2022年高考數(shù)學二輪復(fù)習 平面向量(含解析)
《2022年高考數(shù)學二輪復(fù)習 平面向量(含解析)》由會員分享,可在線閱讀,更多相關(guān)《2022年高考數(shù)學二輪復(fù)習 平面向量(含解析)(28頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、2022年高考數(shù)學二輪復(fù)習 平面向量(含解析) 一、本章知識結(jié)構(gòu): 二、高考要求 1、理解向量的概念,掌握向量的幾何表示,了解共線向量的概念。2、掌握向量的加法和減法的運算法則及運算律。3、掌握實數(shù)與向量的積的運算法則及運算律,理解兩個向量共線的充要條件。4、了解平面向量基本定理,理解平面向量的坐標的概念,掌握平面向量的坐標運算。5、掌握平面向量的數(shù)量積及其幾何意義,了解用平面向量的數(shù)量積可以處理有關(guān)長度、角度和垂直的問題,掌握向量垂直的條件。6、掌握線段的定比分點和中點坐標公式,并且能熟練運用;掌握平移公式。7、掌握正、余弦定理,并能初步運用它們解斜三角形。8、通過解三角形的應(yīng)用的
2、教學,繼續(xù)提高運用所學知識解決實際問題的能力。 三、熱點分析 對本章內(nèi)容的考查主要分以下三類: 1.以選擇、填空題型考查本章的基本概念和性質(zhì).此類題一般難度不大,用以解決有關(guān)長度、夾角、垂直、判斷多邊形形狀等問題. 2.以解答題考查圓錐曲線中的典型問題.此類題綜合性比較強,難度大,以解析幾何中的常規(guī)題為主. 3.向量在空間中的應(yīng)用(在B類教材中).在空間坐標系下,通過向量的坐標的表示,運用計算的方法研究三維空間幾何圖形的性質(zhì). 在復(fù)習過程中,抓住源于課本,高于課本的指導(dǎo)方針.本章考題大多數(shù)是課本的變式題,即源于課本.因此,掌握雙基、精通課本是本章關(guān)鍵.分析近幾年來的高考試題,有
3、關(guān)平面向量部分突出考查了向量的基本運算。對于和解析幾何相關(guān)的線段的定比分點和平移等交叉內(nèi)容,作為學習解析幾何的基本工具,在相關(guān)內(nèi)容中會進行考查。本章的另一部分是解斜三角形,它是考查的重點??偠灾矫嫦蛄窟@一章的學習應(yīng)立足基礎(chǔ),強化運算,重視應(yīng)用??疾榈闹攸c是基礎(chǔ)知識和基本技能。 四、復(fù)習建議 由于本章知識分向量與解斜三角形兩部分,所以應(yīng)用本章知識解決的問題也分為兩類:一類是根據(jù)向量的概念、定理、法則、公式對向量進行運算,并能運用向量知識解決平面幾何中的一些計算和證明問題;另一類是運用正、余弦定理正確地解斜三角形,并能應(yīng)用解斜三角形知識解決測量不可到達的兩點間的距離問題。 在解決關(guān)于向
4、量問題時,一是要善于運用向量的平移、伸縮、合成、分解等變換,正確地進行向量的各種運算,進一步加深對“向量”這一二維性的量的本質(zhì)的認識,并體會用向量處理問題的優(yōu)越性。二是向量的坐標運算體現(xiàn)了數(shù)與形互相轉(zhuǎn)化和密切結(jié)合的思想,所以要通過向量法和坐標法的運用,進一步體會數(shù)形結(jié)合思想在解決數(shù)學問題上的作用。 在解決解斜三角形問題時,一方面要體會向量方法在解三角形方面的應(yīng)用,另一方面要體會解斜三角形是重要的測量手段,通過學習提高解決實際問題的能力。 五、典型例題 【例1】 在下列各命題中為真命題的是( ) ①若=(x1,y1)、=(x2,y2),則·=x1y1+x2y2 ②若A(x1,y1
5、)、B(x2,y2),則||= ③若=(x1,y1)、=(x2,y2),則·=0x1x2+y1y2=0 ④若=(x1,y1)、=(x2,y2),則⊥x1x2+y1y2=0 A、①② B、②③ C、③④ D、①④ 解:根據(jù)向量數(shù)量積的坐標表示;若=(x1,y1), =(x2,y2),則·=x1x2+y1y2,對照命題(1)的結(jié)論可知,它是一個假命題、 于是對照選擇支的結(jié)論、可以排除(A)與(D),而在(B)與(C)中均含有(3)、故不必對(3)進行判定,它一定是正確的、對命題(2)而言,它就是兩點間距離公式,故它是真命題,這樣就以排除了(C),應(yīng)選擇(B)
6、、 說明:對于命題(3)而言,由于·=0=或=或⊥x1x2+y1y2=0,故它是一個真命題、 而對于命題(4)來講,⊥x1x2+y1y2=0、但反過來,當x1x2+y1y2=0時,可以是x1=y1=0,即=,而我們的教科書并沒有對零向量是否與其它向量垂直作出規(guī)定,因此x1x2+y1y2=0⊥),所以命題(4)是個假命題、 【例2】 已知=(-,-1), =(1, ),那么,的夾角θ=( ) A、30° B、60° C、120° D、150° 解:·=(-,-1)·(1,)=-2 ||==2 ||==2 ∴cosθ=== 【例3】 已知=(2
7、,1), =(-1,3),若存在向量使得:·=4, ·=-9,試求向量的坐標、 解:設(shè)=(x,y),則由·=4可得: 2x+y=4;又由·=-9可得:-x+3y=-9 于是有: 由(1)+2(2)得7y=-14,∴y=-2,將它代入(1)可得:x=3 ∴=(3,-2)、 說明:已知兩向量,可以求出它們的數(shù)量積·,但是反過來,若已知向量及數(shù)量積·,卻不能確定、 【例4】 求向量=(1,2)在向量=(2,-2)方向上的投影、 解:設(shè)向量與的夾角θ、 有cosθ= ==- ∴在方向上的投影=||cosθ=×(-)=- 【例5】 已知△ABC的頂點分別為A(2,1),B(3
8、,2),C(-3,-1),BC邊上的高AD,求及點D的坐標、 解:設(shè)點D的坐標為(x,y) ∵AD是邊BC上的高, ∴AD⊥BC,∴⊥ 又∵C、B、D三點共線, ∴∥ 又=(x-2,y-1), =(-6,-3) =(x-3,y-2) ∴ 解方程組,得x=,y= ∴點D的坐標為(,),的坐標為(-,) 【例6】 設(shè)向量、滿足:||=||=1,且+=(1,0),求,、 解:∵||=||=1, ∴可設(shè)=(cosα,sinα), =(cosβ,sinβ)、 ∵+=(cosα+cosβ,sinα+sinβ)=(1,0), 由(1)得:cosα=1-cosβ……(3)
9、 由(2)得:sinα=-sinβ……(4) ∴cosα=1-cosβ= ∴sinα=±,sinβ= 或 【例7】 對于向量的集合A={=(x,y)|x2+y2≤1}中的任意兩個向量、與兩個非負實數(shù)α、β;求證:向量α+β的大小不超過α+β、 證明:設(shè)=(x1,y1), =(x2,y2) 根據(jù)已知條件有:x21+y21≤1,x22+y22≤1 又因為|α+β|= = 其中x1x2+y1y2≤ ≤1 所以|α+β|≤=|α+β|=α+β 【例8】 已知梯形ABCD中,AB∥CD,∠CDA=∠DAB=90°,CD=DA=AB、 求證:AC⊥BC 證明:以A為原點,AB
10、所在直線為x軸,建立直角坐標系、如圖,設(shè)AD=1 則A(0,0)、B(2,0)、C(1,1)、D(0,1) ∴=(-1,1), =(1,1) ·=-1×1+1×1=0 ∴BC⊥AC、 【例9】 已知A(0,a),B(0,b),(0<a<b),在x軸的正半軸上求點C,使∠ACB最大,并求出最大值、 解,設(shè)C(x,0)(x>0) 則=(-x,a), =(-x,b) 則·=x2+ab、 cos∠ACB== 令t=x2+ab 故cos∠ACB= 當=即t=2ab時,cos∠ACB最大值為、 當C的坐標為(,0)時,∠ACB最大值為arccos、 【例10】 如圖,四邊形
11、ABCD是正方形,P是對角線BD上的一點,PECF是矩形,用向量法證明 (1)PA=EF (2)PA⊥EF 證明:建立如圖所示坐標系,設(shè)正方形邊長為1, ||=λ,則A(0,1),P(λ,λ),E(1,λ),F(xiàn)(λ,0) ∴=(-λ,1-λ), =(λ-1,- λ) (1)||2=(-λ)2+(1-λ)2=λ2-λ+1 ||2=(λ-1)2+(-λ)2=λ2-λ+1 ∴||2=||2,故PA=EF (2) ·=(-λ)(λ-1)+(1-λ)(-λ)=0 ∴⊥ ∴PA⊥EF、 【例11】 已知 ① 求; ②當k為何實數(shù)時,k與平行, 平行時它們是同向
12、還是反向? 解:①= (1,0) + 3(2,1) = ( 7,3) , ∴= =. ②k= k(1,0)-(2,1)=(k-2,-1). 設(shè)k=λ(),即(k-2,-1)= λ(7,3), ∴ . 故k= 時, 它們反向平行. 【例12】 已知與的夾角為,若向量與垂直, 求k. 解:=2×1×=1. ∵與垂直, ∴()= , ∴2 k = - 5. 【例13】 如果△ABC的三邊a、b、c滿足b2 + c 2 = 5a2,BE、CF分別為AC邊與AB上的中線, 求證:BE⊥CF. 解: ∴⊥, 即 BE⊥CF . 【例14】 是否存在
13、4個平面向量,兩兩不共線,其中任何兩個向量之和均與其余兩個向量之和垂直? 解:如圖所示,在正△ABC中,O為其內(nèi)心,P為圓周上一點, 滿足,,,兩兩不共線,有 (+)·(+) =(+++)·(++) =(2++)·(2+) =(2-)·(2+) =42-2 =42-2=0 有(+)與(+)垂直、 同理證其他情況、從而,,,滿足題意、故存在這樣4個平面向量、 平面向量的綜合應(yīng)用 1.利用向量的坐標運算,解決兩直線的夾角,判定兩直線平行、垂直問題 【例1】 已知向量滿足條件,,求證:是正三角形 解:令O為坐標原點,可設(shè) 由,即 ① ② 兩式平方和為,, 由
14、此可知的最小正角為,即與的夾角為, 同理可得與的夾角為,與的夾角為, 這說明三點均勻分部在一個單位圓上, 所以為等腰三角形. 【例2】 求等腰直角三角形中兩直角邊上的中線所成的鈍角的度數(shù) 解:如圖,分別以等腰直角三角形的兩直角邊為軸、 軸建立直角坐標系,設(shè),則, 從而可求:, =. . 2.利用向量的坐標運算,解決有關(guān)線段的長度問題 【例3】 已知,AD為中線,求證 證明:以B為坐標原點,以BC所在的直線為軸建立如圖2直角坐標系, 設(shè),, 則, . =, 從而, . 3.利用向量的坐標運算,用已知向量表示未知向量 【例4】 已知點是 且試用 解:
15、以O(shè)為原點,OC,OB所在的直線為軸和軸建立如圖3所示的坐標系. 由OA=2,,所以, 易求,設(shè) . 【例5】 如圖, 用表示 解:以O(shè)為坐標原點,以O(shè)A所在的直線為軸,建立如圖所示的直角坐標系,則, . 4.利用向量的數(shù)量積解決兩直線垂直問題 【例6】 如圖,已知平行六面體ABCD—A1B1C1D1的底面ABCD是菱形,且∠C1CB=∠C1CD=∠BCD. (1)求證:C1C⊥BD. (2)當?shù)闹禐槎嗌贂r,能使A1C⊥平面C1BD?請給出證明. (1)證明:設(shè)=a, =b,=c,依題意,|a|=|b|,、、中兩兩所成夾角為θ,于是=a-b,=
16、c(a-b)=c·a-c·b=|c|·|a|cosθ-|c|·|b|cosθ=0,∴C1C⊥BD. (2)解:若使A1C⊥平面C1BD,只須證A1C⊥BD,A1C⊥DC1, 由 =(a+b+c)·(a-c)=|a|2+a·b-b·c-|c|2=|a|2-|c|2+|b|·|a|cosθ-|b|·|c|·cosθ=0,得 當|a|=|c|時,A1C⊥DC1,同理可證當|a|=|c|時,A1C⊥BD, ∴=1時,A1C⊥平面C1BD. 【例7】 如圖,直三棱柱ABC—A1B1C1,底面△ABC中,CA=CB=1,∠BCA=90°,AA1=2,M、N分別是A1B1、A1A的中點. (1
17、)求的長; (2)求cos<>的值; (3)求證:A1B⊥C1M. 解:(1)如圖,以C為原點建立空間直角坐標系O-xyz. 依題意得:B(0,1,0),N(1,0,1) ∴||=. (2)解:依題意得:A1(1,0,2),C(0,0,0),B1(0,1,2). ∴==(0,1,2) =1×0+(-1)×1+2×2=3 ||= (3)證明:依題意得:C1(0,0,2),M() ∴ ∴A1B⊥C1M. 5.利用向量的數(shù)量積解決有關(guān)距離的問題,距離問題包括點到點的距離,點的線的距離,點到面的距離,線到線的距離,線到面的距離,面到面的距離. 【例8】 求平面內(nèi)
18、兩點間的距離公式 解:設(shè)點 , ,而 點與點之間的距離為: 6.利用向量的數(shù)量積解決線與線的夾角及面與面的夾角問題. 【例9】 證明: 證明:在單位圓上任取兩點,以為始邊,以為終邊的角分別為,則點坐標為點坐標為; 則向量,它們的夾角為, ,由向量夾角公式得: ,從而得證. 注:用同樣的方法可證明 7.利用向量的數(shù)量積解決有關(guān)不等式、最值問題. 【例10】 證明柯西不等式 證明:令 (1) 當或時,,結(jié)論顯然成立; (2) 當且時,令為的夾角,則 . 又 (當且僅當時等號成立) .(當且僅當時等號成立) 【例11】 求的最值
19、 解:原函數(shù)可變?yōu)椋? 所以只須求的最值即可, 構(gòu)造, 那么. 故. 【例12】 三角形ABC中,A(5,-1)、B(-1,7)、C(1,2),求:(1)BC邊上的中線 AM的長;(2)∠CAB的平分線AD的長;(3)cosABC的值. 解:(1)點M的坐標為xM= D點分的比為2. ∴xD= (3)∠ABC是與的夾角,而=(6,8),=(2,-5). 解斜三角形 【例1】 已知△ABC的三個內(nèi)角A、B、C滿足A+C=2B.,求cos的值. 解法一:由題設(shè)條件知B=60°,A+C=120°. 設(shè)α=,則A-C=2α,可得A=60°+α,C=60°-α,
20、 依題設(shè)條件有 整理得4cos2α+2cosα-3=0(M) (2cosα-)(2cosα+3)=0,∵2cosα+3≠0, ∴2cosα-=0.從而得cos. 解法二:由題設(shè)條件知B=60°,A+C=120° ①,把①式化為cosA+cosC=-2cosAcosC ②, 利用和差化積及積化和差公式,②式可化為 ③, 將cos=cos60°=,cos(A+C)=-代入③式得: ④ 將cos(A-C)=2cos2()-1代入 ④:4cos2()+2cos-3=0,(*),
21、 【例2】 在海島A上有一座海拔1千米的山,山頂設(shè)有一個觀察站P,上午11時,測得一輪船在島北30°東,俯角為60°的B處,到11時10分又測得該船在島北60°西、俯角為30°的C處。 (1)求船的航行速度是每小時多少千米; (2)又經(jīng)過一段時間后,船到達海島的正西方向的D處,問此時船距島A有多遠? 解:(1)在Rt△PAB中,∠APB=60° PA=1,∴AB= (千米) 在Rt△PAC中,∠APC=30°,∴AC= (千米) 在△ACB中,∠CAB=30°+60°=90° (2)∠DAC=90°-60°=30° sinDCA=sin(180°-∠ACB)=sinACB=
22、 sinCDA=sin(∠ACB-30°)=sinACB·cos30°-cosACB·sin30°. 在△ACD中,據(jù)正弦定理得, ∴ 答:此時船距島A為千米. 【例3】 已知△ABC的三內(nèi)角A、B、C滿足A+C=2B,設(shè)x=cos,f(x)=cosB(). (1)試求函數(shù)f(x)的解析式及其定義域; (2)判斷其單調(diào)性,并加以證明; (3)求這個函數(shù)的值域. 解:(1)∵A+C=2B,∴B=60°,A+C=120° ∵0°≤||<60°,∴x=cos∈(,1 又4x2-3≠0,∴x≠,∴定義域為(,)∪(,1]. (2)設(shè)x1<x2,∴f(x2)-f(x1)=
23、 =,若x1,x2∈(),則4x12-3<0,4x22-3<0,4x1x2+3>0,x1-x2<0,∴f(x2)-f(x1)<0 即f(x2)<f(x1),若x1,x2∈(,1],則4x12-3>0. 4x22-3>0,4x1x2+3>0,x1-x2<0,∴f(x2)-f(x1)<0. 即f(x2)<f(x1),∴f(x)在(,)和(,1上都是減函數(shù). (3)由(2)知,f(x)<f()=-或f(x)≥f(1)=2. 故f(x)的值域為(-∞,-)∪[2,+∞. 【例4】 在中,角所對的邊分別為.若,求角. 解:由正弦定理,將已知等式中的邊轉(zhuǎn)化為角.可得 . 因為,故有
24、, ∴ . 又∵ , ∴ , 即, 由,可解得. 【例5】 在△ABC中,已知. (1)若任意交換的位置,的值是否會發(fā)生變化?試證明你的結(jié)論; (2)求的最大值. 解:(1)∵ , ∴ 任意交換的位置,的值不會發(fā)生變化. (2) 解法1:將看作是關(guān)于的二次函數(shù). . 所以,當,且取到最大值1時,也即時,取得最大值. 解法2:用調(diào)整的方法, 也即對于每個固定的的值,去調(diào)整,求出取得最大值時所滿足的條件. 對于,如果固定,則可將看作是關(guān)于的一次或常數(shù)函數(shù).為了討論其最大值,顯然應(yīng)該考慮的符號,并由此展開討論. 若,則,所以,
25、,所以, 所以,只需考慮的情形.此時是關(guān)于的常數(shù)函數(shù)或單調(diào)遞增的一次函數(shù),因此,最大值必可在(即)時取得.所以, , 等號當且僅當時取得. 【平面向量練習】 一、選擇題: 1、下列各式中正確的是( C ) (1)(λ·a) ·b=λ·(a b)=a· (λb), (2)|a·b|=|a|·|b|, (3)(a ·b)· c=a · (b ·c), (4)(a+b) · c= a·c+b·c A.(1)(3) B.(2)(4) C.(1)(4) D.
26、以上都不對. 2、在ΔABC中,若(+)·(-)=0,則ΔABC為( C ) A.正三角形 B.直角三角形 C.等腰三角形 D.無法確定 3、若|a|=|b|=|a-b|,則b與a+b的夾角為( A ) A.30° B.60° C.150° D.120° 4、已知|a|=1,|b|= ,且(a-b)和a垂直,則a與b的夾角為( D ) A.60° B.30° C.135° D.45° 5、若· + = 0,則Δ
27、ABC為( A ) A.直角三角形 B.鈍角三角形 C.銳角三角形 D.等腰直角三角形 6、設(shè)|a|= 4,|b|= 3, 夾角為60°, 則|a+b|等于( C ) A.37 B.13 C. D. 7、己知|a|=1,|b|=2, a與b的夾角為600,c =3a+b, d =λa-b ,若c⊥d,則實數(shù)λ的值為( C ) A. B. C. D. 8、設(shè) a,b,c是平面內(nèi)任意的非零向量且相互不共線,則( D )
28、 ①(ab) c-(ca)b=0 ②|a| -|b|< |a-b| ③(bc)a-(ca)b不與c垂直 ④(3a+2b)(3a-2b)= 9|a|2-4|b|2 其中真命題是( ) A.①② B.②③ C.③④ D.②④ 二、填空題: 9、已知e是單位向量,求滿足a∥e且a·e=-18的向量a=__________.-18e 10、設(shè)a=(m+1)i-3j, b=i+(m-1)j, (a+b) ⊥(a-b), 則m=________.-2
29、11、|a|=5, |b|=3,|a-b|=7,則a、b的夾角為__________. 120° 12、 a與d=b-關(guān)系為________. a⊥b 三、解答題: 13、已知| a|=4,|b|=5,|a+b|= ,求:① a·b ;②(2a-b) ·(a+3b) 解:①|(zhì)a+b|2=(a+b)2=a2+2ab+b2=|a|2+2a·b+|b|2, =. ②(2a-b)·(a+3b)=2a2+5a·b-3b2=2|a|2+5a·b-3|b|2 =2×42+5×(-10)-3×52=-93. 14、四邊形ABCD中,= a, = b,= c, = d,且a·b
30、=b·c=c·d=d ·a,判斷四邊形ABCD是什么圖形? 分析:在四邊形ABCD中,a+b+c+d=0,這是一個隱含條件, 對a+b=-(c+d),兩邊平方后,用a·b=b·c=d·c代入, 從四邊形的邊長與內(nèi)角的情況來確定四邊形的形狀. 解:∵a+b+c+d=0,∴a+b=-(c+d), ∴(a+b)2=(c+d)2,即|a|2+2a·b+|b|2=|c|2+2c·d+|d|2, ∵a·b=c·d,∴|a|2+|b|2=|c|2+|d|2……① 同理:|a|2+|d|2=|b|2+|c|2……② ①,②兩式相減得:|b|2=|d|2,|a|2=|c|2,即|b|=|d|,
31、|a|=|c|. ∴ABCD為平行四邊形. 又∵a·b=b·c,即b·(a-c)=0,而a=-c, ∵b·(2a)=0 ∴a⊥b, ∴四邊形ABCD為矩形. 15、已知:|a|=5,|b|=4,且a與b的夾角為60°,問當且僅當k為何值時,向量ka-b與 a+2b 垂直? 解: . 【平面向量的綜合應(yīng)用練習】 一、選擇題 1.設(shè)A、B、C、D四點坐標依次是(-1,0),(0,2),(4,3),(3,1),則四邊形ABCD為( ) A.正方形 B.矩形 C.菱形 D.平行四邊形 2.已知△ABC中,=a,=b,a·b
32、<0,S△ABC=,|a|=3,|b|=5,則a與b的夾角是( ) A.30° B.-150° C.150° D.30°或150° 二、填空題 3.將二次函數(shù)y=x2的圖象按向量a平移后得到的圖象與一次函數(shù)y=2x-5的圖象只有一個公共點(3,1),則向量a=_________. 4.等腰△ABC和等腰Rt△ABD有公共的底邊AB,它們所在的平面成60°角,若AB=16 cm,AC=17 cm,則CD=_________. 三、解答題 5.如圖,在△ABC中,設(shè)=a, =b, =c, =λa,(0<λ<1), =μb(0<μ<1),試用向量a,b表示c. 6
33、.正三棱柱ABC—A1B1C1的底面邊長為a,側(cè)棱長為a. (1)建立適當?shù)淖鴺讼担懗鯝、B、A1、C1的坐標; (2)求AC1與側(cè)面ABB1A1所成的角. 7.已知兩點M(-1,0),N(1,0),且點P使成公差小于零的等差數(shù)列. (1)點P的軌跡是什么曲線? (2)若點P坐標為(x0,y0),Q為與的夾角,求tanθ. 8.已知E、F、G、H分別是空間四邊形ABCD的邊AB、BC、CD、DA的中點. (1)用向量法證明E、F、G、H四點共面; (2)用向量法證明:BD∥平面EFGH; (3)設(shè)M是EG和FH的交點,求證:對空間任一點O,有.參考答案 一、1.解析
34、: =(1,2), =(1,2),∴=,∴∥,又線段AB與線段DC無公共點,∴AB∥DC且|AB|=|DC|,∴ABCD是平行四邊形,又||=, =(5,3),||=,∴||≠|(zhì)},∴ABCD不是菱形,更不是正方形;又=(4,1), ∴1·4+2·1=6≠0,∴不垂直于,∴ABCD也不是矩形,故選D. 答案:D 2.解析:∵·3·5sinα得sinα=,則α=30°或α=150°. 又∵a·b<0,∴α=150°. 答案:C 二、3.(2,0) 4.13 cm 三、5.解:∵與共線,∴=m=m(-)=m(μb-a), ∴=+=a+m(μb-a)=(1-m)a+mμb
35、 ① 又與共線,∴=n=n(-)=n(λa-b), ∴=+=b+n(λa-b)=nλa+(1-n)b ② 由①②,得(1-m)a+μmb=λna+(1-n)b. ∵a與b不共線,∴ ③ 解方程組③得:m=代入①式得c=(1-m)a+mμb=[λ(1-μ)a+μ(1-λ)b]. 6.解:(1)以點A為坐標原點O,以AB所在直線為Oy軸,以AA1所在直線為Oz軸,以經(jīng)過原點且與平面ABB1A1垂直的直線為Ox軸,建立空間直角坐標系. 由已知,得A(0,0,0),B(0,a,0),A1(0,0,a),C1(-a). (2)取A1B1的中點M,于是有
36、M(0,a),連AM,MC1,有=(-a,0,0), 且=(0,a,0),=(0,0a) 由于·=0,·=0,所以MC1⊥面ABB1A1,∴AC1與AM所成的角就是AC1與側(cè)面ABB1A1所成的角. ∵= 所以所成的角,即AC1與側(cè)面ABB1A1所成的角為30°. 7.解:(1)設(shè)P(x,y),由M(-1,0),N(1,0)得, =-=(-1-x,-y), =(1-x,-y), =-=(2,0),∴·=2(1+x), ·=x2+y2-1, =2(1-x).于是,是公差小于零的等差數(shù)列,等價于 所以,點P的軌跡是以原點為圓心,為半徑的右半圓. (2)點P的坐標為(x
37、0,y0) 8.證明:(1)連結(jié)BG,則 由共面向量定理的推論知:E、F、G、H四點共面,(其中=) (2)因為. 所以EH∥BD,又EH面EFGH,BD面EFGH 所以BD∥平面EFGH. (3)連OM,OA,OB,OC,OD,OE,OG 由(2)知,同理,所以,EHFG,所以EG、FH交于一點M且被M平分,所以 . 【解斜三角形練習】 一、選擇題 1.給出四個命題:(1)若sin2A=sin2B,則△ABC為等腰三角形;(2)若sinA=cosB,則△ABC為直角三角形;(3)若sin2A+sin2B+sin2C<2
38、,則△ABC為鈍角三角形;(4)若cos(A-B)cos(B-C)cos(C-A)=1,則△ABC為正三角形.以上正確命題的個數(shù)是( ) A.1 B.2 C.3 D.4 二、填空題 2.在△ABC中,已知A、B、C成等差數(shù)列,則的值為__________. 3.在△ABC中,A為最小角,C為最大角,已知cos(2A+C)=-,sinB=,則cos2(B+C)=__________. 三、解答題 4.已知圓內(nèi)接四邊形ABCD的邊長分別為AB=2,BC=6,CD=DA=4,求四邊形ABCD的面積. 5.如右圖,在半徑為R的圓桌的正中央上空掛一盞電燈,
39、桌子邊緣一點處的照度和燈光射到桌子邊緣的光線與桌面的夾角θ的正弦成正比,角和這一點到光源的距離 r的平方成反比,即I=k·,其中 k是一個和燈光強度有關(guān)的常數(shù),那么怎樣選擇電燈懸掛的高度h,才能使桌子邊緣處最亮? 6.在△ABC中,a、b、c分別為角A、B、C的對邊,. (1)求角A的度數(shù); (2)若a=,b+c=3,求b和c的值. 7.在△ABC中,∠A、∠B、∠C所對的邊分別為a、b、c,且a、b、3c成等比數(shù)列,又∠A-∠C=,試求∠A、∠B、∠C的值. 8.在正三角形ABC的邊AB、AC上分別取D、E兩點,使沿線段DE折疊三角形時,頂點A正好落在邊BC上,在這種情況下,若要使
40、AD最小,求AD∶AB的值. 參考答案 一、1.解析:其中(3)(4)正確. 答案: B 二、2.解析:∵A+B+C=π,A+C=2B, 答案: 3.解析:∵A為最小角∴2A+C=A+A+C<A+B+C=180°. ∵cos(2A+C)=-,∴sin(2A+C)=. ∵C為最大角,∴B為銳角,又sinB=.故cosB=. 即sin(A+C)=,cos(A+C)=-. ∵cos(B+C)=-cosA=-cos[(2A+C)-(A+C)]=-, ∴cos2(B+C)=2cos2(B+C)-1=. 答案: 三、4.解:如圖:連結(jié)BD,則有四邊形ABCD的面積:
41、 S=S△ABD+S△CDB=·AB·ADsinA+·BC·CD·sinC ∵A+C=180°,∴sinA=sinC 故S=(AB·AD+BC·CD)sinA=(2×4+6×4)sinA=16sinA 由余弦定理,在△ABD中,BD2=AB2+AD2-2AB·AD·cosA=20-16cosA 在△CDB中,BD2=CB2+CD2-2CB·CD·cosC=52-48cosC ∴20-16cosA=52-48cosC,∵cosC=-cosA, ∴64cosA=-32,cosA=-,又0°<A<180°,∴A=120°故S=16sin120°=8. 5.解:R=rcosθ,由此得:,
42、 7.解:由a、b、3c成等比數(shù)列,得:b2=3ac ∴sin2B=3sinC·sinA=3(-)[cos(A+C)-cos(A-C)] ∵B=π-(A+C).∴sin2(A+C)=-[cos(A+C)-cos] 即1-cos2(A+C)=-cos(A+C),解得cos(A+C)=-. ∵0<A+C<π,∴A+C=π.又A-C=∴A=π,B=,C=. 8.解:按題意,設(shè)折疊后A點落在邊BC上改稱P點,顯然A、P兩點關(guān)于折線DE對稱,又設(shè)∠BAP=θ,∴∠DPA=θ,∠BDP=2θ,再設(shè)AB=a,AD=x,∴DP=x.在△ABC中, ∠APB=180°-∠ABP-∠BAP
43、=120°-θ, 由正弦定理知:.∴BP= 在△PBD中,, ∵0°≤θ≤60°,∴60°≤60°+2θ≤180°,∴當60°+2θ=90°,即θ=15°時, sin(60°+2θ)=1,此時x取得最小值a,即AD最小, ∴AD∶DB=2-3. 平面向量單元測試題 班級 姓名 考號 一,選擇題:(5分×8=40分) 1,下
44、列說法中錯誤的是 ( ) A.零向量沒有方向 B.零向量與任何向量平行 C.零向量的長度為零 D.零向量的方向是任意的 2,下列命題正確的是 ( ) A. 若、都是單位向量,則 = B. 若=, 則A、B、C、D四點構(gòu)成平行四邊形 C. 若兩向量、相等,則它們是始點、終點都相同的向量 D. 與是兩平行向量 3,下列命題正確的是
45、 ( ) A、若∥,且∥,則∥。 B、兩個有共同起點且相等的向量,其終點可能不同。 C、向量的長度與向量的長度相等 , D、若非零向量與是共線向量,則A、B、C、D四點共線。 4,已知向量,若,=2,則 ( ) A.1 B. C. D. 5,若=(,),=(,),,且∥,則有 ( ) A,+=0, B, ―=0,
46、 C,+=0, D, ―=0, 6,若=(,),=(,),,且⊥,則有 ( ) A,+=0, B, ―=0, C,+=0, D, ―=0, 7,在中,若,則一定是 ( ) A.鈍角三角形 B.銳角三角形 C.直角三角形 D.不能確定 8,已知向量滿足,則的夾角等于 ( ) A. B C D 二,填空題:(5分×4=20分) 9。已知向量、滿足==1,=3,則 =
47、 10,已知向量=(4,2),向量=(,3),且//,則= 11,.已知 三點A(1,0),B(0,1),C(2,5),求cos∠BAC = 12,.把函數(shù)的圖像按向量經(jīng)過一次平移以后得到的圖像, 則平移向量是 (用坐標表示) 三,解答題:(10分×6 = 60分) 13,設(shè)且在的延長線上,使,,則求點 的坐標 14,已知兩向量求與所成角的大小, 15,已知向量=(6,2),=(-3
48、,k),當k為何值時,有 (1),∥ ? (2),⊥ ? (3),與所成角θ是鈍角 ? 16,設(shè)點A(2,2),B(5,4),O為原點,點P滿足=+,(t為實數(shù)); (1),當點P在x軸上時,求實數(shù)t的值; (2),四邊形OABP能否是平行四邊形?若是,求實數(shù)t的值 ;若否,說明理由, 17,已知向量=(3, -4), =(6, -3),=(5-m, -3-m), (1)若點A、B、C能構(gòu)成三角形,求實數(shù)m應(yīng)滿足的條件; (2)若△ABC為直角三角形,
49、且∠A為直角,求實數(shù)m的值. 18, 已知向量 (1)求向量; (2)設(shè)向量,其中, 若,試求的取值范圍. 平面向量單元測試題答案: 一,選擇題: A D C D B C C A 二,填空題: 9,2; 10,6; 11, 12, 三,解答題: 13,解法一: 設(shè)分點P(x,y),∵=―2,l=―2 ∴ (x―4,y+3)=―2(―2―x,6―y), x―4=2x+4, y+3=2y―12, ∴ x=―8,y=15, ∴ P(―8,
50、15) 解法二:設(shè)分點P(x,y),∵=―2, l=―2 ∴ x==―8, y==15, ∴ P(―8,15) 解法三:設(shè)分點P(x,y),∵, ∴ ―2=, x=―8, 6=, y=15, ∴ P(―8,15) 14,解:=2, = , cos<,>=―, ∴<,>= 1200, 15,解:(1),k=-1; (2), k=9; (3), k<9, k≠-1 16,解:(1),設(shè)點P(x,0), =(3,2), ∵=+,∴ (x,0)
51、=(2,2)+t(3,2), ∴ (2),設(shè)點P(x,y),假設(shè)四邊形OABP是平行四邊形, 則有∥, T y=x―1, ∥ T 2y=3x ∴ …… ①, 又由=+,T (x,y)=(2,2)+ t(3,2), 得 ∴ …… ②, 由①代入②得:, 矛盾,∴假設(shè)是錯誤的, ∴四邊形OABP不是平行四邊形。 17,,解:(1)已知向量 若點A、B、C能構(gòu)成三角形,則這三點不共線, 3分 故知. ∴實數(shù)時,滿足的條件. 5分 (2)若△ABC為直角三角形,且∠A為直角,則, 7分 ∴,解得. 10分 18, .解:(1)令 3分 (2) 4分 6分 ===; 8分 ∵ ―1≤sinx≤1, ∴ 0≤≤2, 10分
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。