.DE平分∠FDC      C.∠DEC=30°   D.AB=CD 【答案】C. 【解析】 ∵∠FEC=∠B=67.5°,∠FED=22.5°,∴∠DEC=∠FEC﹣∠FED=45°,故C錯誤,符合題意; ∵Rt△ADC中,∠ADC=90°,AD=DC,∴AC=CD,∵AB=AC,∴AB=CD,故D正確,不符合題意. 故選C. 考點:1.三角形中位線定理;2.等腰三角形的性質(zhì). 9.(2017廣西河池市)已知等邊△ABC的邊長為12,D是AB上的

9、動點,過D作DE⊥AC于點E,過E作EF⊥BC于點F,過F作FG⊥AB于點G.當(dāng)G與D重合時,AD的長是( ?。? A.3      B.4      C.8      D.9 【答案】B. 【解析】 試題分析:設(shè)AD=x,∵△ABC是等邊三角形,∴∠A=∠B=∠C=60°,∵DE⊥AC于點E,EF⊥BC于點F,F(xiàn)G⊥AB,∴∠ADF=∠DEB=∠EFC=90°,∴AF=2x,∴CF=12﹣2x,∴CE=2CF=24﹣4x,∴BE=12﹣CE=4x﹣12,∴BD=2BE=8x﹣24,∵AD+BD=AB,∴x+8x﹣24=12,∴x=4,∴AD=4.故選B. 考點:1.等邊三角形的性

10、質(zhì);2.含30度角的直角三角形;3.動點型. 10.(2017廣西玉林崇左市)如圖,大小不同的兩個磁塊,其截面都是等邊三角形,小三角形邊長是大三角形邊長的一半,點O是小三角形的內(nèi)心,現(xiàn)將小三角形沿著大三角形的邊緣順時針滾動,當(dāng)由①位置滾動到④位置時,線段OA繞點O順時針轉(zhuǎn)過的角度是( ?。? A.240°      B.360°      C.480°      D.540° 【答案】C. 【解析】 考點:1.三角形的內(nèi)切圓與內(nèi)心;2.等邊三角形的性質(zhì);3.旋轉(zhuǎn)的性質(zhì). 11.(2017天門)如圖,P(m,m)是反比例函數(shù)在第一象限內(nèi)的圖象上一點,以P為頂點作等邊△PAB,使

11、AB落在x軸上,則△POB的面積為( ?。? A.    B.    C.     D. 【答案】D. 【解析】 考點:1.反比例函數(shù)系數(shù)k的幾何意義;2.反比例函數(shù)圖象上點的坐標(biāo)特征;3.等邊三角形的性質(zhì). 12.(2017內(nèi)蒙古包頭市)如圖,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足為D,AF平分∠CAB,交CD于點E,交CB于點F.若AC=3,AB=5,則CE的長為( ?。? A.     B.     C.     D. 【答案】A. 【解析】 考點:1.相似三角形的判定與性質(zhì);2.勾股定理;3.角平分線的性質(zhì);4.綜合題. 13.(

12、2017山東省泰安市)如圖,正方形ABCD中,M為BC上一點,ME⊥AM,ME交AD的延長線于點E.若AB=12,BM=5,則DE的長為( ?。? A.18    B.    C.     D. 【答案】B. 【解析】 試題分析:∵四邊形ABCD是正方形,AB=12,BM=5,∴MC=12﹣5=7.∵M(jìn)E⊥AM,∴∠AME=90°,∴∠AMB+∠CMG=90°.∵∠AMB+∠BAM=90°,∴∠BAM=∠CMG,∠B=∠C=90°,∴△ABM∽△MCG,∴,即,解得CG=,∴DG=12﹣=.∵AE∥BC,∴∠E=CMG,∠EDG=∠C,∴△MCG∽△EDG,∴,即,解得DE=.故選B

13、. 考點:1.相似三角形的判定與性質(zhì);2.勾股定理;3.正方形的性質(zhì). 14.(2017山東省聊城市)如圖是由8個全等的矩形組成的大正方形,線段AB的端點都在小矩形的頂點上,如果點P是某個小矩形的頂點,連接PA、PB,那么使△ABP為等腰直角三角形的點P的個數(shù)是( ?。? A.2個      B.3個      C.4個      D.5個 【答案】B. 【解析】 考點:等腰直角三角形. 15.(2017江蘇省無錫市)如圖,△ABC中,∠BAC=90°,AB=3,AC=4,點D是BC的中點,將△ABD沿AD翻折得到△AED,連CE,則線段CE的長等于(  )

14、A.2      B.      C.      D. 【答案】D. 【解析】 試題分析:如圖連接BE交AD于O,作AH⊥BC于H. 在Rt△ABC中,∵AC=4,AB=3,∴BC==5,∵CD=DB,∴AD=DC=DB=,∵?BC?AH=?AB?AC,∴AH=,∵AE=AB,DE=DB=DC,∴AD垂直平分線段BE,△BCE是直角三角形,∵?AD?BO=?BD?AH,∴OB=,∴BE=2OB=,在Rt△BCE中,EC===,故選D. 考點:1.翻折變換(折疊問題);2.直角三角形斜邊上的中線;3.勾股定理. 16.(2017浙江省紹興市)如圖,小巷左右兩側(cè)是豎直的墻,一架梯子

15、斜靠在左墻時,梯子底端到左墻角的距離為0.7米,頂端距離地面2.4米,如果保持梯子底端位置不動,將梯子斜靠在右墻時,頂端距離地面2米,則小巷的寬度為( ?。? A.0.7米      B.1.5米      C.2.2米      D.2.4米 【答案】C. 【解析】 考點:勾股定理的應(yīng)用. 17.(2017湖北省襄陽市)“趙爽弦圖”巧妙地利用面積關(guān)系證明了勾股定理,是我國古代數(shù)學(xué)的驕傲,如圖所示的“趙爽弦圖”是由四個全等的直角三角形和一個小正方形拼成的一個大正方形,設(shè)直角三角形較長直角邊長為a,較短直角邊長為b,若,大正方形的面積為13,則小正方形的面積為( ?。?

16、A.3      B.4      C.5      D.6 【答案】C. 【解析】 試題分析:如圖所示,∵,∴=21,∵大正方形的面積為13,2ab=21﹣13=8,∴小正方形的面積為13﹣8=5.故選C. 考點:勾股定理的證明. 18.(2017遼寧省大連市)如圖,在△ABC中,∠ACB=90°,CD⊥AB,垂足為D,點E是AB的中點,CD=DE=a,則AB的長為(  ) A.    B.    C.     D. 【答案】B. 【解析】 考點:直角三角形斜邊上的中線. 19.(2017遼寧省營口市)如圖,在△ABC中,AC=BC,∠ACB=90°,點D在BC上

17、,BD=3,DC=1,點P是AB上的動點,則PC+PD的最小值為( ?。? A.4      B.5      C.6      D.7 【答案】B. 【解析】 考點:1.軸對稱﹣最短路線問題;2.等腰直角三角形;3.最值問題. 20.(2017遼寧省葫蘆島市)如圖,將矩形紙片ABCD沿直線EF折疊,使點C落在AD邊的中點C′處,點B落在點B′處,其中AB=9,BC=6,則FC′的長為(  ) A.      B.4      C.4.5      D.5 【答案】D. 【解析】 試題分析:設(shè)FC′=x,則FD=9﹣x,∵BC=6,四邊形ABCD為矩形,點C′為

18、AD的中點,∴AD=BC=6,C′D=3.在Rt△FC′D中,∠D=90°,F(xiàn)C′=x,F(xiàn)D=9﹣x,C′D=3,∴FC′2=FD2+C′D2,即x2=(9﹣x)2+32,解得:x=5.故選D. 考點:1.矩形的性質(zhì);2.勾股定理. 21.(2017四川省雅安市)如圖,四邊形ABCD中,∠A=∠C=90°,∠B=60°,AD=1,BC=2,則四邊形ABCD的面積是 ( ?。? A.    B.3    C.    D.4 【答案】A. 【解析】 考點:1.勾股定理;2.含30度角的直角三角形;3.解直角三角形. 二、填空題 22.(2017吉林省長春市)如圖①,

19、這個圖案是我國漢代的趙爽在注解《周髀算經(jīng)》時給出的,人們稱它為“趙爽弦圖”.此圖案的示意圖如圖②,其中四邊形ABCD和四邊形EFGH都是正方形,△ABF、△BCG、△CDH、△DAE是四個全等的直角三角形.若EF=2,DE=8,則AB的長為 . 【答案】10. 【解析】 考點:勾股定理的證明. 23.(2017吉林省長春市)如圖,在平面直角坐標(biāo)系中,△ABC的頂點A在第一象限,點B,C的坐標(biāo)為(2,1),(6,1),∠BAC=90°,AB=AC,直線AB交x軸于點P.若△ABC與△A'B'C'關(guān)于點P成中心對稱,則點A'的坐標(biāo)為 . 【答案】(﹣2,﹣

20、3). 【解析】 試題分析:如圖,點B,C的坐標(biāo)為(2,1),(6,1),得:BC=4.由∠BAC=90°,AB=AC,得AB=,∠ABD=45°,∴BD=AD=2,A(4,3),設(shè)AB的解析式為y=kx+b,將A,B點坐標(biāo)代入,得:,解得:,AB的解析式為y=x﹣1,當(dāng)y=1時,x=1,即P(1,0),由中點坐標(biāo)公式,得 xA′=2xP﹣xA=2﹣4=﹣2,yA′=2yA′﹣yA=0﹣3=﹣3,A′(﹣2,﹣3).故答案為:(﹣2,﹣3). 考點:1.坐標(biāo)與圖形變化﹣旋轉(zhuǎn);2.等腰直角三角形. 24.(2017四川省樂山市)點A、B、C在格點圖中的位置如圖5所示,格點小正方形的

21、邊長為1,則點C到線段AB所在直線的距離是 . 【答案】. 【解析】 考點:勾股定理. 25.(2017山東省東營市)我國古代有這樣一道數(shù)學(xué)問題:“枯木一根直立地上,高二丈,周三尺,有葛藤自根纏繞而上,五周而達(dá)其頂,問葛藤之長幾何?”題意是:如圖所示,把枯木看作一個圓柱體,因一丈是十尺,則該圓柱的高為20尺,底面周長為3尺,有葛藤自點A處纏繞而上,繞五周后其末端恰好到達(dá)點B處,則問題中葛藤的最短長度是 尺. 【答案】25. 【解析】 考點:1.平面展開﹣最短路徑問題;2.勾股定理的應(yīng)用;3.壓軸題;4.轉(zhuǎn)化思想. 26.(2017山東省青

22、島市)如圖,在四邊形ABCD中,∠ABC=∠ADC=90°,E為對角線AC的中點,連接BE,ED,BD.若∠BAD=58°,則∠EBD的度數(shù)為 度. 【答案】32. 【解析】 試題分析:∵∠ABC=∠ADC=90°,∴點A,B,C,D在以E為圓心,AC為直徑的同一個圓上,∵∠BAD=58°,∴∠DEB=116°,∵DE=BE=AC,∴∠EBD=∠EDB=32°,故答案為:32. 考點:直角三角形斜邊上的中線. 27.(2017江蘇省徐州市)如圖,已知OB=1,以O(shè)B為直角邊作等腰直角三角形A1BO,再以O(shè)A1為直角邊作等腰直角三角形A2A1O,如此下去,則線段OAn的

23、長度為 . 【答案】. 【解析】 考點:1.等腰直角三角形;2.規(guī)律型;3.綜合題. 28.(2017河南?。┤鐖D,在Rt△ABC中,∠A=90°,AB=AC,BC=,點M,N分別是邊BC,AB上的動點,沿MN所在的直線折疊∠B,使點B的對應(yīng)點B′始終落在邊AC上,若△MB′C為直角三角形,則BM的長為 . 【答案】或1. 【解析】 試題分析:①如圖1,當(dāng)∠B′MC=90°,B′與A重合,M是BC的中點,∴BM=BC=; ②如圖2,當(dāng)∠MB′C=90°,∵∠A=90°,AB=AC,∴∠C=45°,∴△CMB′是等腰直角三角形,∴CM=MB′,

24、∵沿MN所在的直線折疊∠B,使點B的對應(yīng)點B′,∴BM=B′M,∴CM=BM,∵BC=+1,∴CM+BM=BM+BM=+1,∴BM=1,綜上所述,若△MB′C為直角三角形,則BM的長為或1,故答案為:或1. 考點:1.翻折變換(折疊問題);2.等腰直角三角形;3.分類討論. 29.(2017湖北省武漢市)如圖,在△ABC中,AB=AC=,∠BAC=120°,點D、E都在邊BC上,∠DAE=60°.若BD=2CE,則DE的長為 . 【答案】. 【解析】 ∵∠BAC=120°,∠DAE=60°,∴∠BAD+∠CAE=60°,∴∠FAE=∠FAC+∠CAE=∠BAD+

25、∠CAE=60°. 在△ADE和△AFE中,∵AD=AF,∠DAE=∠FAE=60°,AE=AE,∴△ADE≌△AFE(SAS),∴DE=FE. ∵BD=2CE,BD=CF,∠ACF=∠B=30°,∴設(shè)CE=2x,則CM=x,EM=x,F(xiàn)M=4x﹣x=3x,EF=ED=6﹣6x. 在Rt△EFM中,F(xiàn)E=6﹣6x,F(xiàn)M=3x,EM=x,∴EF2=FM2+EM2,即,解得:x1=,x2=(不合題意,舍去),∴DE=6﹣6x=.故答案為:. 考點:1.全等三角形的判定與性質(zhì);2.勾股定理;3.翻折變換(折疊問題);4.旋轉(zhuǎn)的性質(zhì). 30.(2017寧夏)在△ABC中,AB=6,點D是

26、AB的中點,過點D作DE∥BC,交AC于點E,點M在DE上,且ME=DM.當(dāng)AM⊥BM時,則BC的長為 . 【答案】8. 【解析】 考點:1.三角形中位線定理;2.等腰三角形的判定與性質(zhì). 31.(2017浙江省紹興市)如圖,∠AOB=45°,點M、N在邊OA上,OM=x,ON=x+4,點P是邊OB上的點.若使點P、M、N構(gòu)成等腰三角形的點P恰好有三個,則x的值是 . 【答案】x=0或x= 或 . 【解析】 試題分析:以MN為底邊時,可作MN的垂直平分線,與OB的必有一個交點P1 , 且MN=4,以M為圓心MN為半徑畫圓,以N為圓心MN為

27、半徑畫圓,①如下圖,當(dāng)M與點O重合時,即x=0時,除了P1 , 當(dāng)MN=MP,即為P3;當(dāng)NP=MN時,即為P2; 只有3個點P; ②當(dāng)0<x<4時,如下圖,圓N與OB相切時,NP2=MN=4,且NP2⊥OB,此時MP3=4,則OM=ON-MN= NP2-4= . ③因為MN=4,所以當(dāng)x>0時,MN<ON,則MN=NP不存在,除了P1外,當(dāng)MP=MN=4時,過點M作MD⊥OB于D,當(dāng)OM=MP=4時,圓M與OB剛好交OB兩點P2和P3; 當(dāng)MD=MN=4時,圓M與OB只有一個交點,此時OM=MD=,故4≤x<. 與OB有兩個交點P2和P3,故答案為:x=0或x=或

28、4≤x<. 考點:1.等腰三角形的判定;2.相交兩圓的性質(zhì);3.分類討論;4.綜合題. 32.(2017黑龍江省綏化市)在等腰△ABC中,AD⊥BC交直線BC于點D,若AD=BC,則△ABC的頂角的度數(shù)為 . 【答案】30°或150°或90°. 【解析】 考點:1.含30度角的直角三角形;2.等腰三角形的性質(zhì);3.分類討論. 33.(2017黑龍江省龍東地區(qū))如圖,在△ABC中,AB=BC=8,AO=BO,點M是射線CO上的一個動點,∠AOC=60°,則當(dāng)△ABM為直角三角形時,AM的長為 . 【答案】或或4. 【解析】 如圖3,當(dāng)∠ABM

29、=90°時,∵∠BOM=∠AOC=60°,∴∠BMO=30°,∴MO=2BO=2×4=8,∴Rt△BOM中,BM==,∴Rt△ABM中,AM==. 綜上所述,當(dāng)△ABM為直角三角形時,AM的長為或或4.故答案為:或或4. 考點:1.勾股定理;2.等腰三角形的性質(zhì);3.分類討論;4.動點型;5.綜合題. 34.(2017遼寧省撫順市)如圖,等邊△A1C1C2的周長為1,作C1D1⊥A1C2于D1,在C1C2的延長線上取點C3,使D1C3=D1C1,連接D1C3,以C2C3為邊作等邊△A2C2C3;作C2D2⊥A2C3于D2,在C2C3的延長線上取點C4,使D2C4=D2C2,連接D2C4,

30、以C3C4為邊作等邊△A3C3C4;…且點A1,A2,A3,…都在直線C1C2同側(cè),如此下去,則△A1C1C2,△A2C2C3,△A3C3C4,…,△AnCnCn+1的周長和為 .(n≥2,且n為整數(shù)) 【答案】. 【解析】 考點:1.等邊三角形的性質(zhì);2.規(guī)律型;3.綜合題. 35.(2017遼寧省營口市)如圖,點A1(1,)在直線l1:y=x上,過點A1作A1B1⊥l1交直線l2:y=x于點B1,A1B1為邊在△OA1B1外側(cè)作等邊三角形A1B1C1,再過點C1作A2B2⊥l1,分別交直線l1和l2于A2,B2兩點,以A2B2為邊在△OA2B2外側(cè)作等邊三角形A2

31、B2C2,…按此規(guī)律進(jìn)行下去,則第n個等邊三角形AnBnCn的面積為 .(用含n的代數(shù)式表示) 【答案】. 【解析】 試題分析:∵點A1(1,),∴OA1=2. ∵直線l1:y=x,直線l2:y=x,∴∠A1OB1=30°. 在Rt△OA1B1中,OA1=2,∠A1OB1=30°,∠OA1B1=90°,∴A1B1=OB1,∴A1B1=. ∵△A1B1C1為等邊三角形,∴A1A2=A1B1=1,∴OA2=3,A2B2=. 同理,可得出:A3B3=,A4B4=,…,AnBn=,∴第n個等邊三角形AnBnCn的面積為×AnBn2=.故答案為:. 考點:1.一次函數(shù)圖象上

32、點的坐標(biāo)特征;2.等邊三角形的性質(zhì);3.規(guī)律型;4.綜合題. 三、解答題 36.(2017寧夏)在邊長為2的等邊三角形ABC中,P是BC邊上任意一點,過點 P分別作 PM⊥A B,PN⊥AC,M、N分別為垂足. (1)求證:不論點P在BC邊的何處時都有PM+PN的長恰好等于三角形ABC一邊上的高; (2)當(dāng)BP的長為何值時,四邊形AMPN的面積最大,并求出最大值. 【答案】(1)證明見解析;(2)當(dāng)BP=1時,四邊形AMPN的面積最大,最大值是. 【解析】 (2)設(shè)BP=x,則CP=2﹣x,由△ABC是等邊三角形,得到∠B=∠C=60°,解直角三角形得到BM=x,PM=x

33、,CN=(2﹣x),PN=(2﹣x),根據(jù)二次函數(shù)的性質(zhì)即可得到結(jié)論. 試題解析:(1)連接AP,過C作CD⊥AB于D,∵△ABC是等邊三角形,∴AB=AC,∵S△ABC=S△ABP+S△ACP,∴ AB?CD=AB?PM+AC?PN,∴PM+PN=CD,即不論點P在BC邊的何處時都有PM+PN的長恰好等于三角形ABC一邊上的高; (2)設(shè)BP=x,則CP=2﹣x,∵△ABC是等邊三角形,∴∠B=∠C=60°,∵PM⊥AB,PN⊥AC,∴BM=x,PM=x,CN=(2﹣x),PN=(2﹣x),∴四邊形AMPN的面積=×(2﹣x)?x+×[2﹣(2﹣x)]? (2﹣x)= =,∴當(dāng)BP=1時

34、,四邊形AMPN的面積最大,最大值是. 考點:1.等邊三角形的性質(zhì);2.二次函數(shù)的最值;3.定值問題;4.動點型;5.最值問題. 37.(2017內(nèi)蒙古呼和浩特市)如圖,等腰三角形ABC中,BD,CE分別是兩腰上的中線. (1)求證:BD=CE; (2)設(shè)BD與CE相交于點O,點M,N分別為線段BO和CO的中點,當(dāng)△ABC的重心到頂點A的距離與底邊長相等時,判斷四邊形DEMN的形狀,無需說明理由. 【答案】(1)證明見解析;(2)四邊形DEMN是正方形. 【解析】 試題解析:(1)解:由題意得,AB=AC,∵BD,CE分別是兩腰上的中線,∴AD=AC,AE=AB,∴A

35、D=AE,在△ABD和△ACE中,∵AB=AC,∠A=∠A,AD=AE,∴△ABD≌△ACE(ASA),∴BD=CE; (2)四邊形DEMN是正方形,證明:∵E、D分別是AB、AC的中點,∴AE=AB,AD=AC,ED是△ABC的中位線,∴ED∥BC,ED=BC,∵點M、N分別為線段BO和CO中點,∴OM=BM,ON=CN,MN是△OBC的中位線,∴MN∥BC,MN=BC,∴ED∥MN,ED=MN,∴四邊形EDNM是平行四邊形,由(1)知BD=CE,又∵OE=ON,OD=OM,OM=BM,ON=CN,∴DM=EN,∴四邊形EDNM是矩形,在△BDC與△CEB中,∵BE=CD,CE=BD,BC

36、=CB,∴△BDC≌△CEB,∴∠BCE=∠CBD,∴OB=OC,∵△ABC的重心到頂點A的距離與底邊長相等,∴O到BC的距離=BC,∴BD⊥CE,∴四邊形DEMN是正方形. 考點:1.全等三角形的判定與性質(zhì);2.三角形的重心;3.等腰三角形的性質(zhì). 38.(2017江蘇省連云港市)如圖,已知等腰三角形ABC中,AB=AC,點D、E分別在邊AB.AC上,且AD=AE,連接BE、CD,交于點F. (1)判斷∠ABE與∠ACD的數(shù)量關(guān)系,并說明理由; (2)求證:過點A、F的直線垂直平分線段BC. 【答案】(1)∠ABE=∠ACD;(2)證明見解析. 【解析】 (2)∵A

37、B=AC,∴∠ABC=∠ACB,由(1)可知∠ABE=∠ACD,∴∠FBC=∠FCB,∴FB=FC,∵AB=AC,∴點A、F均在線段BC的垂直平分線上,即直線AF垂直平分線段BC. 考點:1.等腰三角形的性質(zhì);2.線段垂直平分線的性質(zhì);3.探究型. 39.(2017北京市)在等腰直角△ABC中,∠ACB=90°,P是線段BC上一動點(與點B、C不重合),連接AP,延長BC至點Q,使得CQ=CP,過點Q作QH⊥AP于點H,交AB于點M. (1)若∠PAC=α,求∠AMQ的大?。ㄓ煤恋氖阶颖硎荆? (2)用等式表示線段MB與PQ之間的數(shù)量關(guān)系,并證明. 【答案】(1)∠AMQ=45

38、°+α;(2)PQ=MB. 【解析】 試題分析:(1)由等腰直角三角形的性質(zhì)得出∠BAC=∠B=45°,∠PAB=45°﹣α,由直角三角形的性質(zhì)即可得出結(jié)論; (2)連接AQ,作ME⊥QB,由AAS證明△APC≌△QME,得出PC=ME,△AEB是等腰直角三角形,由等腰直角三角形的性質(zhì)即可得出結(jié)論. 試題解析:(1)∠AMQ=45°+α;理由如下: ∵∠PAC=α,△ACB是等腰直角三角形,∴∠BAC=∠B=45°,∠PAB=45°﹣α,∵QH⊥AP,∴∠AHM=90°,∴∠AMQ=180°﹣∠AHM﹣∠PAB=45°+α; (2)PQ=MB;理由如下: 連接AQ,作ME⊥QB,

39、如圖所示: ∵AC⊥QP,CQ=CP,∴∠QAC=∠PAC=α,∴∠QAM=45°+α=∠AMQ,∴AP=AQ=QM,在△APC和△QME中,∵∠MQE=∠PAC,∠ACP=∠QEM,AP=QM,∴△APC≌△QME(AAS),∴PC=ME,∴△AEB是等腰直角三角形,∴PQ=MB,∴PQ=MB. 考點:1.全等三角形的判定與性質(zhì);2.等腰直角三角形;3.探究型;4.動點型. 40.(2017四川省阿壩州)如圖,△ABC和△ADE是有公共頂點的等腰直角三角形,∠BAC=∠DAE=90°,點P為射線BD,CE的交點. (1)求證:BD=CE; (2)若AB=2,AD=1,把△ADE

40、繞點A旋轉(zhuǎn),當(dāng)∠EAC=90°時,求PB的長; 【答案】(1)證明見解析;(2)PB的長為或. 【解析】 試題解析:(1)∵△ABC和△ADE是等腰直角三角形,∠BAC=∠DAE=90°,∴AB=AC,AD=AE,∠DAB=∠CAE,∴△ADB≌△AEC,∴BD=CE. (2)解:①當(dāng)點E在AB上時,BE=AB﹣AE=1. ∵∠EAC=90°,∴CE==. 同(1)可證△ADB≌△AEC,∴∠DBA=∠ECA. ∵∠PEB=∠AEC,∴△PEB∽△AEC,∴,∴,∴PB=. ②當(dāng)點E在BA延長線上時,BE=3. ∵∠EAC=90°,∴CE==. 同(1)可證

41、△ADB≌△AEC,∴∠DBA=∠ECA. ∵∠BEP=∠CEA,∴△PEB∽△AEC,∴,∴,∴PB=. 綜上所述,PB的長為或. 考點:1.相似三角形的判定與性質(zhì);2.全等三角形的判定與性質(zhì);3.等腰直角三角形;4.旋轉(zhuǎn)的性質(zhì);5.分類討論. 41.(2017山西?。┚C合與實踐 背景閱讀 早在三千多年前,我國周朝數(shù)學(xué)家商高就提出:將一根直尺折成一個直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三,股四,弦五”.它被記載于我國古代著名數(shù)學(xué)著作《周髀算經(jīng)》中.為了方便,在本題中,我們把三邊的比為3:4:5的三角形稱為(3,4,5)型三角形.例如:三邊長分別為9,12,15或的三

42、角形就是(3,4,5)型三角形.用矩形紙片按下面的操作方法可以折出這種類型的三角形. 實踐操作 如圖1,在矩形紙片ABCD中,AD=8cm,AB=12cm. 第一步:如圖2,將圖1中的矩形紙片ABCD沿過點A的直線折疊,使點D落在AB上的點E處,折痕為AF,再沿EF折疊,然后把紙片展平. 第二步:如圖3,將圖2中的矩形紙片再次折疊,使點D與點F重合,折痕為GH,然后展平,隱去AF. 第三步:如圖4,將圖3中的矩形紙片沿AH折疊,得到△AD′H,再沿AD′折疊,折痕為AM,AM與折痕EF交于點N,然后展平. 問題解決 (1)請在圖2中證明四邊形AEFD是正方形. (2)請在圖4

43、中判斷NF與ND′的數(shù)量關(guān)系,并加以證明. (3)請在圖4中證明△AEN是(3,4,5)型三角形. 探索發(fā)現(xiàn) (4)在不添加字母的情況下,圖4中還有哪些三角形是(3,4,5)型三角形?請找出并直接寫出它們的名稱. 【答案】(1)證明見解析;(2)NF=ND′,證明見解析;(3)證明見解析;(4)△MFN,△MD′H,△MDA. 【解析】 試題分析:(1)根據(jù)題中所給(3,4,5)型三角形的定義證明即可; (2)NF=ND′,證明Rt△HNF≌Rt△HND′即可; (3)根據(jù)題中所給(3,4,5)型三角形的定義證明即可; (4)由△AEN是(3,4,5)型三角形,凡是與△AEN

44、相似的△都是(3,4,5)型三角形. ∵四邊形AEFD是正方形,∴∠EFD=90°. ∵∠AD′H=90°,∴∠HD′N=90°. 在Rt△HNF和Rt△HND′中,∵HN=HN,HF=HD′,∴Rt△HNF≌Rt△HND′,∴NF=ND′. (3)∵四邊形AEFD是正方形,∴AE=EF=AD=8cm,由折疊知:AD′=AD=8cm,EN=EF-NF=(8-x)㎝. 在Rt△AEN中,由勾股定理得: ,即,解得:x=2,∴AN=8+x=10(㎝),EN=6(㎝),∴AN=6:8:10=3:4:5,∴△AEN是(3,4,5)型三角形. (4)∵△AEN是(3,4,5)型三角形

45、,凡是與△AEN相似的△都是(3,4,5)型三角形,故答案為:△MFN,△MD′H,△MDA. 考點:1.勾股定理的應(yīng)用;2.新定義;3.閱讀型;4.探究型;5.翻折變換(折疊問題);6.壓軸題. 42.(2017甘肅省天水市)△ABC和△DEF是兩個全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的頂點E與△ABC的斜邊BC的中點重合,將△DEF繞點E旋轉(zhuǎn),旋轉(zhuǎn)過程中,線段DE與線段AB相交于點P,線段EF與射線CA相交于點Q. (1)如圖①,當(dāng)點Q在線段AC上,且AP=AQ時,求證:△BPE≌△CQE; (2)如圖②,當(dāng)點Q在線段CA的延長線上時,求證:△BPE∽△CEQ

46、;并求當(dāng)BP=2,CQ=9時BC的長. 【答案】(1)證明見解析;(2)證明見解析,. 【解析】 試題解析:(1)證明:∵△ABC是等腰直角三角形,∴∠B=∠C=45°,AB=AC,∵AP=AQ,∴BP=CQ,∵E是BC的中點,∴BE=CE,在△BPE和△CQE中,∵BE=CE,∠B=∠C,BP=CQ,∴△BPE≌△CQE(SAS); (2)解:連接PQ,∵△ABC和△DEF是兩個全等的等腰直角三角形,∴∠B=∠C=∠DEF=45°,∵∠BEQ=∠EQC+∠C,即∠BEP+∠DEF=∠EQC+∠C,∴∠BEP+45°=∠EQC+45°,∴∠BEP=∠EQC,∴△BPE∽△CEQ

47、,∴,∵BP=2,CQ=9,BE=CE,∴BE2=18,∴BE=CE=,∴BC=. 考點:1.相似三角形的判定與性質(zhì);2.全等三角形的判定與性質(zhì);3.等腰直角三角形;4.旋轉(zhuǎn)的性質(zhì). 43.(2017重慶)在△ABC中,∠ABM=45°,AM⊥BM,垂足為M,點C是BM延長線上一點,連接AC. (1)如圖1,若AB=,BC=5,求AC的長; (2)如圖2,點D是線段AM上一點,MD=MC,點E是△ABC外一點,EC=AC,連接ED并延長交BC于點F,且點F是線段BC的中點,求證:∠BDF=∠CEF. 【答案】(1);(2)證明見解析. 【解析】 試題解析:(1)∵∠A

48、BM=45°,AM⊥BM,∴AM=BM=ABcos45°=×=3,則CM=BC﹣BM=5﹣2=2,∴AC= = =; (2)延長EF到點G,使得FG=EF,連接BG. 由DM=MC,∠BMD=∠AMC,BM=AM,∴△BMD≌△AMC(SAS),∴AC=BD,又CE=AC,因此BD=CE,由BF=FC,∠BFG=∠EFC,F(xiàn)G=FE,∴△BFG≌△CFE,故BG=CE,∠G=∠E,所以BD=BG=CE,因此∠BDG=∠G=∠E. 考點:1.全等三角形的判定與性質(zhì);2.勾股定理. 44.(2017黑龍江省哈爾濱市)已知:△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°

49、,連接AE,BD交于點O,AE與DC交于點M,BD與AC交于點N. (1)如圖1,求證:AE=BD; (2)如圖2,若AC=DC,在不添加任何輔助線的情況下,請直接寫出圖2中四對全等的直角三角形. 【答案】(1)證明見解析;(2)△ACB≌△DCE, △EMC≌△BCN, △AON≌△DOM, △AOB≌△DOE. 【解析】 (2)∵AC=DC,∴AC=CD=EC=CB,△ACB≌△DCE(SAS); 由(1)可知:∠AEC=∠BDC,∠EAC=∠DBC,∴∠DOM=90°,∵∠AEC=∠CAE=∠CBD,∴△EMC≌△BCN(ASA),∴CM=CN,∴DM=AN,△AON

50、≌△DOM(AAS),∵DE=AB,AO=DO,∴△AOB≌△DOE(HL). 考點:1.全等三角形的判定與性質(zhì);2.等腰直角三角形. 45.(2017黑龍江省龍東地區(qū))已知:△AOB和△COD均為等腰直角三角形,∠AOB=∠COD=90°.連接AD,BC,點H為BC中點,連接OH. (1)如圖1所示,易證:OH=AD且OH⊥AD(不需證明) (2)將△COD繞點O旋轉(zhuǎn)到圖2,圖3所示位置時,線段OH與AD又有怎樣的關(guān)系,并選擇一個圖形證明你的結(jié)論. 【答案】(1)證明見解析;(2)圖2,圖3的結(jié)論都相同:OH=AD,OH⊥AD. 【解析】 試題解析:(1)證明:如圖1中

51、,∵△OAB與△OCD為等腰直角三角形,∠AOB=∠COD=90°,∴OC=OD,OA=OB,在△AOD與△BOC中,∵OA=OB,∠AOD=∠BOC,OD=OC,∴△AOD≌△BOC(SAS),∴∠ADO=∠BCO,∠OAD=∠OBC,∵點H為線段BC的中點,∴OH=HB,∴∠OBH=∠HOB=∠OAD,又∵∠OAD+∠ADO=90°,∴∠ADO+∠BOH=90°,∴OH⊥AD; (2)解:①結(jié)論:OH=AD,OH⊥AD,如圖2中,延長OH到E,使得HE=OH,連接BE,易證△BEO≌△ODA,∴OE=AD,∴OH=OE=AD.由△BEO≌△ODA,知∠EOB=∠DAO,∴∠DAO+∠AO

52、H=∠EOB+∠AOH=90°,∴OH⊥AD. ②如圖3中,結(jié)論不變.延長OH到E,使得HE=OH,連接BE,延長EO交AD于G. 易證△BEO≌△ODA,∴OE=AD,∴OH=OE=AD. 由△BEO≌△ODA,知∠EOB=∠DAO,∴∠DAO+∠AOF=∠EOB+∠AOG=90°,∴∠AGO=90°,∴OH⊥AD. 考點:1.旋轉(zhuǎn)的性質(zhì);2.全等三角形的判定與性質(zhì);3.等腰直角三角形;4.和差倍分;5.探究型;6.變式探究;7.壓軸題. 46.(2017山東省萊蕪市)已知△ABC與△DEC是兩個大小不同的等腰直角三角形. (1)如圖①所示,連接AE,DB,試判斷線段AE和D

53、B的數(shù)量和位置關(guān)系,并說明理由; (2)如圖②所示,連接DB,將線段DB繞D點順時針旋轉(zhuǎn)90°到DF,連接AF,試判斷線段DE和AF的數(shù)量和位置關(guān)系,并說明理由. 【答案】(1)AE=DB,AE⊥DB;(2)DE=AF,DE⊥AF. 【解析】 試題解析:(1)AE=DB,AE⊥DB.證明如下: ∵△ABC與△DEC是等腰直角三角形,∴AC=BC,EC=DC,在Rt△BCD和Rt△ACE中,∵AC=BC,∠ACE=∠BCD,CE=CD,∴Rt△BCD≌Rt△ACE,∴AE=BD,∠AEC=∠BDC,∵∠BCD=90°,∴∠DHE=90°,∴AE⊥DB; (2)DE=AF,DE

54、⊥AF.證明如下: 設(shè)DE與AF交于N,由題意得,BE=AD,∵∠EBD=∠C+∠BDC=90°+∠BDC,∠ADF=∠BDF+∠BDC=90°+∠BDC,∴∠EBD=∠ADF,在△EBD和△ADF中,∵BE=AD,∠EBD=∠ADF,DE=DF,∴△EBD≌△ADF,∴DE=AF,∠E=∠FAD,∵∠E=45°,∠EDC=45°,∴∠FAD=45°,∴∠AND=90°,即DE⊥AF. 考點:1.旋轉(zhuǎn)的性質(zhì);2.全等三角形的判定與性質(zhì);3.等腰直角三角形;4.探究型;5.變式探究. 【2016年題組】 一、選擇題 1.(2016內(nèi)蒙古赤峰市)等腰三角形有一個角是90°,則

55、另兩個角分別是( ?。? A.30°,60°      B.45°,45°      C.45°,90°      D.20°,70° 【答案】B. 【解析】 考點:等腰三角形的性質(zhì). 2.(2016四川省樂山市)如圖,C、D是以線段AB為直徑的⊙O上兩點,若CA=CD,且∠ACD=40°,則∠CAB=( ?。? A.10°      B.20°      C.30°      D.40° 【答案】B. 【解析】 試題分析:∵∠ACD=40°,CA=CD,∴∠CAD=∠CDA=(180°﹣40°)=70°,∴∠ABC=∠ADC=70°,∵AB是直徑,∴∠ACB=90°,∴

56、∠CAB=90°﹣∠B=20°,故選B. 考點:1.圓周角定理;2.等腰三角形的性質(zhì). 3.(2016四川省甘孜州)如圖,在△ABC中,BD平分∠ABC,ED∥BC,已知AB=3,AD=1,則△AED的周長為( ?。? A.2    B.3    C.4    D.5 【答案】C. 【解析】 考點:1.等腰三角形的判定與性質(zhì);2.平行線的性質(zhì). 4.(2016四川省雅安市)如圖所示,底邊BC為,頂角A為120°的等腰△ABC中,DE垂直平分AB于D,則△ACE的周長為( ?。? A.      B.      C.4      D. 【答案】A. 【解析】 試題分

57、析:過A作AF⊥BC于F,∵AB=AC,∠A=120°,∴∠B=∠C=30°,∴AB=AC=2,∵DE垂直平分AB,∴BE=AE,∴AE+CE=BC=,∴△ACE的周長=AC+AE+CE=AC+BC=,故選A. 考點:1.等腰三角形的性質(zhì);2.線段垂直平分線的性質(zhì). 5.(2016陜西?。┤鐖D,在△ABC中,∠ABC=90°,AB=8,BC=6.若DE是△ABC的中位線,延長DE交△ABC的外角∠ACM的平分線于點F,則線段DF的長為( ?。? A.7    B.8    C.9    D.10 【答案】B. 【解析】 考點:1.三角形中位線定理;2.等腰三角形的判定

58、與性質(zhì);3.勾股定理. 6.(2016貴州省六盤水市)如圖,已知AB=A1B,A1B1=A1A2,A2B2=A2A3,A3B3=A3A4…,若∠A=70°,則∠An的度數(shù)為( ?。? A.      B.      C.      D. 【答案】C. 【解析】 考點:1.等腰三角形的性質(zhì);2.規(guī)律型. 7.(2016湖南省懷化市)等腰三角形的兩邊長分別為4cm和8cm,則它的周長為( ?。? A.16cm      B.17cm      C.20cm      D.16cm或20cm 【答案】C. 【解析】 試題分析:等腰三角形的兩邊長分別為4cm和8cm,當(dāng)腰長是4

59、cm時,則三角形的三邊是4cm,4cm,8cm,4cm+4cm=8cm不滿足三角形的三邊關(guān)系; 當(dāng)腰長是8cm時,三角形的三邊是8cm,8cm,4cm,三角形的周長是20cm. 故選C. 考點:1.等腰三角形的性質(zhì);2.三角形三邊關(guān)系;3.分類討論. 8.(2016四川省內(nèi)江市)已知等邊三角形的邊長為3,點P為等邊三角形內(nèi)任意一點,則點P到三邊的距離之和為( ?。? A.      B.      C.      D.不能確定 【答案】B. 【解析】 試題分析:如圖,∵等邊三角形的邊長為3,∴高線AH=3×=,S△ABC=BC?AH=AB?PD+BC?PE+AC?PF,∴×3A

60、H=×3PD+×3PE+×3PF,∴PD+PE+PF=AH=,即點P到三角形三邊距離之和為.故選B. 考點:1.等邊三角形的性質(zhì);2.定值問題. 9.(2016山東省臨沂市)如圖,將等邊△ABC繞點C順時針旋轉(zhuǎn)120°得到△EDC,連接AD,BD.則下列結(jié)論: ①AC=AD;②BD⊥AC;③四邊形ACED是菱形. 其中正確的個數(shù)是( ?。? A.0    B.1    C.2    D.3 【答案】D. 【解析】 考點:1.旋轉(zhuǎn)的性質(zhì);2.等邊三角形的性質(zhì);3.菱形的判定. 10.(2016廣西梧州市)三張背面完全相同的數(shù)字牌,它們的正面分別印有數(shù)字“1”、“2”、

61、“3”,將它們背面朝上,洗勻后隨機抽取一張,記錄牌上的數(shù)字并把牌放回,再重復(fù)這樣的步驟兩次,得到三個數(shù)字a、b、c,則以a、b、c為邊長正好構(gòu)成等邊三角形的概率是( ?。? A.      B.      C.      D. 【答案】A. 【解析】 考點:1.列表法與樹狀圖法;2.等邊三角形的判定. 11.(2016廣西百色市)如圖,正△ABC的邊長為2,過點B的直線l⊥AB,且△ABC與△A′BC′關(guān)于直線l對稱,D為線段BC′上一動點,則AD+CD的最小值是( ?。? A.4      B.      C.      D. 【答案】A. 【解析】 試題分析:作點A關(guān)

62、于直線BC′的對稱點A1,連接A1C交直線BC與點D,如圖所示. 由圖象可知當(dāng)點D在C′B的延長線上時,AD+CD最小,而點D為線段BC′上一動點,∴當(dāng)點D與點B重合時AD+CD值最小,此時AD+CD=AB+CB=2+2=4.故選A. 考點:1.軸對稱-最短路線問題;2.等邊三角形的性質(zhì);3.最值問題. 12.(2016四川省南充市)如圖,在Rt△ABC中,∠A=30°,BC=1,點D,E分別是直角邊BC,AC的中點,則DE的長為( ?。? A.1    B.2    C.    D.1+ 【答案】A. 【解析】 考點:1.三角形中位線定理;2.含30度角的直角三角形.

63、 13.(2016四川省達(dá)州市)如圖,在5×5的正方形網(wǎng)格中,從在格點上的點A,B,C,D中任取三點,所構(gòu)成的三角形恰好是直角三角形的概率為( ?。? A.      B.      C.      D. 【答案】D. 【解析】 考點:勾股定理的應(yīng)用. 14.(2016四川省達(dá)州市)如圖,在△ABC中,BF平分∠ABC,AF⊥BF于點F,D為AB的中點,連接DF延長交AC于點E.若AB=10,BC=16,則線段EF的長為( ?。? A.2      B.3      C.4      D.5 【答案】B. 【解析】 試題分析:∵AF⊥BF,∴∠AFB=90°,∵AB

64、=10,D為AB中點,∴DF=AB=AD=BD=5,∴∠ABF=∠BFD,又∵BF平分∠ABC,∴∠ABF=∠CBF,∴∠CBF=∠DFB,∴DE∥BC,∴△ADE∽△ABC,∴,即,解得:DE=8,∴EF=DE﹣DF=3,故選B. 考點:1.相似三角形的判定與性質(zhì);2.平行線的判定;3.直角三角形斜邊上的中線. 15.(2016山東省東營市)在△ABC中,AB=10,AC=,BC邊上的高AD=6,則另一邊BC等于( ?。? A.10      B.8      C.6或10      D.8或10 【答案】C. 【解析】 試題分析:根據(jù)題意畫出圖形,如圖所示,如圖1所示,AB=10

65、,AC=,AD=6,在Rt△ABD和Rt△ACD中,根據(jù)勾股定理得:BD==8,CD==2,此時BC=BD+CD=8+2=10; 如圖2所示,AB=10,AC=,AD=6,在Rt△ABD和Rt△ACD中,根據(jù)勾股定理得:BD==8,CD==2,此時BC=BD﹣CD=8﹣2=6,則BC的長為6或10.故選C. 考點:1.勾股定理;2.分類討論. 二、填空題 16.(2016內(nèi)蒙古赤峰市)如圖,正方形ABCD的面積為3cm2,E為BC邊上一點,∠BAE=30°,F(xiàn)為AE的中點,過點F作直線分別與AB,DC相交于點M,N.若MN=AE,則AM的長等于 cm.

66、【答案】或. 【解析】 考點:1.正方形的性質(zhì);2.全等三角形的判定與性質(zhì);3.勾股定理;4.分類討論. 17.(2016天津市)如圖,在每個小正方形的邊長為1的網(wǎng)格中,A,E為格點,B,F(xiàn)為小正方形邊的中點,C為AE,BF的延長線的交點. (1)AE的長等于________; (2)若點P在線段AC上,點Q在線段BC上,且滿足AP = PQ = QB,請在如圖所示的網(wǎng)格中,用無刻度的直尺,畫出線段PQ,并簡要說明點P,Q的位置是如何找到的(不要求證明)________. 【答案】(1);(2)答案見解析. 【解析】 試題分析:(1)AE==; 考點:1.勾股定理;2.作圖題. 18.(2016四川省甘孜州)直角三角形斜邊長是5,一直角邊的長是3,則此直角三角形的面積為 . 【答案】6. 【解析】 考點:勾股定理. 19.(2016山東省煙臺市)如圖,O為數(shù)軸原點,A,B兩點分別對應(yīng)﹣3,3,作腰長為4的等腰△ABC,連接OC,以O(shè)為圓心,CO長為半徑畫弧交數(shù)軸于點M,則點M對應(yīng)的實數(shù)為 . 【答案】. 【解析

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!