九九热最新网址,777奇米四色米奇影院在线播放,国产精品18久久久久久久久久,中文有码视频,亚洲一区在线免费观看,国产91精品在线,婷婷丁香六月天

高等數(shù)學:第7章 第六節(jié)、高階線性微分方程-講課版

上傳人:努力****83 文檔編號:89004698 上傳時間:2022-05-12 格式:PPT 頁數(shù):16 大小:944.50KB
收藏 版權(quán)申訴 舉報 下載
高等數(shù)學:第7章 第六節(jié)、高階線性微分方程-講課版_第1頁
第1頁 / 共16頁
高等數(shù)學:第7章 第六節(jié)、高階線性微分方程-講課版_第2頁
第2頁 / 共16頁
高等數(shù)學:第7章 第六節(jié)、高階線性微分方程-講課版_第3頁
第3頁 / 共16頁

下載文檔到電腦,查找使用更方便

20 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《高等數(shù)學:第7章 第六節(jié)、高階線性微分方程-講課版》由會員分享,可在線閱讀,更多相關(guān)《高等數(shù)學:第7章 第六節(jié)、高階線性微分方程-講課版(16頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、目錄 上頁 下頁 返回 結(jié)束 高階線性微分方程 第六節(jié)二、線性齊次方程解的結(jié)構(gòu)二、線性齊次方程解的結(jié)構(gòu) 三、線性非齊次方程解的結(jié)構(gòu)三、線性非齊次方程解的結(jié)構(gòu) *四、常數(shù)變易法(不講)四、常數(shù)變易法(不講) 一、二階線性微分方程舉例一、二階線性微分方程舉例 第七章 目錄 上頁 下頁 返回 結(jié)束 一、二階線性微分方程舉例一、二階線性微分方程舉例 當重力與彈性力抵消時, 物體處于 平衡狀態(tài), 例例1. 質(zhì)量為m的物體自由懸掛在一端固定的彈簧上,力作用下作往復運動,xxO解解:阻力的大小與運動速度下拉物體使它離開平衡位置后放開,若用手向物體在彈性力與阻取平衡時物體的位置為坐標原點,建立坐標系如圖. 設(shè)

2、時刻 t 物位移為 x(t).(1) 自由振動情況.彈性恢復力物體所受的力有:(虎克定律)xcf成正比, 方向相反.建立位移滿足的微分方程.目錄 上頁 下頁 返回 結(jié)束 據(jù)牛頓第二定律得txxctxmdddd22,2mck,2mn令則得有阻尼自由振動方程:0dd2dd222xktxntx阻力txRdd(2) 強迫振動情況. 若物體在運動過程中還受鉛直外力作用,t pHFsin,令mHh 則得強迫振動方程:t phxktxntxsindd2dd222目錄 上頁 下頁 返回 結(jié)束 n 階線性微分方程階線性微分方程的一般形式為方程的共性 (二階線性微分方程)例例1例例2)()()(xfyxqyxpy

3、 可歸結(jié)為同一形式:)()()()(1) 1(1)(xfyxayxayxaynnnn時, 稱為非齊次方程 ; 0)(xf時, 稱為齊次方程.復習復習: 一階線性方程)()(xQyxPy通解:xxQxxPxxPde)(ed)(d)(xxPCyd)(e非齊次方程特解齊次方程通解Yy0)(xf目錄 上頁 下頁 返回 結(jié)束 )(11yCxP )(11yCxQ0證畢二、線性齊次方程解的結(jié)構(gòu)二、線性齊次方程解的結(jié)構(gòu))(),(21xyxy若函數(shù)是二階線性齊次方程0)()( yxQyxPy的兩個解,也是該方程的解.證證:)()(2211xyCxyCy將代入方程左邊, 得 11 yC22yC 22yC22yC)

4、()(1111yxQyxPyC )()(2222yxQyxPyC (疊加原理) )()(2211xyCxyCy則),(21為任意常數(shù)CC定理定理1.目錄 上頁 下頁 返回 結(jié)束 說明說明:不一定是所給二階方程的通解.例如,)(1xy是某二階齊次方程的解,)(2)(12xyxy也是齊次方程的解 )()2()()(1212211xyCCxyCxyC并不是通解但是)()(2211xyCxyCy則為解決通解的判別問題, 下面引入函數(shù)的線性相關(guān)與 線性無關(guān)概念. 目錄 上頁 下頁 返回 結(jié)束 定義定義:)(,),(),(21xyxyxyn設(shè)是定義在區(qū)間 I 上的 n 個函數(shù),21nkkk使得Ixxykx

5、ykxyknn, 0)()()(2211則稱這 n個函數(shù)在 I 上線性相關(guān)線性相關(guān), 否則稱為線性無關(guān)線性無關(guān).例如, ,sin,cos,122xx在( , )上都有0sincos122xx故它們在任何區(qū)間 I 上都線性相關(guān);又如,,12xx若在某區(qū)間 I 上,02321xkxkk則根據(jù)二次多項式至多只有兩個零點 ,321,kkk必需全為 0 ,可見2,1xx故在任何區(qū)間 I 上都 線性無關(guān).若存在不全為不全為 0 的常數(shù)目錄 上頁 下頁 返回 結(jié)束 兩個函數(shù)在區(qū)間 I 上線性相關(guān)與線性無關(guān)的充要條件充要條件:)(),(21xyxy線性相關(guān)存在不全為 0 的21, kk使0)()(2211xy

6、kxyk1221)()(kkxyxy( 無妨設(shè))01k)(),(21xyxy線性無關(guān))()(21xyxy常數(shù)思考思考:)(),(21xyxy若中有一個恒為 0, 則)(),(21xyxy必線性相關(guān)相關(guān)課堂練習:課堂練習:P337:1目錄 上頁 下頁 返回 結(jié)束 定理定理 2.)(),(21xyxy若是二階線性齊次方程的兩個線性無關(guān)特解, )()(2211xyCxyCy數(shù)) 是該方程的通解.例如例如, 方程0 yy有特解,cos1xy ,sin2xy 且常數(shù),故方程的通解為xCxCysincos21(自證) 推論推論. nyyy,21若是 n 階齊次方程 0)()()(1) 1(1)(yxayx

7、ayxaynnnn的 n 個線性無關(guān)解, 則方程的通解為)(11為任意常數(shù)knnCyCyCyxytan21y為任意常21,(CC則課練:課練:P337:2目錄 上頁 下頁 返回 結(jié)束 三、線性非齊次方程解的結(jié)構(gòu)三、線性非齊次方程解的結(jié)構(gòu) )(* xy設(shè)是二階非齊次方程的一個特解, )(*)(xyxYyY (x) 是相應(yīng)齊次方程的通解,定理定理 3.)()()(xfyxQyxPy 則是非齊次方程的通解 .證證: 將)(*)(xyxYy代入方程左端, 得)*( yY)*( )(yYxP)*)(*)(*(yxQyxPy )()(YxQYxPY )(0)(xfxf)*( )(yYxQ目錄 上頁 下頁

8、返回 結(jié)束 )(*)(xyxYy故是非齊次方程的解, 又Y 中含有兩個獨立任意常數(shù),例如例如, 方程xyy 有特解xy *xCxCYsincos21對應(yīng)齊次方程0 yy有通解因此該方程的通解為xxCxCysincos21證畢因而 也是通解 .目錄 上頁 下頁 返回 結(jié)束 定理定理 4.),2, 1()(mkxyk設(shè)分別是方程的特解,是方程),2, 1()()()(mkxfyxQyxPyk mkkyy1則)()()(1xfyxQyxPymkk 的特解. (非齊次方程之解的疊加原理,P334定下理4) 定理3, 定理4 均可推廣到 n 階線性非齊次方程. 目錄 上頁 下頁 返回 結(jié)束 定理定理 5

9、.)(,),(),(21xyxyxyn設(shè)是對應(yīng)齊次方程的 n 個線性)(*)()()(2211xyxyCxyCxyCynn無關(guān)特解, 給定 n 階非齊次線性方程)()()() 1(1)(xfyxayxaynnn)()(xyxY)(* xy是非齊次方程的特解, 則非齊次方程的通解為齊次方程通解非齊次方程特解三、常數(shù)變易法(不講)目錄 上頁 下頁 返回 結(jié)束 常數(shù), 則該方程的通解是 ( ).321,yyy設(shè)線性無關(guān)函數(shù)都是二階非齊次線性方程)()()(xfyxQyxPy 的解, 21,CC是任意;)(32211yyCyCA;)()(3212211yCCyCyCB;)1()(3212211yCCy

10、CyCC.)1()(3212211yCCyCyCDD例例3.提示提示:3231,yyyy都是對應(yīng)齊次方程的解,二者線性無關(guān) . (反證法可證)3322311)()()(yyyCyyCC3322311)()()(yyyCyyCD目錄 上頁 下頁 返回 結(jié)束 例例4. 已知微分方程)()()(xfyxqyxpy 個解,e,e,2321xxyyxy求此方程滿足初始條件3)0(, 1)0(yy的特解 .解解:1312yyyy與是對應(yīng)齊次方程的解, 且xxyyyyxx21312ee常數(shù)因而線性無關(guān), 故原方程通解為)(e)(e221xCxCyxxx代入初始條件, 3)0(, 1)0(yy,2, 121CC得.ee22xxy故所求特解為有三 目錄 上頁 下頁 返回 結(jié)束 作業(yè):P337 題 3, 4 (2) 第七節(jié) 課練:P337 題1, 2, 4 (1)

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!