九九热最新网址,777奇米四色米奇影院在线播放,国产精品18久久久久久久久久,中文有码视频,亚洲一区在线免费观看,国产91精品在线,婷婷丁香六月天

2019-2020學(xué)年新教材高中數(shù)學(xué) 第3章 函數(shù)的概念與性質(zhì) 3.1 函數(shù)的概念及其表示 3.1.1 函數(shù)的概念教學(xué)案 新人教A版必修第一冊(cè)

上傳人:彩*** 文檔編號(hào):104738908 上傳時(shí)間:2022-06-11 格式:DOC 頁數(shù):12 大?。?.54MB
收藏 版權(quán)申訴 舉報(bào) 下載
2019-2020學(xué)年新教材高中數(shù)學(xué) 第3章 函數(shù)的概念與性質(zhì) 3.1 函數(shù)的概念及其表示 3.1.1 函數(shù)的概念教學(xué)案 新人教A版必修第一冊(cè)_第1頁
第1頁 / 共12頁
2019-2020學(xué)年新教材高中數(shù)學(xué) 第3章 函數(shù)的概念與性質(zhì) 3.1 函數(shù)的概念及其表示 3.1.1 函數(shù)的概念教學(xué)案 新人教A版必修第一冊(cè)_第2頁
第2頁 / 共12頁
2019-2020學(xué)年新教材高中數(shù)學(xué) 第3章 函數(shù)的概念與性質(zhì) 3.1 函數(shù)的概念及其表示 3.1.1 函數(shù)的概念教學(xué)案 新人教A版必修第一冊(cè)_第3頁
第3頁 / 共12頁

下載文檔到電腦,查找使用更方便

22 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2019-2020學(xué)年新教材高中數(shù)學(xué) 第3章 函數(shù)的概念與性質(zhì) 3.1 函數(shù)的概念及其表示 3.1.1 函數(shù)的概念教學(xué)案 新人教A版必修第一冊(cè)》由會(huì)員分享,可在線閱讀,更多相關(guān)《2019-2020學(xué)年新教材高中數(shù)學(xué) 第3章 函數(shù)的概念與性質(zhì) 3.1 函數(shù)的概念及其表示 3.1.1 函數(shù)的概念教學(xué)案 新人教A版必修第一冊(cè)(12頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、3.1.1 函數(shù)的概念 (教師獨(dú)具內(nèi)容) 課程標(biāo)準(zhǔn):1.通過豐富實(shí)例,進(jìn)一步體會(huì)函數(shù)是描述變量之間的依賴關(guān)系的重要數(shù)學(xué)模型.2.在此基礎(chǔ)上學(xué)習(xí)用集合與對(duì)應(yīng)的符號(hào)語言來刻畫函數(shù),體會(huì)對(duì)應(yīng)關(guān)系在刻畫函數(shù)概念中的作用.3.了解構(gòu)成函數(shù)的要素,能求一些簡(jiǎn)單函數(shù)的定義域. 教學(xué)重點(diǎn):1.理解函數(shù)的定義,會(huì)求一些簡(jiǎn)單函數(shù)的定義域和值域.2.明確函數(shù)的兩個(gè)要素,了解同一個(gè)函數(shù)的定義,會(huì)判定兩個(gè)給定的函數(shù)是否是同一個(gè)函數(shù). 教學(xué)難點(diǎn):1.對(duì)應(yīng)關(guān)系f的正確理解,函數(shù)符號(hào)y=f(x)的理解.2.抽象函數(shù)的定義域.3.一些簡(jiǎn)單函數(shù)值域的求法. 【知識(shí)導(dǎo)學(xué)】 知識(shí)點(diǎn)一   函數(shù)的概念 一般地,設(shè)A,

2、B是非空的實(shí)數(shù)集,如果對(duì)于集合A中的任意一個(gè)數(shù)x,按照某種確定的對(duì)應(yīng)關(guān)系f,在集合B中都有唯一確定的數(shù)y和它對(duì)應(yīng),那么就稱f:A→B為從集合A到集合B的一個(gè)函數(shù),記作y=f(x),x∈A.其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域;與x的值相對(duì)應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合{f(x)|x∈A}叫做函數(shù)的值域.顯然,值域是集合B的子集. 注意:(1)兩個(gè)非空實(shí)數(shù)集間的對(duì)應(yīng)能否構(gòu)成函數(shù),主要看是否滿足三性:任意性、存在性、唯一性.這是因?yàn)楹瘮?shù)概念中明確要求對(duì)于非空實(shí)數(shù)集A中的任意一個(gè)(任意性)元素x,在非空實(shí)數(shù)集B中都有(存在性)唯一(唯一性)的元素y與之對(duì)應(yīng).這三性只要有一個(gè)不滿足便

3、不能構(gòu)成函數(shù). (2)集合A是函數(shù)的定義域,因?yàn)榻o定A中每一個(gè)x值都有唯一的y值與之對(duì)應(yīng);集合B不一定是函數(shù)的值域,因?yàn)锽中的元素可以在A中沒有與之對(duì)應(yīng)的x,也就是說,B中的某些元素可以不是函數(shù)值,即{f(x)|x∈A}?B. (3)在函數(shù)定義中,我們用符號(hào)y=f(x)表示函數(shù),其中f(x)表示“x對(duì)應(yīng)的函數(shù)值”,而不是“f乘x”. 知識(shí)點(diǎn)二   函數(shù)的兩要素 從函數(shù)的定義可以看出,函數(shù)有三個(gè)要素:定義域、對(duì)應(yīng)關(guān)系、值域,由于值域是由定義域和對(duì)應(yīng)關(guān)系決定的,所以確定一個(gè)函數(shù)只需要兩個(gè)要素:定義域和對(duì)應(yīng)關(guān)系.即要檢驗(yàn)給定的兩個(gè)變量(變量均為數(shù)值)之間是否具有函數(shù)關(guān)系,只要檢驗(yàn): (1)

4、定義域和對(duì)應(yīng)關(guān)系是否給出; (2)根據(jù)給出的對(duì)應(yīng)關(guān)系,自變量x在其定義域中的每一個(gè)值是否都有唯一的函數(shù)值y和它對(duì)應(yīng). 知識(shí)點(diǎn)三   區(qū)間的概念 (1)設(shè)a,b是兩個(gè)實(shí)數(shù),而且a

5、. 我們可以把滿足x≥a,x>a,x≤b,x

6、知拓展】 (1)函數(shù)符號(hào)“y=f(x)”是數(shù)學(xué)中抽象符號(hào)之一,“y=f(x)”僅為y是x的函數(shù)的數(shù)學(xué)表示,不表示y等于f與x的乘積,f(x)也不一定是解析式,還可以是圖表或圖象. (2)函數(shù)的概念中強(qiáng)調(diào)“三性”:任意性、存在性、唯一性,這是因?yàn)楹瘮?shù)定義中明確要求是對(duì)于非空實(shí)數(shù)集A中的任意一個(gè)(任意性)數(shù)x,在非空實(shí)數(shù)集B中都有(存在性)唯一確定(唯一性)的數(shù)y和它對(duì)應(yīng),這“三性”只要有一個(gè)不滿足,便不能構(gòu)成函數(shù). 1.判一判(正確的打“√”,錯(cuò)誤的打“×”) (1)函數(shù)值域中的每一個(gè)數(shù)都有定義域中的數(shù)與之對(duì)應(yīng).(  ) (2)函數(shù)的定義域和值域一定是無限集合.(  ) (3)定

7、義域和對(duì)應(yīng)關(guān)系確定后,函數(shù)值域也就確定了.(  ) (4)若函數(shù)的定義域中只有一個(gè)元素,則值域中也只有一個(gè)元素.(  ) (5)對(duì)于定義在集合A到集合B上的函數(shù)y=f(x),x1,x2∈A,若x1≠x2,則f(x1)≠f(x2).(  ) 答案 (1)√ (2)× (3)√ (4)√ (5)× 2.做一做(請(qǐng)把正確的答案寫在橫線上) (1)下列給出的對(duì)應(yīng)關(guān)系f,不能確定從集合A到集合B的函數(shù)關(guān)系的是________. ①A={1,4},B={-1,1,-2,2},對(duì)應(yīng)關(guān)系:開平方; ②A={0,1,2},B={1,2},對(duì)應(yīng)關(guān)系: ③A=[0,2],B=[0,1],對(duì)應(yīng)關(guān)系

8、: (2)下列函數(shù)中,與函數(shù)y=x是同一個(gè)函數(shù)的是________. ①y=;②y=;③y=()2;④s=t. 答案 (1)①③ (2)②④ 題型一 求函數(shù)的定義域                   例1 求下列函數(shù)的定義域: (1)y=2x+3;(2)f(x)=;(3)y=+;(4)y=;(5)y=(1-2x)0. [解] (1)函數(shù)y=2x+3的定義域?yàn)閧x|x∈R}. (2)要使函數(shù)式有意義,即分式有意義,則x+1≠0,x≠-1.故函數(shù)的定義域?yàn)閧x|x≠-1}. (3)要使函數(shù)式有意義,則即所以x=1,從而函數(shù)的定義域?yàn)閧x|x=1}. (4)因?yàn)楫?dāng)x2-

9、1≠0,即x≠±1時(shí),有意義,所以函數(shù)的定義域是{x|x≠±1}. (5)∵1-2x≠0,即x≠, ∴函數(shù)的定義域?yàn)閤≠}. 例2 已知函數(shù)f(x)的定義域是[-1,4],求函數(shù)f(2x+1)的定義域. [解] 已知函數(shù)f(x)的定義域是[-1,4],即-1≤x≤4. 故對(duì)于f(2x+1)應(yīng)有-1≤2x+1≤4. ∴-2≤2x≤3,∴-1≤x≤, ∴函數(shù)f(2x+1)的定義域是. 例3 如圖所示,用長(zhǎng)為1 m的鐵絲做一個(gè)下部為矩形、上部為半圓形的框架(鐵絲恰好用完),若半圓的半徑為x(單位:m),求此框架圍成的面積y(單位:m2)與x的函數(shù)關(guān)系式. [解] 由題意可得

10、,AB=2x,的長(zhǎng)為πx, 于是AD=, ∴y=2x·+,即y=-x2+x. 由得0

11、義域: ①若f(x)的定義域?yàn)閇a,b],則f[g(x)]中,g(x)∈[a,b],從中解得x的解集即f[g(x)]的定義域. ②若f[g(x)]的定義域?yàn)閇m,n],則由x∈[m,n]可確定g(x)的范圍,設(shè)u=g(x),則f[g(x)]=f(u),又f(u)與f(x)是同一個(gè)函數(shù),所以g(x)的范圍即f(x)的定義域. ③已知f[φ(x)]的定義域,求f[h(x)]的定義域,先由f[φ(x)]中x的取值范圍,求出φ(x)的取值范圍,即f(x)中的x的取值范圍,即h(x)的取值范圍,再根據(jù)h(x)的取值范圍便可以求出f[h(x)]中x的取值范圍. (6)實(shí)際問題:若y=f(x)是由實(shí)

12、際問題確定的,其定義域要受實(shí)際問題的約束.如:例3中,任何一條線段的長(zhǎng)均大于零.  (1)若函數(shù)f(x+1)的定義域?yàn)椋瑒t函數(shù)f(x-1)的定義域?yàn)開_______; (2)求下列函數(shù)的定義域: ①y=-;②y=; (3)①求函數(shù)y=+-的定義域; ②將長(zhǎng)為a m的鐵絲折成矩形(鐵絲恰好用完),求矩形的面積y(單位:m2)關(guān)于一邊長(zhǎng)x(單位:m)的解析式,并寫出此函數(shù)的定義域. 答案 (1) (2)見解析 (3)見解析 解析 (1)由題意知,-≤x≤2,則≤x+1≤3, 即f(x)的定義域?yàn)?,∴≤x-1≤3, 解得≤x≤4.∴f(x-1)的定義域?yàn)? (2)①要使函數(shù)有意義

13、,自變量x的取值必須滿足即 ∴函數(shù)的定義域?yàn)閧x|x≤1,且x≠-1}. ②要使函數(shù)有意義,需滿足|x|-x≠0,即|x|≠x, ∴x<0. ∴函數(shù)的定義域?yàn)閧x|x<0}. (3)①解不等式組得 故函數(shù)的定義域是{x|1≤x≤5,且x≠3}. ②因?yàn)榫匦蔚囊贿呴L(zhǎng)為x,則另一邊長(zhǎng)為(a-2x), 所以y=x·(a-2x)=-x2+ax, 定義域?yàn)? 題型二 已知函數(shù)值求自變量的值 例4 已知函數(shù)f(x)=2x2-4,x∈R,若f(x0)=2,求x0的值. [解] 易知f(x0)=2x-4, ∴2x-4=2,即x=3. 又∵x0∈R,∴x0=±. 金版點(diǎn)睛 就本

14、例而言,已知函數(shù)值求自變量的值就是解方程,需要注意:所求的自變量的值必須在函數(shù)的定義域內(nèi).如果本例中加一個(gè)條件“x∈[0,+∞)”,則x0=(-不符合題意,舍去).  已知函數(shù)f(x)=x2-2x,x∈(-∞,0),若f(x0)=3.求x0的值. 解 由題意可得f(x0)=x-2x0. ∴x-2x0=3,即x-2x0-3=0. 解得x0=3或x0=-1. 又∵x0∈(-∞,0),∴x0=-1. 題型三 已知自變量的值求函數(shù)值 例5 已知f(x)=x2,x∈R,求: (1)f(0),f(1); (2)f(a),f(a+1). [解] (1)f(0)=02=0,f(1)=

15、12=1. (2)∵a∈R,a+1∈R, ∴f(a)=a2,f(a+1)=(a+1)2. 金版點(diǎn)睛 對(duì)于函數(shù)定義域內(nèi)的每一個(gè)值,都可以求函數(shù)值(當(dāng)然函數(shù)值唯一),本例可以直接應(yīng)用公式:f(x)=x2求解,實(shí)質(zhì)上就是求代數(shù)式的值,例如f(1)就是當(dāng)x=1時(shí),代數(shù)式x2的值,而f(a+1)就是當(dāng)x=a+1時(shí),代數(shù)式x2的值.  已知f(x)=+,求: (1)f(2); (2)當(dāng)a>0時(shí),f(a+1)的值. 解 (1)f(2)=+. (2)易知f(x)的定義域A=[0,+∞), ∵a>0,∴a+1>1,則a+1∈A, ∴f(a+1)=+. 題型四 求函數(shù)的值域 例6 求下

16、列函數(shù)的值域: (1)y=x+1,x∈{1,2,3,4,5}; (2)y=x2-2x+3,x∈[0,3); (3)y=; (4)y=2x-. [解] (1)(觀察法)因?yàn)閤∈{1,2,3,4,5},分別代入求值,可得函數(shù)的值域?yàn)閧2,3,4,5,6}. (2)(配方法)y=x2-2x+3=(x-1)2+2,由x∈[0,3),再結(jié)合函數(shù)的圖象(如圖),可得函數(shù)的值域?yàn)閇2,6). (3)(分離常數(shù)法)y===2+, 顯然≠0,所以y≠2. 故函數(shù)的值域?yàn)?-∞,2)∪(2,+∞). (4)(換元法)設(shè)t=,則x=t2+1,且t≥0, 所以y=2(t2+1)-t =

17、22+, 由t≥0,再結(jié)合函數(shù)的圖象(如右圖),可得函數(shù)的值域?yàn)? 金版點(diǎn)睛 求函數(shù)值域的原則及常用方法 (1)原則:①先確定相應(yīng)的定義域;②再根據(jù)函數(shù)的具體形式及運(yùn)算法則確定其值域. (2)常用方法 ①觀察法:對(duì)于一些比較簡(jiǎn)單的函數(shù),其值域可通過觀察法得到. ②配方法:是求“二次函數(shù)”類值域的基本方法. ③換元法:運(yùn)用新元代換,將所給函數(shù)化成值域易確定的函數(shù),從而求得原函數(shù)的值域.對(duì)于f(x)=ax+b+(其中a,b,c,d為常數(shù),且ac≠0)型的函數(shù)常用換元法. ④分離常數(shù)法:此方法主要是針對(duì)有理分式,即將有理分式轉(zhuǎn)化為“反比例函數(shù)類”的形式,便于求值域.  求下列

18、函數(shù)的值域: (1)y=; (2)y=x2-4x+6,x∈[1,5); (3)y=x+. 解 (1)∵y===1-,且≠0, ∴函數(shù)y=的值域?yàn)閧y|y≠1}. (2)配方,得y=(x-2)2+2. ∵x∈[1,5), ∴結(jié)合函數(shù)的圖象可知,函數(shù)的值域?yàn)閧y|2≤y<11}. (3)(換元法)設(shè)t=,則x=t2-1,且t≥0, 所以y=t2+t-1=2-, 由t≥0,再結(jié)合函數(shù)的圖象可得函數(shù)的值域?yàn)閇-1,+∞). 題型五 相同函數(shù)的判斷 例7 下列各組函數(shù)表示同一函數(shù)的是(  ) A.f(x)=x,g(x)=()2 B.f(x)=x2+1,g(t)=t2+1

19、 C.f(x)=1,g(x)= D.f(x)=x,g(x)=|x| [解析] A項(xiàng)中,由于f(x)=x的定義域?yàn)镽,g(x)=()2的定義域?yàn)閧x|x≥0},它們的定義域不相同,所以它們不是同一函數(shù). B項(xiàng)中,函數(shù)的定義域、值域和對(duì)應(yīng)關(guān)系都相同,所以它們是同一函數(shù). C項(xiàng)中,由于f(x)=1的定義域?yàn)镽,g(x)=的定義域?yàn)閧x|x≠0},它們的定義域不相同,所以它們不是同一函數(shù). D項(xiàng)中,兩個(gè)函數(shù)的定義域相同,但對(duì)應(yīng)關(guān)系不同,所以它們不是同一函數(shù). [答案] B 金版點(diǎn)睛 判斷兩個(gè)函數(shù)為同一函數(shù)的條件 (1)判斷兩個(gè)函數(shù)是相同函數(shù)的準(zhǔn)則是兩個(gè)函數(shù)的定義域和對(duì)應(yīng)關(guān)系分別相同.

20、定義域、對(duì)應(yīng)關(guān)系兩者中只要有一個(gè)不相同就不是相同函數(shù),即使定義域與值域都相同,也不一定是相同函數(shù). (2)函數(shù)是兩個(gè)實(shí)數(shù)集之間的對(duì)應(yīng)關(guān)系,所以用什么字母表示自變量、因變量是沒有限制的.另外,在化簡(jiǎn)解析式時(shí),必須是等價(jià)變形.  下列函數(shù)中哪個(gè)與函數(shù)y=x相同? (1)y=()2;(2)y=;(3)y=;(4)y=. 解 (1)y=()2=x(x≥0),y≥0,定義域不同且值域不同,所以不相同. (2)y==x(x∈R),y∈R,對(duì)應(yīng)關(guān)系相同,定義域和值域都相同,所以相同. (3)y==|x|=y(tǒng)≥0;值域不同,且當(dāng)x<0時(shí),它的對(duì)應(yīng)關(guān)系與函數(shù)y=x不相同,所以不相同. (4)y

21、=的定義域?yàn)閧x|x≠0},與函數(shù)y=x的定義域不相同,所以不相同. 1.下列各圖中,可能是函數(shù)y=f(x)的圖象的是(  ) 答案 D 解析 A,B中的圖象與y軸有兩個(gè)交點(diǎn),即有兩個(gè)y值與x=0對(duì)應(yīng),所以A,B不可能是函數(shù)y=f(x)的圖象;對(duì)于C中圖象,過x=1作與x軸垂直的直線,與圖象有兩個(gè)交點(diǎn),所以C不可能是函數(shù)y=f(x)的圖象.故選D. 2.函數(shù)f(x)=x+的定義域是(  ) A.{x|x≥2} B.{x|x>2} C.{x|x≤2} D.{x|x<2} 答案 C 解析 要使函數(shù)式有意義,則2-x≥0,即x≤2.所以函數(shù)的定義域?yàn)閧x|x≤2}. 3

22、.已知函數(shù)f(x)的定義域?yàn)?-1,0),則函數(shù)f(2x+1)的定義域?yàn)?  ) A.(-1,1) B. C.(-1,0) D. 答案 B 解析 ∵原函數(shù)的定義域?yàn)?-1,0), ∴-1<2x+1<0,解得-1

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!