注塑機(jī)結(jié)構(gòu)設(shè)計(jì)與制造工藝研究-FST200si-II型雙曲肘撐板式合模裝置 【含10張CAD圖紙+文檔全套】
喜歡就充值下載吧。。資源目錄里展示的文件全都有,,請(qǐng)放心下載,,有疑問咨詢QQ:414951605或者1304139763 ======================== 喜歡就充值下載吧。。資源目錄里展示的文件全都有,,請(qǐng)放心下載,,有疑問咨詢QQ:414951605或者1304139763 ========================
XX設(shè)計(jì)任務(wù)書
擬定題目
注塑機(jī)結(jié)構(gòu)
設(shè)計(jì)與制造工藝研究
指導(dǎo)教師(簽名)
專? 業(yè)
學(xué)? 號(hào)
1
學(xué)生姓名
課題任務(wù)要求:
通過本項(xiàng)目的研究與訓(xùn)練,使學(xué)生掌握注塑機(jī)設(shè)計(jì)知識(shí)、合模裝置加工成型過程工藝技術(shù)和SolidWorks、CAD等大型工程軟件的基本使用方法;在掌握一定機(jī)械設(shè)計(jì)理論的基礎(chǔ)上,通過調(diào)研,查閱資料,確定方案,設(shè)計(jì)計(jì)算,繪制零件圖、裝配圖、編寫設(shè)計(jì)說明書等工作,提高其綜合工程素質(zhì)。
課題內(nèi)容:
1、查閱有關(guān)注射機(jī)的參考資料20種(篇)以上文獻(xiàn), 正確理解注射機(jī)的結(jié)構(gòu)設(shè)計(jì)與制造工藝,正確理解課題任務(wù)并提出設(shè)計(jì)方案;
2、完成2000字以上的開題報(bào)告;
3、一篇結(jié)合課題的完整的外文文獻(xiàn)翻譯,字?jǐn)?shù)不少4000漢字,要求譯文準(zhǔn)確通順;
4、結(jié)構(gòu)設(shè)計(jì)合理,圖紙折A0圖紙2張,( CAD繪制部分不少于1/3),制圖符合國家標(biāo)準(zhǔn);
5、設(shè)計(jì)說明書的字?jǐn)?shù)不少于1萬字,設(shè)計(jì)工藝完善,符合用戶的要求。
6、按規(guī)定填寫畢業(yè)設(shè)計(jì)工作手冊(cè)?!?
預(yù)期目標(biāo):
學(xué)生通過注射機(jī)結(jié)構(gòu)設(shè)計(jì)與制造工藝研究,可使所學(xué)機(jī)械學(xué)、力學(xué)、材料學(xué)、成型學(xué)等知識(shí)得到綜合應(yīng)用,設(shè)備結(jié)構(gòu)設(shè)計(jì)與制造工藝研究能力能受到訓(xùn)練,可有力地提高學(xué)生分析問題,解決問題及獨(dú)立工作的能力。
任務(wù)書及指導(dǎo)書
一、任務(wù)書
擬定題目
注塑機(jī)結(jié)構(gòu)設(shè)計(jì)與制造工藝研究
指導(dǎo)教師
專 業(yè)
學(xué)號(hào)
姓名
課題內(nèi)容:
本課題要求學(xué)生能綜合運(yùn)用所學(xué)材料成形與控制專業(yè)相關(guān)課程的基礎(chǔ)理論及專業(yè)知識(shí),通過調(diào)研、查閱資料、確定方案、設(shè)計(jì)計(jì)算、繪制零件圖、裝配圖(含三維造型圖)、編寫設(shè)計(jì)說明書等工作,鞏固和加深所學(xué)知識(shí),培養(yǎng)其解決工程實(shí)際問題的能力,提高綜合工程素質(zhì)。
運(yùn)用三維造型軟件SolidWorks等進(jìn)行注射機(jī)制造工藝分析及結(jié)構(gòu)設(shè)計(jì)研究,結(jié)合實(shí)際生產(chǎn)加工過程,對(duì)注塑機(jī)結(jié)構(gòu)和造型設(shè)計(jì)的合理性、準(zhǔn)確性。
課題任務(wù)要求:
按時(shí)完成調(diào)研、方案確定、注射機(jī)結(jié)構(gòu)設(shè)計(jì)與制造工藝研究及繪制零件圖和裝配圖(含三維造型圖)、編寫設(shè)計(jì)說明書等工作。要求:
1、查閱有關(guān)注射機(jī)的參考資料20種(篇)以上文獻(xiàn), 正確理解注射機(jī)的結(jié)構(gòu)設(shè)計(jì)與制造工藝,正確理解課題任務(wù)并提出設(shè)計(jì)方案;
2、完成2000字以上的開題報(bào)告;
3、一篇結(jié)合課題的完整的外文文獻(xiàn)翻譯,字?jǐn)?shù)不少4000漢字,要求譯文準(zhǔn)確通順;
4、結(jié)構(gòu)設(shè)計(jì)合理,圖紙折A0圖紙2張,( CAD繪制部分不少于1/3),制圖符合國家標(biāo)準(zhǔn);
5、設(shè)計(jì)說明書的字?jǐn)?shù)不少于1萬字,設(shè)計(jì)工藝完善,符合用戶的要求。
6、按規(guī)定填寫畢業(yè)設(shè)計(jì)工作手冊(cè)。
預(yù)期目標(biāo):
學(xué)生通過注射機(jī)結(jié)構(gòu)設(shè)計(jì)與制造工藝研究,可使所學(xué)機(jī)械學(xué)、力學(xué)、材料學(xué)、成型學(xué)等知識(shí)得到綜合應(yīng)用,設(shè)備結(jié)構(gòu)設(shè)計(jì)與制造工藝研究能力能受到訓(xùn)練,可有力地提高學(xué)生分析問題,解決問題及獨(dú)立工作的能力。
二、指導(dǎo)書
1.設(shè)計(jì)方法和思路:
首先熟悉掌握新型三維實(shí)體設(shè)計(jì)軟件SolidWorks、PRO/E等的使用,然后結(jié)合注塑機(jī)設(shè)計(jì)要求,運(yùn)用機(jī)械設(shè)計(jì)、成型設(shè)備理論知識(shí),將零件注射機(jī)制造工藝分析及結(jié)構(gòu)設(shè)計(jì)細(xì)化、分解,將sketcher草繪產(chǎn)生平面線架特征、曲面造型(shape Design)、實(shí)體造型(PartDesign)有機(jī)結(jié)合,實(shí)現(xiàn)交互式、流程化結(jié)構(gòu)設(shè)計(jì)過程。
2.設(shè)計(jì)的重點(diǎn)和難點(diǎn):
零件工藝性分析、合理工藝方案的確定、合模結(jié)構(gòu)的確定、典型零件機(jī)械加工工藝過程確定;三維建模、二維圖紙的轉(zhuǎn)化是本課題的難點(diǎn)。
3.所學(xué)相關(guān)知識(shí):
包括機(jī)械設(shè)計(jì)制造及自動(dòng)化相關(guān)知識(shí)、SolidWorks、PRO/E專業(yè)三維造型軟件,AUTOCAD系統(tǒng)軟件,注塑機(jī)結(jié)構(gòu)設(shè)計(jì)、制造及加工工藝?yán)碚搶?shí)踐,合模裝置設(shè)計(jì)等方面的專業(yè)知識(shí)以及應(yīng)用分析軟件如MOLDFLOW的使用分析方法與理論等。
4. 畢業(yè)設(shè)計(jì)(論文)進(jìn)度:
周 次
所 要 完 成 的 工 作
第三周—第六周
到公司實(shí)地實(shí)習(xí)、調(diào)研、收集資料、了解課題背景。
第七周—第八周
撰寫開題報(bào)告、翻譯外文文獻(xiàn)、方案論證
第九周—第十一周
SolidWorks、PRO/E軟件學(xué)習(xí)、注塑機(jī)設(shè)計(jì)理論與實(shí)踐、編制模擬程序
第十二周—第十四周
本課題零件的結(jié)構(gòu)設(shè)計(jì)、SolidWorks 、PRO/E軟件實(shí)時(shí)設(shè)計(jì)及建模、三維實(shí)體模型的生成,二維圖形的轉(zhuǎn)化等
第十五周—第十六周
編寫設(shè)計(jì)說明書
5. 畢業(yè)設(shè)計(jì)說明書的撰寫要領(lǐng)與格式、答辯準(zhǔn)備:
按《武漢工業(yè)學(xué)院畢業(yè)設(shè)計(jì)(論文)學(xué)生工作手冊(cè)》要求。答辯之前,各位學(xué)生應(yīng)擬好答辯提綱,簡(jiǎn)捷清晰地闡述課題背景和意義、總體思路、機(jī)構(gòu)方案選定依據(jù)、技術(shù)難點(diǎn)及措施、創(chuàng)新點(diǎn)以及存在的問題。
6. 主要參考文獻(xiàn)
[1]何亞東.全電式注塑機(jī)的優(yōu)缺點(diǎn)分析及技術(shù)發(fā)展趨勢(shì)研究[J].現(xiàn)代塑料加工應(yīng)用.2011
[2]王衛(wèi)衛(wèi).材料成型設(shè)備.[M].北京:機(jī)械工業(yè)出版社,2004.8(2011.1重印)
[3]北京化工學(xué)院,華南工學(xué)院合編.塑料機(jī)械設(shè)計(jì)[M].北京:輕工業(yè)出版社,1982.
[4]北京化工學(xué)院.塑料成型機(jī)械[M].北京:輕工業(yè)出版社,1982.
[5]北京化工學(xué)院,華南工學(xué)院合編.塑料機(jī)械液壓傳動(dòng)[M].北京:輕工業(yè)出版社,1982.
[6]《機(jī)械設(shè)計(jì)手冊(cè)》聯(lián)合編寫組. 機(jī)械設(shè)計(jì)手冊(cè)[M].北京:燃料化學(xué)工業(yè)出版社,1970.
[7]陳學(xué)峰.塑料注塑成型機(jī)雙曲肘合模機(jī)構(gòu)動(dòng)力學(xué)研究[D].2008
[8]黃步明.注塑機(jī)合模裝置存在的主要問題及解決方法[J].2005
[9]劉文耀.注塑機(jī)前模板的有限元分析[J].寧波職業(yè)技術(shù)學(xué)院學(xué)報(bào).2007,11(5)
[10]向鵬,李秀峰,杜遙雪.全電動(dòng)注塑機(jī)的特點(diǎn)及應(yīng)用領(lǐng)域[J].現(xiàn)代塑料加工應(yīng)用.2007(01)
[11]歐笛聲,周雄新,朱萍.雙曲肘五孔斜排合模機(jī)構(gòu)的設(shè)計(jì)改進(jìn)[J].廣西工業(yè)大學(xué)學(xué)報(bào),2005,16(4):19-26
[12]倪衛(wèi)濤.注塑機(jī)合模系統(tǒng)的優(yōu)化模型研究[J].輕工機(jī)械,2007,25(2):33-35
[13]于彥江,尤文林,蔡建平等.雙曲肘合模機(jī)構(gòu)的優(yōu)化設(shè)計(jì)運(yùn)動(dòng)學(xué)仿真[J].機(jī)床與液壓,2008,36(4):295-298
[14] FOX.R L. Optimization Methods of Engineering Design . Massachusetts
Addison —wesley , 1971
[15] JOURNAL OF WUYI UNIVERSITY(NATURAL SCIENCE EDITION).2010,24(1)
[16]單方,陳璞.注塑機(jī)鎖模機(jī)構(gòu) CAD 的研究與開發(fā).[J].工程塑料應(yīng)用,2001,29 (9): 38 -40.
[17]高瑜,宋桂珍,高創(chuàng)寬.注塑機(jī)合模機(jī)構(gòu)及模板的優(yōu)化設(shè)計(jì)[ J ].機(jī)械管理開發(fā), 2006( 4) : 22- 23
[18]熊萬春,金志明,薛平.壓鑄機(jī)雙曲肘五鉸點(diǎn)斜排列合模機(jī)構(gòu)運(yùn)動(dòng)和力學(xué)特性分析[ J ] . 特種鑄造及有色金屬, 2008( 6) : 445- 447
[19]曾翠華, 鄭榮霞, 楊軍, 等.液壓 - 機(jī)械合模機(jī)構(gòu)三維動(dòng)態(tài)仿真優(yōu)化設(shè)計(jì)[ J ] . 機(jī)床與液壓, 2008, 36( 8) : 139-142
[20]任工昌,苗新強(qiáng), 郭志剛. 注塑機(jī)雙肘桿鎖模機(jī)構(gòu)的優(yōu)化設(shè)計(jì)[ J ] .機(jī)械設(shè)計(jì)與制造, 2009,(1) : 18- 19
7. 檢索關(guān)鍵詞:
關(guān)鍵詞:結(jié)構(gòu)設(shè)計(jì), 注塑機(jī) ,合模裝置 ,肘桿式
Keyword: Structure design, Injection molding machine, Clamping device, Toggle
XXX
畢業(yè)設(shè)計(jì)(論文)
設(shè)計(jì)(論文)題目:管夾沖壓工藝開發(fā)及模具結(jié)構(gòu)設(shè)計(jì)
姓 名
學(xué) 號(hào)
院 系
專 業(yè)
指導(dǎo)教師
20XX 年 6 月
注塑機(jī)零件機(jī)械加工工藝過程卡
注塑機(jī)零件機(jī)械加工工藝過程卡
模具名稱
鑄坯車銑鉆磨
共4頁
零件名稱
動(dòng)模板
第4頁
材料
名稱
球墨鑄鐵
毛坯種類
毛坯尺寸
零件質(zhì)量
件數(shù)
更改
內(nèi)容
牌號(hào)
QT500-7A
鑄坯
772x430x776
1
序號(hào)
工序內(nèi)容
加工車間
1
鑄造772x430x776
鑄造車間
2
退火
鑄造車間
3
劃線
銑削車間
4
粗銑鎖模面
銑削車間
5
鉆、鉸中心孔Φ55
銑削車間
6
粗銑油缸配合面
銑削車間
7
鉆、鉸中心孔Φ45
銑削車間
8
粗銑兩側(cè)面
銑削車間
9
精銑鎖模面、精銑油缸配合面
銑削車間
10
半精銑滑腳配合面、半精銑兩側(cè)面
銑削車間
11
粗鏜、半精鏜Φ85孔,倒角
銑削車間
12
粗銑兩耳的外、內(nèi)側(cè)面
銑削車間
13
半精銑兩耳外、內(nèi)側(cè)面
銑削車間
14
粗鏜、半精鏜4-Φ80孔,倒角
銑削車間
15
鉆、擴(kuò)兩側(cè)耳孔4-Rc1/8通
銑削車間
16
鉆、擴(kuò)兩側(cè)面孔4-M8深16,潤(rùn)滑孔2-M10x1通,孔口锪平Φ18深2、3-M5深10
銑削車間
17
鉆、鉸安全全裝置導(dǎo)桿孔Φ42通
銑削車間
18
去毛刺,檢查
銑削車間
編制
校對(duì)
審 核
會(huì) 簽
注塑機(jī)零件機(jī)械加工工藝過程卡
模具名稱
鑄坯車銑鉆磨
共4頁
零件名稱
前固定板
第3頁
材料
名稱
球墨鑄鐵
毛坯種類
毛坯尺寸
零件質(zhì)量
件數(shù)
更改
內(nèi)容
牌號(hào)
QT500-7A
鑄坯
865x200x876
1
序號(hào)
工序內(nèi)容
加工車間
零件圖
1
鑄造865x200x876
鑄造車間
2
退火
鑄造車間
3
劃線
銑削車間
4
粗銑A面
銑削車間
5
鉆、鉸中心孔Φ160
銑削車間
6
粗銑H面
銑削車間
7
粗銑F面
銑削車間
8
粗銑G\G’面
銑削車間
9
精銑A面
銑削車間
10
半精銑F面
銑削車間
11
粗鏜、半精鏜4-Φ180、4-Φ85,倒角
銑削車間
12
半精銑兩側(cè)面
銑削車間
13
鉆、擴(kuò)孔底板孔4-Φ18深40
銑削車間
14
鉆、擴(kuò)G面孔4-M8深14,8-M8深16攻絲
銑削車間
15
粗、半精鏜安全裝置導(dǎo)管孔Φ59深36Φ54深64
銑削車間
16
鉆、擴(kuò)H面孔2-M16深32
銑削車間
17
去毛刺,檢查
銑削車間
編制
校對(duì)
審 核
會(huì) 簽
注塑機(jī)零件機(jī)械加工工藝過程卡
模具名稱
鑄坯車銑鉆磨
共4頁
零件名稱
后固定板
第1頁
材料
名稱
球墨鑄鐵
毛坯種類
毛坯尺寸
零件質(zhì)量
件數(shù)
更改
內(nèi)容
牌號(hào)
QT500-7A
鑄件
765x215x860
1
序號(hào)
工序內(nèi)容
加工車間
零件圖
1
鑄造765x215x860
鑄造車間
2
退火
鑄造車間
3
劃線
銑削車間
4
粗銑A面,即背面
銑削車間
5
鉆、鉸中心孔Φ85
銑削車間
6
粗銑B面
銑削車間
7
粗銑C面
銑削車間
8
粗銑F面
銑削車間
9
精銑A面
銑削車間
10
半精銑B面
銑削車間
11
半精銑C面
銑削車間
12
半精銑F面
銑削車間
13
粗鏜、半精鏜4-Φ180、4-Φ85孔,倒角
銑削車間
14
粗銑兩耳外側(cè)面
銑削車間
15
粗銑兩耳內(nèi)側(cè)面
銑削車間
16
半精銑兩耳外側(cè)面
銑削車間
17
半精銑兩耳內(nèi)側(cè)面
銑削車間
18
粗、半精鏜耳孔4-Φ80
銑削車間
19
鉆、擴(kuò)孔底板孔(12-M16深40、4-M12深30、2-Φ18深55)
銑削車間
20
鉆、擴(kuò)左側(cè)孔2-M10深10、2-M8深20,攻絲
銑削車間
21
鉆、擴(kuò)右側(cè)孔2-M10深10,攻絲
銑削車間
續(xù)表
22
鉆、擴(kuò)后側(cè)孔M20深50,攻絲
銑削車間
23
粗銑油槽
銑削車間
24
鉆孔Φ5深18
銑削車間
25
去毛刺
銑削車間
26
檢查
質(zhì)檢車間
編制
校對(duì)
審 核
會(huì) 簽
導(dǎo)師:導(dǎo)師:導(dǎo)師:導(dǎo)師:XXXX副教授副教授副教授副教授注塑機(jī)結(jié)構(gòu)設(shè)計(jì)及注塑機(jī)結(jié)構(gòu)設(shè)計(jì)及制造工藝研究制造工藝研究學(xué)生學(xué)生學(xué)生學(xué)生:XXXXIndustry前言 近年來近年來,建筑、汽車、食品、醫(yī)藥、家用電器等行業(yè)對(duì)塑料制件,建筑、汽車、食品、醫(yī)藥、家用電器等行業(yè)對(duì)塑料制件的的需求需求日益日益增長(zhǎng)增長(zhǎng)。塑鋼比,作為衡量一個(gè)國家塑料工業(yè)發(fā)展水平的重要指標(biāo)之一,在我國,塑鋼比,作為衡量一個(gè)國家塑料工業(yè)發(fā)展水平的重要指標(biāo)之一,在我國,此項(xiàng)比率僅為此項(xiàng)比率僅為30:7030:70,遠(yuǎn)不及諸如美國等發(fā)達(dá)國家的,遠(yuǎn)不及諸如美國等發(fā)達(dá)國家的70:3070:30,而世界平均為都為,而世界平均為都為50:5050:50。這也從側(cè)面說明我國塑料機(jī)械行業(yè)有著較大發(fā)展空間。這也從側(cè)面說明我國塑料機(jī)械行業(yè)有著較大發(fā)展空間。Industry目 錄背景與意義一現(xiàn)狀與趨勢(shì)二分析與計(jì)算三總結(jié)三Industry課題背景和意義研究背景研究背景前言有述前言有述建筑、汽車、食品、醫(yī)藥、家用電器等行業(yè)對(duì)塑料制件需建筑、汽車、食品、醫(yī)藥、家用電器等行業(yè)對(duì)塑料制件需求求日益日益增長(zhǎng)增長(zhǎng),促使塑料機(jī)械行業(yè)的發(fā)展。,促使塑料機(jī)械行業(yè)的發(fā)展。作為塑料成型中的重要設(shè)備作為塑料成型中的重要設(shè)備之一之一注塑機(jī),其注塑機(jī),其相應(yīng)相應(yīng)需求增加需求增加。注塑機(jī)注塑機(jī)雖取得一定進(jìn)展,但雖取得一定進(jìn)展,但超大型、精密微細(xì)化型和各種特專用的超大型、精密微細(xì)化型和各種特專用的型號(hào)方面尚屬空白型號(hào)方面尚屬空白。Industry課題背景與意義研究意義研究意義 注塑機(jī)注塑機(jī)雖取得一定進(jìn)展,但雖取得一定進(jìn)展,但超大型、精密微細(xì)化型和各種超大型、精密微細(xì)化型和各種特專用的型號(hào)方面尚屬空白特專用的型號(hào)方面尚屬空白。對(duì)注塑機(jī)的研究有助于結(jié)構(gòu)的優(yōu)。對(duì)注塑機(jī)的研究有助于結(jié)構(gòu)的優(yōu)化,完善、完全注塑機(jī)機(jī)構(gòu)及類型?;?,完善、完全注塑機(jī)機(jī)構(gòu)及類型。Industry研究現(xiàn)狀研究現(xiàn)狀研究現(xiàn)狀u國外國外 在在節(jié)能、節(jié)能、環(huán)保的理念下,環(huán)保、能耗低的注塑機(jī)環(huán)保的理念下,環(huán)保、能耗低的注塑機(jī)漸漸進(jìn)入人漸漸進(jìn)入人們視線們視線如:全電式注塑機(jī) 代表企業(yè):米拉克龍、日制鋼、LS、東芝、東洋機(jī)械金屬等。u國內(nèi)國內(nèi) 國內(nèi)相關(guān)研究起步較晚,技術(shù)相較落后;國內(nèi)相關(guān)研究起步較晚,技術(shù)相較落后;國外:國外:程序控制或是微機(jī)自控,并配合以都傳感器、控制器等裝置;程序控制或是微機(jī)自控,并配合以都傳感器、控制器等裝置;國內(nèi):國內(nèi):大部分仍使用行程開關(guān)、繼電器等實(shí)現(xiàn)控制大部分仍使用行程開關(guān)、繼電器等實(shí)現(xiàn)控制如:肘桿式 代表企業(yè):海天、震雄、博創(chuàng)、伊之密。Industry研究現(xiàn)狀研究現(xiàn)狀研究現(xiàn)狀全液壓式全電式肘桿式直壓式1872年,海雅特和他的兄弟艾賽注冊(cè)了世界上第一部柱塞年,海雅特和他的兄弟艾賽注冊(cè)了世界上第一部柱塞式注射機(jī)的式注射機(jī)的專利權(quán)專利權(quán)。Industry分析與計(jì)算研究概述研究概述作用:一、能穩(wěn)定實(shí)現(xiàn)模具的開合運(yùn)動(dòng)和設(shè)定的行程;二、在注作用:一、能穩(wěn)定實(shí)現(xiàn)模具的開合運(yùn)動(dòng)和設(shè)定的行程;二、在注塑和保壓的過程中,能提供塑和保壓的過程中,能提供足夠足夠的鎖模力;三、在開模時(shí),的鎖模力;三、在開模時(shí),具有具有頂出制件的裝置。頂出制件的裝置。組成:組成:主要由主要由動(dòng)、定動(dòng)、定模板、模板、連桿連桿、拉桿、拉桿、液壓液壓缸、頂出裝置缸、頂出裝置、模、模具調(diào)置機(jī)構(gòu)具調(diào)置機(jī)構(gòu)等組成。等組成。Industry分析與計(jì)算方案選擇方案選擇1-合模油缸合模油缸2-調(diào)模螺母調(diào)模螺母3-后固定板后固定板4-上勾鉸上勾鉸5-小鉸小鉸6-上長(zhǎng)鉸上長(zhǎng)鉸7動(dòng)模板動(dòng)模板8-拉桿拉桿9-拉桿螺母擋板拉桿螺母擋板10-拉桿螺母拉桿螺母11前固定板前固定板12-滑腳滑腳13-鋼套鋼套14-塵封塵封Industry分析與計(jì)算工作原理工作原理工作原理及過程:該研究設(shè)計(jì)主要以五點(diǎn)斜排列雙曲肘式合模裝置為例,工作原理及過程:該研究設(shè)計(jì)主要以五點(diǎn)斜排列雙曲肘式合模裝置為例,而此種機(jī)構(gòu)主要以油壓驅(qū)動(dòng)機(jī)構(gòu)運(yùn)動(dòng)。因此當(dāng)液壓油流入鎖模油缸而此種機(jī)構(gòu)主要以油壓驅(qū)動(dòng)機(jī)構(gòu)運(yùn)動(dòng)。因此當(dāng)液壓油流入鎖模油缸1中,中,活塞桿被驅(qū)動(dòng),另一端與活塞桿相連的十字頭沿導(dǎo)桿向前推動(dòng)小鉸活塞桿被驅(qū)動(dòng),另一端與活塞桿相連的十字頭沿導(dǎo)桿向前推動(dòng)小鉸5,小,小鉸再推動(dòng)上(下)直鉸鉸再推動(dòng)上(下)直鉸6和上(下)勾鉸和上(下)勾鉸4,曲肘機(jī)構(gòu)展開,推動(dòng)動(dòng)模板,曲肘機(jī)構(gòu)展開,推動(dòng)動(dòng)模板7(即二板)向前移動(dòng),完成合模過程。此時(shí),因直鉸和勾鉸在一條直線(即二板)向前移動(dòng),完成合模過程。此時(shí),因直鉸和勾鉸在一條直線上,而產(chǎn)生自鎖作用,對(duì)模具進(jìn)行鎖緊。反之,即為開模過程,期間增上,而產(chǎn)生自鎖作用,對(duì)模具進(jìn)行鎖緊。反之,即為開模過程,期間增加頂出裝置的運(yùn)動(dòng),而頂出裝置也使用液壓油缸驅(qū)動(dòng),工作方式與鎖模加頂出裝置的運(yùn)動(dòng),而頂出裝置也使用液壓油缸驅(qū)動(dòng),工作方式與鎖模油缸相似,此處,活塞桿另一端與頂針導(dǎo)板相連,而頂針均設(shè)于導(dǎo)板之油缸相似,此處,活塞桿另一端與頂針導(dǎo)板相連,而頂針均設(shè)于導(dǎo)板之上與導(dǎo)板一起運(yùn)動(dòng)。上與導(dǎo)板一起運(yùn)動(dòng)。Industry分析與計(jì)算前固定板部分計(jì)算前固定板部分計(jì)算拉桿間距拉桿間距H0為為510 x510,在,在450560范圍內(nèi),故,范圍內(nèi),故,注射孔直徑注射孔直徑D選擇選擇160mm。Industry分析與計(jì)算拉桿部分計(jì)算拉桿部分計(jì)算三角螺紋的設(shè)計(jì)可根據(jù)GB/T196-2003為基礎(chǔ)牙型,即如圖所示。具體參數(shù)運(yùn)算如下:(1)牙根圓角半徑:(2)螺紋中徑:(3)約束條件:得螺距得螺距p=4mm,螺紋長(zhǎng)度,螺紋長(zhǎng)度bm=130mm,圈數(shù),圈數(shù)N=32.5,d2=85mm。Industry分析與計(jì)算拉桿部分計(jì)算拉桿部分計(jì)算拉桿在工作過程中,承受著彎曲、拉伸、擠壓、剪切等多重形式應(yīng)力作用拉桿在工作過程中,承受著彎曲、拉伸、擠壓、剪切等多重形式應(yīng)力作用而發(fā)生疲勞、過載、脆性等方式的斷裂而發(fā)生疲勞、過載、脆性等方式的斷裂。為解決此類問題,設(shè)計(jì)者采用在螺紋端處增加卸荷槽等方式,卸荷槽的作為解決此類問題,設(shè)計(jì)者采用在螺紋端處增加卸荷槽等方式,卸荷槽的作用是將螺紋根部截面的彎曲應(yīng)力轉(zhuǎn)移到卸荷槽之中,并且卸荷槽的直徑越用是將螺紋根部截面的彎曲應(yīng)力轉(zhuǎn)移到卸荷槽之中,并且卸荷槽的直徑越小這個(gè)效果越好,但卸載槽直徑過小也會(huì)容易發(fā)生斷裂。小這個(gè)效果越好,但卸載槽直徑過小也會(huì)容易發(fā)生斷裂。卸荷槽基本參數(shù)計(jì)算公式:1)、糟底直徑與螺紋根部截面直徑的關(guān)系為:d=0.85d1,得d=75mm (1)2)、槽寬:H=0.5d1,得H=100mm (2)3)、過渡連接圓弧:r=0.25d,得r=18.75mm (3)Industry分析與計(jì)算三維建模三維建模Industry分析與計(jì)算三維建模三維建模Industry分析與計(jì)算運(yùn)動(dòng)分析運(yùn)動(dòng)分析Industry分析與計(jì)算力學(xué)分析力學(xué)分析零部件材料彈性模量/GPa泊松比前固定板QT500-7A1730.27動(dòng)模板QT500-7A1730.27后固定板QT500-7A1730.27拉桿42CrMoA2060.29肘桿QT500-7A1730.27由圖中現(xiàn)象可看出由圖中現(xiàn)象可看出合模裝置整體的變形量合模裝置整體的變形量最大約為最大約為3.3mm,并且,并且只要集中在拉桿與模板只要集中在拉桿與模板孔的連接處孔的連接處。模板與拉模板與拉桿均受到變形影響,在桿均受到變形影響,在相接處應(yīng)力和形變產(chǎn)生相接處應(yīng)力和形變產(chǎn)生復(fù)合,加重了這一部分復(fù)合,加重了這一部分的形變與受力的形變與受力。Industry分析與計(jì)算工藝卡工藝卡Industry分析與計(jì)算工藝卡工藝卡22鉆、擴(kuò)后側(cè)孔M20深50,攻絲銑削車間23粗銑油槽銑削車間24鉆孔5深18銑削車間25去毛刺銑削車間26檢查質(zhì)檢車間編制高萬旭校對(duì)審核會(huì)簽續(xù)表續(xù)表Industry總結(jié)參數(shù)項(xiàng)目參數(shù)項(xiàng)目單位單位主要技術(shù)參數(shù)主要技術(shù)參數(shù)合合模模裝裝置置鎖模結(jié)構(gòu)形式鎖模結(jié)構(gòu)形式用頭板有四個(gè)鎖模結(jié)構(gòu)的三板機(jī)用頭板有四個(gè)鎖模結(jié)構(gòu)的三板機(jī)合模行程合模行程mm480鎖模力鎖模力KN2000模板尺寸模板尺寸(水平水平垂直垂直)mm765x765連接柱內(nèi)距連接柱內(nèi)距(水平水平垂直垂直)mm510 x510容模量容模量(最小最小最大最大)mm180-550模具裝夾方式模具裝夾方式按科仕特公司標(biāo)準(zhǔn)布置的螺釘孔及按科仕特公司標(biāo)準(zhǔn)布置的螺釘孔及T型槽型槽模具定位方式模具定位方式定位環(huán)及定位銷定位環(huán)及定位銷主要功能配置主要功能配置1、快快速速移移模模油油缸缸;2、快快速速鎖鎖定定與與解解鎖鎖裝裝置置;3、動(dòng)動(dòng)模模板板滑滑腳腳;4、潤(rùn)潤(rùn)滑滑系統(tǒng)。系統(tǒng)。頂頂出出裝裝置置頂出布置方式頂出布置方式主頂針桿立中間、其他主頂針桿立中間、其他8根兩兩分于根兩兩分于四周四周頂出桿數(shù)量頂出桿數(shù)量9頂出行程頂出行程mm150頂出力頂出力KN67主要功能配置主要功能配置1、液壓頂出方式;、液壓頂出方式;2、設(shè)保護(hù)裝置、設(shè)保護(hù)裝置謝謝觀看THANKSIndustry
XX設(shè)計(jì)(XX)課題申報(bào)表
課題名稱
注射機(jī)結(jié)構(gòu)設(shè)計(jì)與制造工藝研究
課題類型
設(shè)計(jì)
課題性質(zhì)
結(jié)合實(shí)際
課題來源
縱向
橫、縱向項(xiàng)目名稱
CAD/CAE技術(shù)在拉深模開發(fā)中的應(yīng)用研究
項(xiàng)目編號(hào)
校立科研項(xiàng)目
導(dǎo)師姓名
職稱
講師
有否科研背景
有
有否實(shí)際工程背景
有
所在單位
所學(xué)專業(yè)
上機(jī)時(shí)數(shù)
400(小時(shí))
目的要求
1.培養(yǎng)學(xué)生機(jī)械設(shè)計(jì)與制造的實(shí)踐能力;
2.培養(yǎng)學(xué)生理論知識(shí)的應(yīng)用能力;
3.培養(yǎng)學(xué)生專業(yè)軟件運(yùn)用的實(shí)踐能力;
主要內(nèi)容
按時(shí)完成調(diào)研、方案確定、注射機(jī)結(jié)構(gòu)設(shè)計(jì)與制造工藝研究及繪制零件圖和裝配圖(含三維造型圖)、編寫設(shè)計(jì)說明書等工作。要求:
1、查閱有關(guān)注射機(jī)的參考資料20種(篇)以上文獻(xiàn), 正確理解注射機(jī)的結(jié)構(gòu)設(shè)計(jì)與制造工藝,正確理解課題任務(wù)并提出設(shè)計(jì)方案;
2、完成2000字以上的開題報(bào)告;
3、一篇結(jié)合課題的完整的外文文獻(xiàn)翻譯,字?jǐn)?shù)不少4000漢字,要求譯文準(zhǔn)確通順;
4、結(jié)構(gòu)設(shè)計(jì)合理,圖紙折A0圖紙2張,( CAD繪制部分不少于1/3),制圖符合國家標(biāo)準(zhǔn);
5、設(shè)計(jì)說明書的字?jǐn)?shù)不少于1萬字,設(shè)計(jì)工藝完善,符合用戶的要求。
6、按規(guī)定填寫畢業(yè)設(shè)計(jì)工作手冊(cè)。
預(yù)期
目標(biāo)
學(xué)生通過注射機(jī)結(jié)構(gòu)設(shè)計(jì)與制造工藝研究,可使所學(xué)機(jī)械學(xué)、力學(xué)、材料學(xué)、成型學(xué)等知識(shí)得到綜合應(yīng)用,設(shè)備結(jié)構(gòu)設(shè)計(jì)與制造工藝研究能力能受到訓(xùn)練,可有力地提高學(xué)生分析問題,解決問題及獨(dú)立工作的能力。
教研室審查小組意見
本課題能否滿足綜合訓(xùn)練學(xué)生的教學(xué)要求
課題中有無基本工程訓(xùn)練內(nèi)容,份量多大(限于理工專業(yè))
本課題的要求、任務(wù)、內(nèi)容是否明確、具體
進(jìn)行本課題現(xiàn)有實(shí)施條件是否具備
工作量是否飽滿,課題難度是否適中
進(jìn)行本課題尚缺的條件本單位能否解決
對(duì)本課題的評(píng)審結(jié)論:
教研室主任(簽字):
201 年 月 日
院系審定意見
院長(zhǎng)(系主任)(簽字):
201 年 月 日
Moldflow software in a complex plastic shell injection mold design Zhenyu ZHAO1, a, Long LIAO1, b, Fei TANG1, c, Bai LIU1, d 1Shenzhen Institute of Information Technology, Shenzhen, China , , , Keywords: Injection mold, Moldflow, mold design, MPI Abstract. The paper describes the important role of Moldflow technology and status. Through the application of Moldflow / MPI (Moldflow Plastics Insight) software for CAE under a comprehensive analysis of the shell molds, injection molding parameters such as mold temperature, melt temperature, injection time and injection pressure are used to simulate the actual production process. This shows the Moldflow technology plays a significant role in the mold development process for optimizing plastic products design, plastic mold design and injection process parameters, etc. Introduction At present, most injection mold designers are based mainly on their years of experience in mold design. Due to the diversity, complexity of plastic workpieces and the limited experience of designers, it is difficult to accurately design a low-cost, short cycle, good quality products, qualified high rate of mold and craft programs, and designers often requires repeated continuously in order to tryout with the revised model formally put into production, some beyond repair due to the precision die scrap. Moldflow technology1 has a great advantage to improving productivity, ensure product quality, or reduce costs, reduce labor intensity and so on. Moldflow technology can be used in mold processing prior to use computers to simulate the entire injection molding process analysis, to predict the melt filling, packing, air traps, weld lines, temperature at flow front and warpage, etc. 2-6, so that designers can early detection of problems, revise plastic parts and mold design, reduce and even avoid mold rework scrap, improve quality and reduce the cost of plastic parts and so on. Moldflow technology has significant technical and economic significance. In the paper, a plastic shell injection mold is selected as an flow analysis example, Moldflow software to optimize the design of molds for plastic injection products, mold filling, cooling, warpage and other behavior of the dynamic simulation for the products, mold design and determination of injection molding process parameters provides a theoretical basis in order to improve the quality of molding products. Molding process analysis The product for the plastic shell parts is shown in Fig.1, using ABS plastic, and the outer surface has the higher quality requirements. In the paper, MPI module is used to process the product flow analysis. In the analysis, through the process flow simulation analysis is determined the gate location, quantity and process conditions, and the process flow simulation is predicted the cavity pressure distribution, temperature distribution, clamping force size, etc., for the actual molding to provide molding process parameters. After completing the above analysis, the injection molding material is selected. In the software, there are many large companies of products to choose from. In the case material select ABS type, Parameter setting is in Tab.1. Tab.1 Moldflow analysis parameter settings injection molding temperature 230 Forming control Filling control Pressure 90MPa Mold temperature Punch 55 speed/ pressure conversion automatic Die 80 packing pressure control 80% injection pressure 6s Applied Mechanics and Materials Vols. 29-32 (2010) pp 646-650Online available since 2010/Aug/13 at (2010) Trans Tech Publications, Switzerlanddoi:10.4028/ rights reserved. No part of contents of this paper may be reproduced or transmitted in any form or by any means without the written permission of TTP,. (ID: 58.17.52.14, The University of Manchester, Manchester, United Kingdom-11/01/14,03:19:49) MPI will automatically generate the best gate location of relevant information and to graphically display the best gate region, the deeper the color the more suitable area selected as a gate. According to Fig.1 the plastic model shows a symmetrical structure, and the best location is the middle region in the paper. Fig.1 plastic shell model Fig.2 Fill time Moldflow analysis In the paper MPI software is used to analysis the fill time and filling pressure, weld lines, air traps, maximum clamping force and warpage. Through the analysis of these parameters, the best injection programs are selected. Fill time. Gating system design directly affects the melt filling behavior, while the filling analysis of their ultimate goal is to get the best gating system design. Fill analysis is from the beginning to the cavity that is filled with injection of the entire process of analysis of the flow front location. The analysis used to predict the filling behavior of workpiece is reasonable, whether the balance of filling, whether to complete the whole workpiece fill. Filling the purpose of the analysis is to obtain the best gate location, gate number and the best casting system layout. Fig.2 shows the results of the analysis of filling time. Through the different shades of color, the change of state as well as the melt flow during filling is reflected, from which can see whether the cavity is filled, and whether the process of filling is balance. As can be see from Fig.2, Filling time is 2.825s, and the color shade is softer transition. The indicates that the filling process is relatively flat, and that the entire injection molded parts can be filled within a short period of time, liquidity balance of good and filling and reasonable situation. Thus the analysis can be proved that gating system design shown in Figure 2 is feasible. Air traps. The circle shown in Fig.3 is air trap. Air trap location map is shown in the figure. Melt front bubbles gathered in injection parts within or cavity surface are basically around the lateral side of the injection parts, and concentrated in the parting surface. In the case air traps mainly in the inner surface of plastic shell, and most appear in the parting surface, as shown in Fig.3. So air in the melt filling will automatically discharge, the air traps does not affect the appearance of the quality of the product. Therefore, the case of gas very easily through the mold parting surface gap discharge, there is no trapped air phenomenon, which can effectively prevent the formation of air traps injection molded parts, and scorch the surface defects such as defective. Fig.3 Air traps Fig.4 Weld lines Applied Mechanics and Materials Vols. 29-32647 Weld lines. When two or more of the flow front integration, it will form a weld line. In the weld-line position the molecules are tend to change strongly, so that the mechanical strength significantly weakened in the position, and weld line is not visually obvious. In this case, increasing the mold temperature and melt temperature make two melt encounters merge better. It is advisable to increase the screw speed or improve the design of gating system to reduce the friction generated heat, while maintaining melt flow rate to reduce flow channel dimensions. If weld lines can not eliminated, then they should be located the place that it is less sensitive on the workpiece area to prevent the impact of the mechanical properties and appearance of workpiece quality. By changing the gate location, or to change the workpiece thickness can change the location of weld lines. The weld lines position is shown on the plastic pieces in Fig.4. After a Moldflow optimization analysis, improving the die temperature, increasing adequate the gate and reducing appropriately clamping force, opening of the exhaust system in the welding seam, the product weld lines will become Obvious, reduced scrap rates, to meet actual production needs. The results from Fig.4 can be seen that there is no large area and continuous weld lines, so workpiece surface quality will not be affected. Sink index. Shrinkage lines refer to the phenomenon of surface depressions in the moldings. Although these depressions are small, but as long as viewing from different angles, but it is visible. Shrinkage lines visibility and its surface texture is the role of the color components, so deep is the distinguishing criteria. The main reason of lines appearance is that in the cooling process heat is contracted. Figure 5 shows the depth of shrinkage lines. In the case lines depth is very small, shrink lines very clearly does not affect the products appearance. Fig.5 Sink index Fig.6 Clamp force Clamp force. In the injection process, due to expansion force of melt within the mold, mold parting surface may separate, resulting in the flying side, it is necessary for the injection mold machine to provide a locking force, and the force known as the clamping force. With the force can offset the cavity expansion force generated by melt. Usually clamp force should be as small as possible. The smaller clamping force can not only save energy, reduce costs, but also to extend the service life of injection molding machines and mold, while the mold is also an exhaust can be carried out smoothly, so that the mold filling state is more easily controlled. In injection molding the clamping force distribution is shown in Fig.6. The maximum clamping force is 86kN, the results of the analysis can be used to help designers to choose different types of injection molding machine. As can be seen from Fig.5, the machinery can meet the requirements and is capable of normal production. Recommended ram speed. Fig.7 is the recommended ram of the program graph, and its role in the regulation of ram into the cavity of the injection speed, speed of injection mold filling process to ensure consistent, will help to improve the surface quality of workpieces and to avoid excessive shear stress. The injection speed is recommended to make a more uniform rate of flow front, which will help to eliminate the pressure peak, and at the same time can improve workpiece surface finish in Fig.7. XY position by injection pressure map can easily show the changes in pressure. Temperature. Temperature mainly includes temperature at flow front and bulk temperature at the end of filling. The integrated use of temperature at flow front and the weld line graph can be analyzed 648Applied Mechanics And Mechanical Engineering whether weld-line quality is good or bad. The narrower the size range of temperature distribution is at the end of filling, the better mold quality is. Two kinds of thermal analysis results are shown in Fig.8 and Fig.9. Thermoplastic polymer flow analysis is usually used to predict the flow behavior inside the die. Moldflow simulation begins to melt from the injection site spread to the adjacent point of the flow front, until the flow front to spread and fill workpiece and the last point to complete the flow analysis and calculation. The objective is to obtain the best packing stage set time, thereby reducing as much as possible cause of the workpiece by the holding pressure contraction, warping and other quality defects. A reasonable temperature distribution at flow front should be uniform, and the model can not be much difference in temperature. As can be seen from Fig.8, the model is more uniform temperature distribution model shows that the melt temperature in the flow of slow decline, which will help fill, and a smaller drop in the temperature of the product, which means that the surface quality of plastic parts will be guaranteed. Figure 8 Simulation results for the flow front temperature. As can be seen from Fig.8, material flow analysis can be seen that the maximum temperature the forefront is 230.6 , the lowest temperature is 223.8 , injection molded parts of the temperature difference is 6.8 , the recommended values of the control value (20 ) within indicated that a smaller temperature difference, which means the quality of the surface of injection molded parts are guaranteed, workpieces can be filled.Fig.8 shows that when the material fusion temperature is 228.9 230.6 , the lowest melt temperature is only lower than the injection temperature of 223.8 . So materials can be a very good fusion, and does not appear Weld. Cavitations are seen in the fusion line and parting surface, and exhaust ducts are set at the opening of weld line. This is not only convenient to exhaust, but also increase the fusion line of fastness. From the Fig.8 flow front temperature graph and Fig.4 weld line graph, we can see the formation of weld lines when the melt temperature is about 230 . The weld line is not obvious, and the results are best. Bulk temperature has reflected the shear heat produced inside the workpiece. If the workpiece has a strong shear within the role, workpiece temperature will rise. In the mold filling stage, the volume can be seen from Fig.9 that the temperature diagram (speed-weighted average temperature) should be very uniform. The minimum temperature is 177.3 C, and the maximum temperature is 234.3 C. The changes meet the bulk temperature controlled range. Fig.7 Recommended ram speed Fig.8 Temperature at flow front Fig.9 Bulk temperature Fig.10 Pressure at the end of filling Applied Mechanics and Materials Vols. 29-32649 Pressure. As can be seen from Fig.10, the pressure distribution is obtained at the end of filling, and analysis of filling pressure distribution is balanced. In the final filling pressure on the lower part of the blue, the entire plastic pressure difference is below 35MPa. Volume / pressure conversion data and filling pressure data at the end of filling mold are the same effect. Usually, the volume and pressure conversion throughout the injection molding cycle is the highest. At this time the size and distribution of pressure through the pressure profile can be observed, and workpiece fill basically reach 100% at the conversion. As can be seen from Fig.11, the largest injection pressure is 53.37MPa in molding process, and it is the red in the diagram position. The grey part in the figure indicates that the workpiece 100% filled with good effect. Pressure at the injection location. Packing process based on the filling process is simulated by optimizing the injection of reasonable force and packing pressure for production preparation. Fig.12 shows the packing process of simulation results. Injection pressure flow is also key parameters, a direct impact on mold filling good or bad. As can be seen from Fig.12, the end of injection molding pressure reaches the maximum 55MPa, less than the maximum injection molding machine, packing pressure curve and set the basic line. Fig.11 Volume / pressure conversion Fig.12 Injection force and packing process Conclusion In the paper, Moldflow software through the flow behavior is used in the simulation, prediction, and display the forefront of melt flow way forward, filling the process pressure and temperature changes, air traps and weld lines the location and so on, which help craft personnel tryout prior to possible defects to predict, optimize the mold structure, improve quality and reduce mold injection mold production cycle, so as to mold development, product processing provide a good guide. Acknowledgment The authors would like to thank Science plan project of Shenzhen (SY200806300273A), team creativity project (CXTD1-007) and nature science (LG-08001) of institute of Information Technology, and nature science of Guangdong (9151802904000008) for their financial support. References 1 Y. Shan: Moldflow Mold analysis technique (Tsinghua University Press, Beijin 2004). 2 R. Pantani :European Polymer Journal,Vol.41/7 (2005), P.1484. 3 J. Koszkul: Journal of Materials Processing Technology, Vol.157-158 (2004), p.183. 4 C.A. Hieber: Polymer Engineering and Science, Vol. 42/7 (2002), p.1387. 5 Du. S. Choi : Int. J. Composite tructures,Vol.47(1999),p.655 6 N. H. Mohamad: International Journal of Mechanical and Materials Engineering, Vol. 4 (2009), p.70 650Applied Mechanics And Mechanical EngineeringApplied Mechanics And Mechanical Engineering 10.4028/ Moldflow Software in a Complex Plastic Shell Injection Mold Design 10.4028/ DOI References2 R. Pantani :European Polymer Journal,Vol.41/7 (2005), P.1484.doi:10.1016/j.eurpolymj.2005.02.006 3 J. Koszkul: Journal of Materials Processing Technology, Vol.157-158 (2004), p.183.doi:10.1016/j.jmatprotec.2004.09.027 4 C.A. Hieber: Polymer Engineering and Science, Vol. 42/7 (2002), p.1387.doi:10.1002/pen.11039
收藏