《九年級(jí)總復(fù)習(xí) 考點(diǎn)跟蹤突破專題7》由會(huì)員分享,可在線閱讀,更多相關(guān)《九年級(jí)總復(fù)習(xí) 考點(diǎn)跟蹤突破專題7(3頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、九年級(jí)總復(fù)習(xí) 考點(diǎn)跟蹤突破專題7
1.(30分)(xx·綏化)如圖,直線MN與x軸、y軸分別相交于A,C兩點(diǎn),分別過A,C兩點(diǎn)作x軸、y軸的垂線相交于B點(diǎn),且OA,OC(OA>OC)的長(zhǎng)分別是一元二次方程x2-14x+48=0的兩個(gè)實(shí)數(shù)根.
(1)求C點(diǎn)坐標(biāo);
(2)求直線MN的解析式;
(3)在直線MN上存在點(diǎn)P,使以點(diǎn)P,B,C三點(diǎn)為頂點(diǎn)的三角形是等腰三角形,請(qǐng)直接寫出P點(diǎn)的坐標(biāo).
解:(1)解方程x2-14x+48=0得x1=6,x2=8.∵OA,OC(OA>OC)的長(zhǎng)分別是一元二次方程x2-14x+48=0的兩個(gè)實(shí)數(shù)根,∴OC=6,OA=8.∴C(0,6)
(2)設(shè)直線
2、MN的解析式是y=kx+b(k≠0).由(1)知,OA=8,則A(8,0).∵點(diǎn)A,C都在直線MN上,∴解得∴直線MN的解析式為y=-x+6
(3)∵A(8,0),C(0,6),∴根據(jù)題意知B(8,6).∵點(diǎn)P在直線MN∶y=-x+6上,∴設(shè)P(a,-a+6),當(dāng)以點(diǎn)P,B,C三點(diǎn)為頂點(diǎn)的三角形是等腰三角形時(shí),需要分類討論:①當(dāng)PC=PB時(shí),點(diǎn)P是線段BC的垂直平分線與直線MN的交點(diǎn),即P1(4,3);②當(dāng)PC=BC時(shí),a2+(-a+6-6)2=64,解得a=±,則P2(-,),P3(,);③當(dāng)PB=BC時(shí),(a-8)2+(-a+6-6)2=64,解得a=,則-a+6=-,∴P4(,-)
3、.綜上所述,符合條件的點(diǎn)P有P1(4,3),P2(-,),P3(,),P4(,-)
2.(30分)(xx·梅州)如圖,已知拋物線y=2x2-2與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C.
(1)寫出以A,B,C為頂點(diǎn)的三角形面積;
(2)過點(diǎn)E(0,6)且與x軸平行的直線l1與拋物線相交于M,N兩點(diǎn)(點(diǎn)M在點(diǎn)N的左側(cè)),以MN為一邊,拋物線上的任一點(diǎn)P為另一頂點(diǎn)作平行四邊形,當(dāng)平行四邊形的面積為8時(shí),求出點(diǎn)P的坐標(biāo);
(3)過點(diǎn)D(m,0)(其中m>1)且與x軸垂直的直線l2上有一點(diǎn)Q(點(diǎn)Q在第一象限),使得以Q,D,B為頂點(diǎn)的三角形和以B,C,O為頂點(diǎn)的三角形相似,求線
4、段QD的長(zhǎng).(用含m的代數(shù)式表示)
解:(1)∵y=2x2-2,∴當(dāng)y=0時(shí),2x2-2=0,x=±1,∴點(diǎn)A的坐標(biāo)為(-1,0),點(diǎn)B的坐標(biāo)為(1,0),AB=2,又當(dāng)x=0時(shí),y=-2,∴點(diǎn)C的坐標(biāo)為(0,-2),OC=2,∴S△ABC=AB·OC=×2×2=2
(2)將y=6代入y=2x2-2,得2x2-2=6,x=±2,∴點(diǎn)M的坐標(biāo)為(-2,6),點(diǎn)N的坐標(biāo)為(2,6),MN=4.∵平行四邊形的面積為8,∴MN邊上的高為8÷4=2,∴P點(diǎn)縱坐標(biāo)為6±2.①當(dāng)P點(diǎn)縱坐標(biāo)為6+2=8時(shí),2x2-2=8,x=±,∴點(diǎn)P的坐標(biāo)為(,8)或(-,8);②當(dāng)P點(diǎn)縱坐標(biāo)為6-2=4時(shí),2x2
5、-2=4,x=±,∴點(diǎn)P的坐標(biāo)為(,4)或(-,4)
(3)∵點(diǎn)B的坐標(biāo)為(1,0),點(diǎn)C的坐標(biāo)為(0,-2),∴OB=1,OC=2.∵∠QDB=∠BOC=90°,∴以Q,D,B為頂點(diǎn)的三角形和以B,C,O為頂點(diǎn)的三角形相似時(shí),分兩種情況:①OB與BD邊是對(duì)應(yīng)邊時(shí),△OBC∽△DBQ,則=,即=,解得DQ=2(m-1)=2m-2;②OB與QD邊是對(duì)應(yīng)邊時(shí),△OBC∽△DQB,則=,即=,解得DQ=.綜上所述,線段QD的長(zhǎng)為2m-2或
3.(40分)(xx·泰安)二次函數(shù)y=ax2+bx+c的圖象經(jīng)過點(diǎn)(-1,4),且與直線y=-x+1相交于A,B兩點(diǎn)(如圖),A點(diǎn)在y軸上,過點(diǎn)B作BC
6、⊥x軸,垂足為點(diǎn)C(-3,0).
(1)求二次函數(shù)的表達(dá)式;
(2)點(diǎn)N是二次函數(shù)圖象上一點(diǎn)(點(diǎn)N在AB上方),過N作NP⊥x軸,垂足為點(diǎn)P,交AB于點(diǎn)M,求MN的最大值;
(3)在(2)的條件下,點(diǎn)N在何位置時(shí),BM與NC相互垂直平分?并求出所有滿足條件的N點(diǎn)的坐標(biāo).
解:(1)由題設(shè)可知A(0,1),B(-3,),根據(jù)題意得解得則二次函數(shù)的解析式是y=-x2-x+1
(2)設(shè)N(x,-x2-x+1),則M,P點(diǎn)的坐標(biāo)分別是(x,-x+1),(x,0).∴MN=PN-PM=-x2-x+1-(-x+1)=-x2-x=-(x+)2+,則當(dāng)x=-時(shí),MN的最大值為
(3)連接MC,BN,BM與NC互相垂直平分,即四邊形BCMN是菱形,由于BC∥MN,MN=BC,且BC=MC,即-x2-x=,且(-x+1)2+(x+3)2=,解得x=-1,故當(dāng)N(-1,4)時(shí),BM和NC互相垂直平分