32-5t雙梁橋式起重機(jī)設(shè)計(jì)
資源目錄里展示的全都有,所見即所得。下載后全都有,請(qǐng)放心下載。原稿可自行編輯修改=【QQ:401339828 或11970985 有疑問(wèn)可加】
畢業(yè)論文(設(shè)計(jì))任務(wù)書
題目名稱 32/5t雙梁橋式起重機(jī)設(shè)計(jì)
學(xué)生姓名
所學(xué)專業(yè)
班級(jí)
指導(dǎo)教師姓名
所學(xué)專業(yè)
職稱
完成期限
一、論文(設(shè)計(jì))主要內(nèi)容及主要技術(shù)指標(biāo)
設(shè)計(jì)參數(shù):
主起升 32t 高度 12米 速度 7.5m/min 卷筒直徑 650mm工作級(jí)別 M5起升倍率 4;副起升5t高度14米 卷筒直徑 400mm速度 19.5m/min 工作級(jí)別 M5起升倍率 2。車輪直徑:大車800mm 小車400mm。
主要技術(shù)指標(biāo)
(2)合理選擇部件。
(3)對(duì)關(guān)鍵部件的結(jié)構(gòu)設(shè)計(jì)。
(3)最后進(jìn)行載荷的校驗(yàn)及分析。
二、畢業(yè)論文(設(shè)計(jì))的基本要求
1. 開題報(bào)告一份。
2. 中期檢查表一份。
3. 畢業(yè)設(shè)計(jì)(論文)一份:有400字左右的中英文摘要,正文后有10篇以上的參考文獻(xiàn),主要是期刊、雜志,少量是教材。正文中要引用5篇以上文獻(xiàn),并注明出處。論文總字?jǐn)?shù)在6000字以上。
4. 有1500字左右漢字的與本課題有關(guān)的外文翻譯資料。
5. 畢業(yè)設(shè)計(jì)總字?jǐn)?shù)在5000字以上。
6. 確定各個(gè)零件進(jìn)行結(jié)構(gòu)參數(shù)設(shè)計(jì)校核。
三、2012年畢業(yè)論文(設(shè)計(jì))進(jìn)度安排
12.3.14~12.3.24 開題,開題報(bào)告
12.3.25~12.4. 1 課題構(gòu)思,查找資料
12.4. 2~12.5.14 論文準(zhǔn)備,修正
12.5.15~12.6 答辯準(zhǔn)備及答辯
評(píng)閱設(shè)計(jì)報(bào)告,畢業(yè)設(shè)計(jì)答辯資格審查。畢業(yè)設(shè)計(jì)答辯,學(xué)生修改整理設(shè)計(jì)報(bào)告
Mechanical engineering
1.The porfile of mechanical engineering
Engingeering is a branch of mechanical engineerig,it studies mechanical and power generation especially power and movement.
2.The history of mechanical engineering
18th century later periods,the steam engine invention has provided a main power fountainhead for the industrial revolution,enormously impelled each kind of mechznical biting.Thus,an important branch of a new Engineering – separated from the civil engineering tools and machines on the branch-developed together with Birmingham and the establishment of the Associantion of Mechanical Engineers in 1847 had been officially recognized.The mechanical engineering already mainly used in by trial and error method mechanic application technological development into professional engineer the scientific method of which in the research,the design and the realm of production used .From the most broad perspective,the demend continuously to enhance the efficiencey of mechanical engineers improve the quality of
work,and asked him to accept the history of the high degree of education and training.Machine operation to stress not only economic but also infrastructure costs to an absolute minimun.
3.The field of mechanical engineering
The commodity machinery development in the develop country,in the high level material life very great degree is decided each kind of which can realize in the mechanical engineering.Mechanical engineers unceasingly will invent the machine next life to produce the commodity,unceasingly will develop the accuracy and the complexity more and more high machine tools produces the machine.The main clues of the mechanical development is:In order to enhance the excellent in quality and reasonable in price produce to increase the precision as well as to reduce the production cost.This three requirements promoted the complex control system development.The most successful machine manufacture is its machine and the control system close fusion,whether such control system is essentially mechanical or electronic.The modernized car engin production transmission line(conveyer belt)is a series of complex productions craft mechanization
very good example.The people are in the process of development in order to enable further automation of the production machinery ,the use of a computer to store and handle large volumes of data,the data is a multifunctional machine tools necessary for the production of spare parts.One of the objectives is to fully automated production workshop,three rotation,but only one officer per day to operate.The development of production for mechanical machinery must have adequate power supply.Steam engine first provided the heat to generate power using practical methods in the old human,wind and hydropower,an increase of engin .New mechanical engineering industry is one of the challenges faced by the initial increase thermal effciency and power,which is as big steam turbine and the development of joint steam boilers basically achieved.20th century,turbine generators to provide impetus has been sustained and rapid growth,while thermal efficiency is steady growth,and large power plants per kW capital consumption is also declining.Finally,mechanical engineers have nuclear energy.This requires the application of nuclear energy particularly high reliability and security,
which requires solving many new problems.Large power plants and the nuclear power plant control systems have become highly complex electroonics,fluid,electricity,water and mechanical parts networks All in all areas related to the mechanical engineers.Small internal combustion engine,both to the type (petrol and diesel machines)or rotary-type(gas turbines and Mong Kerr machine),as well as their broad application in the field of transport should also due to mechanical enginerrs.Throughout the transport,both in the air and space,or in the terrestrial and marine,mechanial engineers created a variety of equipment and power devices to their increasing cooperation with electrical engineers,especially in the development of appropration control systems.Mechanical engineers in the development of military weapons technology and civil war ,needs a similar,though its purpose is to enhance rather than destroy their productivity.However.War needs a lot of resources to make the area of techonlogy,many have a far-reaching development in peacetime efficiency.Jet aircraft and nuclear reactors are well known examples.
The Biological engineering,mechanical engineering biotechnology is a relatively new and different areas,it provides for the replacement of the machine or increase the body functions as well as for medical equipment.Artficial limbs have been developed and have such a strong movement and touch response function of the human body.In the development of artificial organ transplant is rapid,complex cardiac machines and similar equipment to enable increasingly complex surgery,and injuries and ill patients life functions can be sustained.Some enviromental control mechanical engineers through the initial efforts to drainage or irrigation pumping to the land and to mine and ventilation to control the human environment.Modern refrigeration and air-conditioning plant commonaly used reverse heat engine,where the heat from the engine from cold places to more external heat.Many mechanical engineering products,as well as other leading technology development city have side effects on the environment,producing noise,water and air pollution caused,destroyed land and landscape.Improve productivity and diver too fast in the commodity,that the renewable natural
forces keep pace.For mechanical engineers and others,environmental control is rapidly developing area,which includes a possible development and production of small quantities of pollutants machine sequnce,and the development of new equipment and teachnology has been to reduce and eliminate pollution.
4.The role of mechanical engineering
There are four generic mechanical engineers in common to the above all domains function.The 1st function is the understanding and the research mechanical science foundation.It includes the power and movement of the relationship dynamics For example,in the vibration and movement of the relationship;Automatic control;Study of the various forms of heart,energy,power relations between the thermodynamic;Fluidflows; Heat transfer; Lubricant; And material properties.The 2nd function will be conducts the research,the desing and the development,this function in turn attempts to carry on the essential change to satisfy current and the future needs.This not only calls for a clear understanding of mechanical science,and have to break
down into basic elements of a complex system capacity.But also the need for synthetic and innovative inventions.The 3rd function is produces the product and the power,include plan,operation and maintenance.Its goal lies in the maintenance either enhances the enterprise or the organization longer-tern and survivabilaty prestige at the same time,produces the greatest value by the least investments and the consumption.The 4th function is mechanical engineer’s coordinated function,including the management,the consultation,as well as carries on the market marking in certain situation.
In all these function,one kind unceasingly to use the science for a long time the method,but is not traditional or the intuition method tendency,this is a mechanical engineering skill aspect which unceasingly grows.These new rationalization means typical names include:The operations research,the engineering economics,the logical law problem analysis(is called PABLA) However,creativity is not rationalization.As in other areas,in mechanical engineering,
to take unexpected and important way to bring about a new capacity,still has a personal,marked characteristice.
5.The design of mechanical engineering
The design of mechanical is the design has the mechanical property the thing or the system,such as:the instrument and the measuring appliance in very many situations,the machine design must use the knowledge of discipline the and so on mathematics,materials science and mechanics.
Mechanical engineering desgin includeing all mechanical desgin,but it was a study,because it also includes all the branches of mechsnical engineering,such as thermodynamics all hydrodynamics in the basic disciplines needed,in the mechanical engineering design of the initial stude or mechanical design.Design stages.The entire desgin process from start to finish,in the process,a demand that is designed for it and decided to do the start.After a lot of repetition,the final meet this demand by the end of the design procees and the plan.Design considerations.Sometimes in a system is to decide which parts needs intensity parts of geometric shapes
and size an important factor in this context that we must consider that the intensity is an important factor in the design.When we use expression design considerations,we design parts that may affect the entire system design features.In the circumstances specified in the design,usually for a series of such functions must be taken into account.Howeever,to correct purposes,we should recognize that,in many cases the design of important design considerations are not calculated or test can determine the components or systems.Especially students,wheen in need to make important decisions in the design and conduct of any operation that can not be the case,they are often confused.These are not special,they occur every day,imagine,for example,a medical laboratory in the mechanical design,from marketing perspective,people have high expectations from the strength and relevance of impression.Thick,and heavy parts installed together:to produce a solid impression machines.And sometimes machinery and spare parts from the design style is the point and not the other point of view.Our purpose is to make those you do not be misled to believe that every design decision will need
reasonable mathematical methods.
Manufacturing refers to the raw meterials into finished products in the enterprise.Create three distinct phases.They are:input,processing exprot.The first phase includes the production of all products in line with market needs essential.First there must be the demand for the product,the necessary materials,while also needs such as energy,time,human knowledge and technology resourcess .
Finall,the need for funds to obtain all the other resources. Lose one stage after the second phase of the resources of the processes to be distributed.Processing of raw materials into finished products of these processes.To complete the design,based on the design,and then develop plans.Plan implemented through various production processes.Management of resources and processes to ensure efficiency and productivity.For example,we must carefully manage resources to ensure proper use of funds.Finally,people are talking about the product market was cast.Stage is the final stage of exporting finished or stage.Once finished just purchased,it must be delivered to the users.According to product performance,installation and may have to conduct further debugging in addition,some products,especially those very complex products User training is necessary.
6.The processes of materials and maunfacturing
Here said engineering materials into two main categories:metals and non-ferrous,high-performance alloys and power metals.Non-metallic futher divided into plastice,synthetic rubber,composite materials and ceramics.It said the production proccess is divided into several major process,includingshape,forging,casting/ founding,heat treatment,fixed/connections ,measurement/ quality control and materal cutting.These processes can be further divide into each other’s craft.Various stages of the development of the manufacturing industry Over the years,the manufacturing process has four distinct stages of development, despite the overlap.These stages are:The first phase is artisanal,the second Phase is mechanization.The third phase is automation the forth Phase is integrated.
When mankind initial processing of raw materials into finished products will be,they use manual processes.Each with their hands and what are the tools manuslly produced.This is totally integrated production take shape.A person needs indentification,collection materials,the design of a product to meet that demand,the production of such products and use it.From beginning to end,everything is focused on doing the work of the human mind.later in the industrial revolution introduced mechanized production process,people began to use machines to complete the work accomplished previously manual. This led to the specialization.Specialization in turn reduce the manufacture of integrated factors.In this stage of development,manufacturing workers can see their production as a whole represent a specific piece of the part of the production process.One can not say that their work is how to cope with the entire production process,or how they were loaded onto a production of parts finished.Development of manufacting processes is the next phase of the selection process automation.This is a computer-controlled machinery and processes.At this stage,automation island began to emerge in the workshop lane.Each island represents a clear production process or a group of processes.Although these automated isolated island within the island did raise the productivity of indivdual processes,but the overall productivity are often not change.This is because the island is not caught in other automated production process middle,but not synchronous with them .The ultimate result is the efficient working fast parked through automated processes,but is part of the stagnation in wages down,causing bottlenecks.To better understand this problem,you can imagine the traffic in the peak driving a red light from the red Service Department to the next scene. Occasionally you will find a lot less cars,more than being slow-moving vehicles,but the results can be found by the next red light Brance.In short you real effect was to accelerate the speed of a red Department obstruction offset.If you and other drivers can change your speed and red light simultaneously.Will advance faster.Then,all cars will be consistent,sommth operation,the final everyone forward faster.In the workshop where the demand for stable synchronization of streamlined production,and promoted integration of manufacturing development.This is a still evolving technology.Fully integrated in the circumstances,is a computer-controllrd machinery and processing.integrated is completed through computer.For example in the preceding paragraph simulation problems,the computer will allow all road vehicles compatible with the change in red.So that everyone can steady traffic.
Scientific analysis of movement,timing and mechanics of the disciplines is that it is composed of two pater:statics and dynamics.Statics analyzed static system that is in the system,the time is not taken into account,research and analysis over time and dynamics of the system change.Dynameics from the two componets.
Euler in 1775 will be the first time two different branches: Rigid body movement studies can conveniently divided into two parts:geometric and mechanics.The first part is without taking into account the reasons for the downward movement study rigid body from a designated location to another point of the movement,and must use the formula to reflect the actual,the formula would determine the rigid body every point position. Therefore,this study only on the geometry and,more specifically,on the entities from excision.Obviously,the first part of the school and was part of a mechanical separation from the principles of dynamics to study movement,which is more than the two parts together into a lot easier.Dynamics of the two parts are subsequently divided into two separate disciplines,kinematic and dynamics,a study of movement and the movement strength.Therefore,the primary issue is the design of mechanical systems understand its kinematic.Kinematic studies movement,rather than a study of its impact.In a more precise kinematic studies position,displacement,rotation, speed,velocity and acceleration of disciplines,for esample,or planets orbiting research campaing is a paradigm.
In the above quotation content should be pay attention that the content of the Euler dynamics into kinematic and rigid body dynamics is based on the assumption that they are based on research.In this very important basis to allow for the treatment of two separate disciplines.For soft body,soft body shape and even their own soft objects in the campaign depends on the role of power in their possession.In such cases,should also study the power and movement,and therefore to a large extent the analysis of the increased complexity.Fortunately, despite the real machine parts may be involved are more or less the design of machines,usually with heavy material designed to bend down to the lowest parts.Therefore,when the kinematic analysis of the performance of machines,it is often assumed that bend is negligible,spare parts are hard,but when the load is known,in the end analysis engine,re-engineering parts to confirm this assnmption.
機(jī)械工程
1.機(jī)械工程簡(jiǎn)介
機(jī)械工程是工程學(xué)的一個(gè)分支,它研究機(jī)械和動(dòng)力的產(chǎn),尤其是力和動(dòng)力。
2.機(jī)械工程的歷史
18世紀(jì)后期,蒸汽機(jī)的發(fā)明為工業(yè)革命提供了一個(gè)主要的能量, 它極大地推動(dòng)了各種機(jī)械的發(fā)展。這樣, 一個(gè)新的工程學(xué)的重要分支—從民用工程學(xué)中分離出來(lái)的關(guān)于工具和機(jī)器的分支就發(fā)展了起來(lái),并隨著在1847年英國(guó)伯明翰機(jī)械工程師協(xié)會(huì)的建立得到了正式承認(rèn)。 機(jī)械工程已經(jīng)由一門主要用于技工應(yīng)用的技術(shù)發(fā)展成為專業(yè)工程師在研究、 設(shè)計(jì)和生產(chǎn)領(lǐng)域中使用的科學(xué)方法。 從最廣義的角度講,增進(jìn)效率的需求不斷地促使機(jī)械工程師提高工作質(zhì)量, 并要求他接受中高程度的教育和訓(xùn)練。 不僅機(jī)器運(yùn)轉(zhuǎn)要講求經(jīng)濟(jì), 而且基建費(fèi)也要降到最低。
3.機(jī)械工程的領(lǐng)域
商品機(jī)械的發(fā)展在發(fā)達(dá)國(guó)家中, 高水平的物質(zhì)生活很大程度上取決于機(jī)械工程中得以實(shí)現(xiàn)的各種機(jī)械。 機(jī)械工程師們不斷地發(fā)明機(jī)器來(lái)生產(chǎn)商品, 不斷的開發(fā)精確性和復(fù)雜性越來(lái)越高的機(jī)械工具來(lái)生產(chǎn)機(jī)器。機(jī)械發(fā)展的主要線索是: 為提高生產(chǎn)率而增加機(jī)器的運(yùn)轉(zhuǎn)速度、 為獲得物美價(jià)廉的產(chǎn)品而提高精度以及降低生產(chǎn)成本。 這3個(gè)要求促進(jìn)了復(fù)雜的控制系統(tǒng)的發(fā)展。 最成功的機(jī)械制造是其機(jī)器的機(jī)械設(shè)計(jì)能與控制系統(tǒng)緊密融合, 不論這種控制系統(tǒng)從本質(zhì) 上是機(jī)械的還是電子的。 現(xiàn)代化的汽車發(fā)動(dòng)機(jī)生產(chǎn)傳送線(傳動(dòng)帶) 就是一系列復(fù)雜的生產(chǎn)工藝機(jī)械化的很好例子。 人們正在著手開發(fā)以使機(jī)械生產(chǎn)進(jìn)一步自動(dòng)化, 利用計(jì)算機(jī)來(lái)存儲(chǔ)和處理大量數(shù)據(jù), 這些數(shù)據(jù)是少量多功能機(jī)床生產(chǎn)多種零件所必須的。 其中一個(gè)目標(biāo)就是使批量生產(chǎn)車間完全自動(dòng)化,三班輪換, 但每天只需一班人員來(lái)操作。 動(dòng)力機(jī)械的發(fā)展生產(chǎn)機(jī)械必須先有充足的動(dòng)力供應(yīng)。 蒸汽機(jī)最先提供了用熱能來(lái)產(chǎn)生動(dòng)力的實(shí)際可行的方法, 在舊有的人力、風(fēng)力和水力之外增加了動(dòng)力源。 新的機(jī)械工程業(yè)面臨的最初挑戰(zhàn)之一就是增加熱效率和動(dòng)力, 這一點(diǎn)隨著蒸汽渦輪機(jī)和大的聯(lián)合蒸汽鍋爐的發(fā)展而基本實(shí)現(xiàn)了。20世紀(jì), 渦輪機(jī)為發(fā)電機(jī)提供的動(dòng)力得到了持續(xù)快速的增長(zhǎng),同時(shí)熱效率也在穩(wěn)定增長(zhǎng), 而且大電站每千瓦的資本消耗也在下降。最后, 機(jī)械工程師們獲得了核能源。 這種核能源的應(yīng)用需要有特別高的可靠性和安全性, 這就需要解決許多全新的問(wèn)題。 大型電廠和整個(gè)核電站的控制系統(tǒng)已變成高度復(fù)雜的電子、流體、電、 水力和機(jī)械零件的網(wǎng)絡(luò)這一切都涉及到機(jī)械工程師的所有學(xué)術(shù)領(lǐng)域。 小型的內(nèi)燃機(jī), 不論是往復(fù)式(汽油機(jī)和柴油機(jī))還是旋轉(zhuǎn)式(燃?xì)廨啓C(jī)和旺克爾機(jī)) , 以及它們?cè)谶\(yùn)輸領(lǐng)域的廣泛應(yīng)用也都要?dú)w功于機(jī)械工程師們。 在整個(gè)運(yùn)輸業(yè),不論是在空中和太空, 還是在陸地和海洋,機(jī)械工程師創(chuàng)造了各種設(shè)備和動(dòng)力裝置,他們?cè)絹?lái)越多的與電氣工程師合作,尤其是在開發(fā)適合的控制系統(tǒng)方面。 軍用武器的開發(fā)機(jī)械工程師應(yīng)用于戰(zhàn)爭(zhēng)的技術(shù)與民用中需要的類似, 盡管其目的是增強(qiáng)毀壞力而不是提高生產(chǎn)率。然而,戰(zhàn)爭(zhēng)的需要使得大量的資源用于技術(shù)領(lǐng)域, 很多發(fā)展在和平時(shí)期有著深遠(yuǎn)的效益。噴氣式飛機(jī)和核反應(yīng)堆就是眾所周知的例子。
生物工程是機(jī)械工程中的一個(gè)相對(duì)新的領(lǐng)域,它用來(lái)替換或增加人體功能的機(jī)器和進(jìn)行醫(yī)療的設(shè)備。 人造肢體已被開發(fā)出來(lái), 并且具有諸如有力的運(yùn)動(dòng)和觸摸反應(yīng)等人體功能。 在人工器官移植手術(shù)方面的發(fā)展史迅速的, 復(fù)雜的心肺機(jī)器和類似的設(shè)備使越來(lái)越復(fù)雜的手術(shù)得以進(jìn)行, 并使受重傷和重病病人的生命功能得以持續(xù)。 環(huán)境控制機(jī)械工程師的一些最初的努力是要通過(guò)抽水來(lái)排澇或灌溉土地以及給礦井通風(fēng)來(lái)控制人類的環(huán)境。 現(xiàn)代的制冷和空調(diào)廠普遍采用反向的熱引擎, 在這些地方動(dòng)力吧熱從冷的地方抽出送到更熱的外部。 很多機(jī)械工程的產(chǎn)品以及其他領(lǐng)域的技術(shù)發(fā)展對(duì)環(huán)境有副作用, 產(chǎn)生了噪音, 引起了水和空氣的污染,破壞了土地和風(fēng)景。 商品和動(dòng)力的生產(chǎn)率提高太快, 以至于自然力的再生跟不上步伐。 對(duì)于機(jī)械工程師和他人來(lái)說(shuō), 環(huán)境控制是一個(gè)快速發(fā)展的領(lǐng)域,它包括開發(fā)盡可能產(chǎn)生少量污染物的機(jī)器和生產(chǎn)上序, 以及開發(fā)新的設(shè)備和技術(shù)來(lái)減少和消除已造成的污染。
4.機(jī)械工程的作用
機(jī)械工程師有四個(gè)上述所有領(lǐng)域的作用。第1個(gè)作用是理解和研究機(jī)械科學(xué)的基礎(chǔ)。它包括涉及力和運(yùn)動(dòng)的關(guān)系的動(dòng)力學(xué)。 比如在在震動(dòng)中的力和運(yùn)動(dòng)的關(guān)系;自動(dòng)控制;研究各種形式的熱、能量、動(dòng)力之間關(guān)系的熱力學(xué);流體流動(dòng);熱傳遞; 潤(rùn)滑; 和材料特性。 第2個(gè)作用是依次地進(jìn)行研究、設(shè)計(jì)和開發(fā)、 該作用試圖進(jìn)行必要的改變以滿足當(dāng)前和將來(lái)的需要。 這一工作不僅要求對(duì)機(jī)械科學(xué)有
一個(gè)清楚的了解,并且有把復(fù)雜系統(tǒng)分解成基本因素的能力。 而且還需要有創(chuàng)新性來(lái)進(jìn)行人工合成和發(fā)明。 第3個(gè)作用是生產(chǎn)產(chǎn)品和動(dòng)力, 包括計(jì)劃、運(yùn)作和維護(hù)。 其目的在于維護(hù)或提高企業(yè)或機(jī)構(gòu)的較長(zhǎng)期的和生存能力聲譽(yù)的同時(shí), 以最少的投資和消耗生產(chǎn)出最大的價(jià)值。 第4個(gè)作用是機(jī)械工程師的協(xié)調(diào)作用,包括管理、咨詢、以及在某些情況下進(jìn)行市場(chǎng)營(yíng)銷。
在所有這些作用中, 體現(xiàn)出一種長(zhǎng)期不斷地使用科學(xué)的方法, 而不是傳統(tǒng)的或直覺(jué)的方法, 這是不斷成長(zhǎng)的機(jī)械工程專門技術(shù)的一個(gè)方面。 這些新的合理化方法的典型名稱有:運(yùn)籌學(xué)、工程經(jīng)濟(jì)學(xué)、邏輯法問(wèn)題分析(簡(jiǎn)稱PABLA)。然而,創(chuàng)造性是無(wú)法合理化的。正如在其他領(lǐng)域一樣, 在機(jī)械工程中,能夠采取重要的出人意料的并能開創(chuàng)出新方法的能力,仍然具有個(gè)人的、即興的特點(diǎn)。
5.機(jī)械工程設(shè)計(jì)
機(jī)械設(shè)計(jì)是設(shè)計(jì)具有機(jī)械性質(zhì)的事物或系統(tǒng), 如:各種機(jī)器、產(chǎn)品、結(jié)構(gòu)、器械和儀表在很多情況下, 機(jī)械設(shè)計(jì)要用到數(shù)學(xué)、材料科學(xué)和工程力學(xué)等學(xué)科的知識(shí)。
機(jī)械工程設(shè)計(jì)包括所有的機(jī)械設(shè)計(jì), 但它研究得更廣,因?yàn)樗舶ㄋ袡C(jī)械工程的分支科學(xué), 如熱力學(xué)和流體力學(xué)除了所需的基本學(xué)科外, 在機(jī)械工程設(shè)計(jì)中最初學(xué)習(xí)的還是機(jī)械設(shè)計(jì)。 設(shè)計(jì)的各個(gè)階段設(shè)計(jì)的整個(gè)過(guò)程從開始到結(jié)束,在這一過(guò)程中, 設(shè)計(jì)是以認(rèn)定一個(gè)需求并決定去為它做些什么而開始的。經(jīng)過(guò)很多重復(fù)之后,最后提出滿足這一要求的計(jì)劃而結(jié)束這一設(shè)計(jì)過(guò)程。 設(shè)計(jì)中考慮的因素。 有時(shí)在某個(gè)系統(tǒng)中零件所需的強(qiáng)度是決定這零件的幾何形狀和尺寸大小的重要因素在這種情況下, 我們說(shuō)強(qiáng)度就是設(shè)計(jì)中要考慮的重要因素。 當(dāng)我們使用設(shè)計(jì)考慮因素這一表達(dá)方式時(shí), 我們是指影響零件設(shè)計(jì)或許整個(gè)系統(tǒng)設(shè)計(jì)的一些性能。
收藏