(江蘇專用)2018-2019學(xué)年高中數(shù)學(xué) 第三章 導(dǎo)數(shù)及其應(yīng)用 階段復(fù)習(xí)課學(xué)案 蘇教版選修1-1
《(江蘇專用)2018-2019學(xué)年高中數(shù)學(xué) 第三章 導(dǎo)數(shù)及其應(yīng)用 階段復(fù)習(xí)課學(xué)案 蘇教版選修1-1》由會(huì)員分享,可在線閱讀,更多相關(guān)《(江蘇專用)2018-2019學(xué)年高中數(shù)學(xué) 第三章 導(dǎo)數(shù)及其應(yīng)用 階段復(fù)習(xí)課學(xué)案 蘇教版選修1-1(9頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、 第三課 導(dǎo)數(shù)及其應(yīng)用 [體系構(gòu)建] [題型探究] 利用導(dǎo)數(shù)的幾何意義求曲線的切線方程 運(yùn)用導(dǎo)數(shù)的幾何意義,可以求過(guò)曲線上任一點(diǎn)的切線的斜率,從而進(jìn)一步求出過(guò)此點(diǎn)的切線方程.還可以結(jié)合幾何的有關(guān)知識(shí),求解某些點(diǎn)的坐標(biāo)、三角形面積等.導(dǎo)數(shù)的幾何意義是近幾年高考的要點(diǎn)和熱點(diǎn)之一,常結(jié)合導(dǎo)數(shù)的運(yùn)算進(jìn)行考查,常以選擇題、填空題的形式出現(xiàn). 對(duì)于較為復(fù)雜的此類問(wèn)題,一般要利用k=f′(x0)((x0,f(x0))為切點(diǎn))及切點(diǎn)的坐標(biāo)滿足切線方程和曲線方程列方程組求解. 求過(guò)曲線y=x3-2x上的點(diǎn)(1,-1)的切線方程. [思路探究] 切線過(guò)曲線上一點(diǎn)(1,-1),
2、并不代表(1,-1)就是切點(diǎn),故需先設(shè)出切點(diǎn),再求解. 【規(guī)范解答】 設(shè)切點(diǎn)為P(x0,y0),則y0=x-2x0.∵y′=3x2-2,則切線的斜率k=f′(x0)=3x-2,∴切線方程為y-(x-2x0)=(3x-2)(x-x0). 又∵切線過(guò)點(diǎn)(1,-1),∴-1-(x-2x0)=(3x-2)(1-x0),整理,得(x0-1)2(2x0+1)=0,解得x0=1或x0=-.∴切點(diǎn)為(1,-1)或,相應(yīng)的切線斜率為k=1或k=-. 故所求切線方程為y-(-1)=x-1或y-=-·,即x-y-2=0或5x+4y-1=0. [跟蹤訓(xùn)練] 1.已知函數(shù)f(x)=x3+ax2+bx+c在
3、x=2處取得極值,并且它的圖象與直線y=-3x+3在點(diǎn)(1,0)處相切,則函數(shù)f(x)的表達(dá)式為_(kāi)_______. 【導(dǎo)學(xué)號(hào):95902257】 【解析】 f′(x)=3x2+2ax+b.∵f(x)與直線y=-3x+3在點(diǎn)(1,0)處相切, ∴即 ∵f(x)在x=2處取得極值,∴f′(2)=12+4a+b=0.③ 由①②③解得∴f(x)=x3-3x2+2. 【答案】 f(x)=x3-3x2+2 利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性 1.求函數(shù)的單調(diào)區(qū)間應(yīng)先確定函數(shù)的定義域,利用f ′(x)>0,f ′(x)<0的解集確定單調(diào)區(qū)間,這是函數(shù)中常見(jiàn)問(wèn)題,是考查的重點(diǎn). 2.求含參
4、數(shù)的函數(shù)的單調(diào)區(qū)間討論時(shí)要注意的三個(gè)方面:(1)f′(x)=0有無(wú)根,(2)f′(x)=0根的大小,(3)f′(x)=0的根是否在定義域內(nèi).另外當(dāng)f′(x)=0的最高次項(xiàng)系數(shù)含有字母時(shí),則要討論系數(shù)是否為0. 3.已知函數(shù)的單調(diào)性求參數(shù)的取值范圍有兩種思路:①轉(zhuǎn)化為不等式在某區(qū)間上恒成立問(wèn)題,即f′(x)≥0(或≤0)恒成立,用分離參數(shù)求最值或函數(shù)的性質(zhì)求解,注意驗(yàn)證使f′(x)=0的參數(shù)是否符合題意,②構(gòu)造關(guān)于參數(shù)的不等式求解,即令f′(x)>0(或<0)求得用參數(shù)表示的單調(diào)區(qū)間,結(jié)合所給區(qū)間,利用區(qū)間端點(diǎn)列不等式求參數(shù)的范圍. 已知函數(shù)f(x)=x3-ax-1. (1)討論f(x)
5、的單調(diào)性; (2)若f(x)在R上為增函數(shù),求實(shí)數(shù)a的取值范圍. [思路探究] (1)求出f′(x),討論f′(x)=0的根是否存在,求函數(shù)的單調(diào)區(qū)間; (2)根據(jù)題意有f′(x)≥0在(-∞,+∞)上恒成立,分離參數(shù)后可求實(shí)數(shù)a的取值范圍. 【規(guī)范解答】 (1)f′(x)=3x2-a. ①當(dāng)a≤0時(shí),f′(x)≥0,所以f(x)在(-∞,+∞)上為增函數(shù). ②當(dāng)a>0時(shí),令3x2-a=0得x=±;當(dāng)x>或x<-時(shí),f′(x)>0; 當(dāng)-<x<時(shí),f′(x)<0. 因此f(x)在,上為增函數(shù),在上為減函數(shù). 綜上可知,當(dāng)a≤0時(shí),f(x)在R上為增函數(shù); 當(dāng)a>0時(shí),f(
6、x)在,上為增函數(shù),在上為減函數(shù). (2)因?yàn)閒(x)在(-∞,+∞)上是增函數(shù),所以f′(x)=3x2-a≥0在(-∞,+∞)上恒成立, 即a≤3x2對(duì)x∈R恒成立.因?yàn)?x2≥0,所以只需a≤0. 又因?yàn)閍=0時(shí),f′(x)=3x2≥0,f(x)=x3-1在R上是增函數(shù), 所以a≤0,即a的取值范圍為(-∞,0]. [跟蹤訓(xùn)練] 2.設(shè)函數(shù)f(x)=x2+ex-xex. (1)求f(x)的單調(diào)區(qū)間; (2)若當(dāng)x∈[-2,2]時(shí),不等式f(x)>m恒成立,求實(shí)數(shù)m的取值范圍. 【導(dǎo)學(xué)號(hào):95902258】 【解】 (1)函數(shù)f(x)的定義域?yàn)?-∞,+∞),f′(
7、x)=x+ex-(ex+xex)=x(1-ex). 若x<0,則1-ex>0,所以f′(x)<0; 若x>0,則1-ex<0,所以f′(x)<0; 若x=0,則f′(x)=0. ∴f(x)在(-∞,+∞)上為減函數(shù),即f(x)的單調(diào)減區(qū)間為(-∞,+∞). (2)由(1)知f(x)在[-2,2]上單調(diào)遞減, ∴f(x)min=f(2)=2-e2. ∴當(dāng)m<2-e2時(shí),不等式f(x)>m恒成立.即實(shí)數(shù)m的取值范圍是(-∞,2-e2). 利用導(dǎo)數(shù)研究函數(shù)的極值和最值 1.利用導(dǎo)數(shù)研究函數(shù)極值的一般流程 2.求函數(shù)f(x)在[a,b]上的最大值和最小值的步驟: (1)求
8、函數(shù)在(a,b)內(nèi)的極值; (2)求函數(shù)在區(qū)間端點(diǎn)的函數(shù)值f(a),f(b); (3)將函數(shù)f(x)的極值與f(a),f(b)比較,其中最大的一個(gè)為最大值,最小的一個(gè)為最小值. 3.注意事項(xiàng): (1)求函數(shù)最值時(shí),不可想當(dāng)然地認(rèn)為極值點(diǎn)就是最值點(diǎn),要通過(guò)認(rèn)真比較才能下結(jié)論. (2)解題時(shí)要注意區(qū)分求單調(diào)性和已知單調(diào)性的問(wèn)題,處理好f′(x)=0時(shí)的情況;區(qū)分極值點(diǎn)和導(dǎo)數(shù)為0的點(diǎn). 已知函數(shù)f(x)=x3+ax2+bx+c,曲線y=f(x)在點(diǎn)x=1處的切線為l:3x-y+1=0,若x=時(shí),y=f(x)有極值. (1)求a,b,c的值; (2)求y=f(x)在[-3,1]上的最
9、大值和最小值. [思路探究] (1)利用f′(1)=3、f′=0、f(1)=4構(gòu)建方程組求解; (2)→→→→ 【規(guī)范解答】 (1)由f(x)=x3+ax2+bx+c,得f′(x)=3x2+2ax+b. 當(dāng)x=1時(shí),切線l的斜率為3,可得2a+b=0,① 當(dāng)x=時(shí),y=f(x)有極值,則f′=0,可得4a+3b+4=0,② 由①②,解得a=2,b=-4.由于切點(diǎn)的橫坐標(biāo)為1,所以f(1)=4. 所以1+a+b+c=4,得c=5. (2)由(1)可得f(x)=x3+2x2-4x+5,f′(x)=3x2+4x-4.令f′(x)=0,解得x1=-2,x2=. 當(dāng)x變化時(shí),f′(x
10、),f(x)的取值及變化情況如下表所示: x -3 (-3,-2) -2 1 f′(x) + 0 - 0 + f(x) 8 ↗ 13 ↙ ↗ 4 由表可知,函數(shù)y=f(x)在[-3,1]上的最大值為13,最小值為. [跟蹤訓(xùn)練] 3.已知函數(shù)f(x)=x3-x2+cx+d有極值. (1)求c的取值范圍; (2)若f(x)在x=2處取得極值,且當(dāng)x<0時(shí),f(x)<d2+2d恒成立,求d的取值范圍. 【導(dǎo)學(xué)號(hào):95902259】 【解】 (1)∵f(x)=x3-x2+cx+d,∴f′(x)=x2-x+c,要使f(x)
11、有極值, 則方程f′(x)=x2-x+c=0有兩個(gè)實(shí)數(shù)解,從而Δ=1-4c>0,∴c<. (2)∵f(x)在x=2處取得極值,∴f′(2)=4-2+c=0,∴c=-2.∴ f(x)=x3-x2-2x+d. ∵f′(x)=x2-x-2=(x-2)(x+1),∴當(dāng)x∈(-∞,-1)時(shí),f′(x)>0,函數(shù)單調(diào)遞增, 當(dāng)x∈(-1,2]時(shí),f′(x)<0,函數(shù)單調(diào)遞減.∴x<0時(shí),f(x)在x=-1處取得最大值+d, ∵x<0時(shí),f(x)<d2+2d恒成立,∴ +d<d2+2d,即(d+7)(d-1)>0, ∴d<-7或d>1,即d的取值范圍是(-∞,-7)∪(1,+∞). 分類討
12、論思想 利用分類討論思想解答問(wèn)題已成為高考中的熱點(diǎn)問(wèn)題,尤其是函數(shù)、導(dǎo)數(shù)中的解答題,在含參數(shù)的問(wèn)題中,無(wú)論是研究單調(diào)性,還是極值、最值,一般都需要分類討論. 已知函數(shù)f(x)=x-ln(x+a)的最小值為0,其中a>0. (1)求a的值; (2)若對(duì)任意的x∈[0,+∞),有f(x)≤kx2成立,求實(shí)數(shù)k的最小值. [思路探究] (1)求出函數(shù)f(x)的最小值用a表示解方程可得a的值; (2)構(gòu)造函數(shù)g(x)=f(x)-kx2,分類討論求其在[0,+∞)的最大值,使其最大值≤0可得k的取值范圍,即得其最小值. 【規(guī)范解答】 (1)f(x)的定義域?yàn)?-a
13、,+∞).f ′(x)=1-=. 由f ′(x)=0,得x=1-a>-a.當(dāng)x變化時(shí),f ′(x),f(x)的變化情況如下表: x (-a,1-a) 1-a (1-a,+∞) f ′(x) - 0 + f(x) ↘ 極小值 ↗ 因此,f(x)在x=1-a處取得最小值,故由題意f(1-a)=1-a=0,所以a=1. (2)當(dāng)k≤0時(shí),取x=1,有f(1)=1-ln 2>0,故k≤0不合題意. 當(dāng)k>0時(shí),令g(x)=f(x)-kx2,即g(x)=x-ln(x+1)-kx2. g ′(x)=-2kx=. 令g′(x)=0,得x1=0,x2=>-1. ①當(dāng)k≥時(shí)
14、,≤0,g′(x)<0在(0,+∞)上恒成立, 因此g(x)在[0,+∞)上單調(diào)遞減.從而對(duì)于任意的x∈[0,+∞),總有g(shù)(x)≤g(0)=0,即f(x)≤kx2在[0,+∞)上恒成立.故k≥符合題意. ②當(dāng)0<k<時(shí),>0,對(duì)于x∈,g′(x)>0, 故g(x)在內(nèi)單調(diào)遞增,因此當(dāng)取x0∈時(shí), g(x0)>g(0)=0,即f(x0)≤kx不成立.故0<k<不合題意. 綜上,k的最小值為. [跟蹤訓(xùn)練] 4.設(shè)函數(shù)f(x)=aex++b(a>0). (1)求f(x)在[0,+∞)內(nèi)的最小值; (2)設(shè)曲線y= f(x)在點(diǎn)(2,f(2))處的切線方程
15、為y=x,求a,b的值. 【解】 (1)f′(x)=aex-, 當(dāng)f ′(x)>0,即x>-ln a時(shí),f(x)在(-ln a,+∞)上單調(diào)遞增; 當(dāng)f ′(x)<0,即x<-ln a時(shí),f(x)在(-∞,-ln a)上單調(diào)遞減. ①當(dāng)0<a<1時(shí),-ln a >0,f(x)在(0,-ln a)上單調(diào)遞減,在(-ln a,+∞)上單調(diào)遞增,從而f(x)在[0,+∞)上的最小值為f(-ln a)=2+b; ②當(dāng)a≥1時(shí),-ln a≤0,f(x)在[0,+∞)上單調(diào)遞增, 從而f(x)在[0,+∞)上的最小值為f(0)=a++b. (2)依題意f
16、′(2)=ae2-=,解得ae2=2或ae2=-(舍去),所以a=,代入原函數(shù)可得2++b=3,即b=,故a=,b=. [鏈接高考] 1.曲線y=x2+在點(diǎn)(1,2)處的切線方程是__________. 【導(dǎo)學(xué)號(hào):95902260】 【解析】 因?yàn)閥′=2x-,所以在點(diǎn)(1,2)處的切線方程的斜率k=2×1-=1,所以切線方程為y-2=x-1,即y=x+1. 【答案】 y=x+1 2.已知a∈R,設(shè)函數(shù)f(x)=ax-ln x的圖象在點(diǎn)(1,f(1))處的切線為l,則l在y軸上的截距為_(kāi)_______. 【解析】 ∵f′(x)=a-,∴f′(1)=a-1. 又∵f(1)=a,
17、∴切線l的斜率為a-1,且過(guò)點(diǎn)(1,a), ∴切線l的方程為y-a=(a-1)(x-1). 令x=0,得y=1,故l在y軸上的截距為1. 【答案】 1 3.函數(shù)f(x)=(x≥2)的最大值為_(kāi)_______. 【解析】 f′(x)==-, 當(dāng)x≥2時(shí),f′(x)<0,所以f(x)在[2,+∞)上是減函數(shù),故f(x)max=f(2)==2. 【答案】 2 4.已知函數(shù)f(x)=x3-2x+ex-,其中e是自然對(duì)數(shù)的底數(shù).若f(a-1)+f(2a2)≤0,則實(shí)數(shù)a的取值范圍是________. 【導(dǎo)學(xué)號(hào):95902261】 【解析】 因?yàn)閒(-x)=(-x)3-2(-x)+e
18、-x- =-x3+2x-ex+=-f(x), 所以f(x)=x3-2x+ex-是奇函數(shù). 因?yàn)閒(a-1)+f(2a2)≤0, 所以f(2a2)≤-f(a-1),即f(2a2)≤f(1-a). 因?yàn)閒′(x)=3x2-2+ex+e-x≥3x2-2+2=3x2≥0, 所以f(x)在R上單調(diào)遞增, 所以2a2≤1-a,即2a2+a-1≤0, 所以-1≤a≤. 【答案】 5.已知函數(shù)f(x)=x3+ax2+bx+1(a>0,b∈R)有極值,且導(dǎo)函數(shù)f′(x)的極值點(diǎn)是f(x)的零點(diǎn).(極值點(diǎn)是指函數(shù)取極值時(shí)對(duì)應(yīng)的自變量的值) (1)求b關(guān)于a的函數(shù)關(guān)系式,并寫(xiě)出定義域; (
19、2)證明:b2>3a. 【解】 (1)由f(x)=x3+ax2+bx+1,得 f′(x)=3x2+2ax+b=3+b-. 當(dāng)x=-時(shí),f′(x)有極小值b-. 因?yàn)閒′(x)的極值點(diǎn)是f(x)的零點(diǎn), 所以f=-+-+1=0. 又a>0,故b=+. 因?yàn)閒(x)有極值,故f′(x)=0有實(shí)根, 從而b-=(27-a3)≤0,即a≥3. 當(dāng)a=3時(shí),f′(x)>0(x≠-1), 故f(x)在R上是增函數(shù),f(x)沒(méi)有極值; 當(dāng)a>3時(shí),f′(x)=0有兩個(gè)相異的實(shí)根 x1=,x2=. 列表如下: x (-∞,x1) x1 (x1,x2) x2 (x2,+∞) f′(x) + 0 - 0 + f(x) ↗ 極大值 ↘ 極小值 ↗ 故f(x)的極值點(diǎn)是x1,x2. 從而a>3. 因此b=+,定義域?yàn)?3,+∞). (2)證明:由(1)知,=+. 設(shè)g(t)=+,則g′(t)=-=. 當(dāng)t∈時(shí),g′(t)>0, 從而g(t)在上單調(diào)遞增. 因?yàn)閍>3,所以a>3, 故g(a)>g(3)=,即>. 因此b2>3a. 9
- 溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025《增值稅法》高質(zhì)量發(fā)展的增值稅制度規(guī)范增值稅的征收和繳納
- 深入學(xué)習(xí)《中華人民共和國(guó)科學(xué)技術(shù)普及法》推進(jìn)實(shí)現(xiàn)高水平科技自立自強(qiáng)推動(dòng)經(jīng)濟(jì)發(fā)展和社會(huì)進(jìn)步
- 激揚(yáng)正氣淬煉本色踐行使命廉潔從政黨課
- 加強(qiáng)廉潔文化建設(shè)夯實(shí)廉政思想根基培育風(fēng)清氣正的政治生態(tài)
- 深入學(xué)習(xí)2024《突發(fā)事件應(yīng)對(duì)法》全文提高突發(fā)事件預(yù)防和應(yīng)對(duì)能力規(guī)范突發(fā)事件應(yīng)對(duì)活動(dòng)保護(hù)人民生命財(cái)產(chǎn)安全
- 2023年四年級(jí)數(shù)學(xué)上冊(cè)第一輪單元滾動(dòng)復(fù)習(xí)第10天平行四邊形和梯形作業(yè)課件新人教版
- 2023年四年級(jí)數(shù)學(xué)上冊(cè)第14單元階段性綜合復(fù)習(xí)作業(yè)課件新人教版
- 2023年四年級(jí)數(shù)學(xué)上冊(cè)易錯(cuò)清單十五課件新人教版
- 2023年四年級(jí)數(shù)學(xué)上冊(cè)易錯(cuò)清單七課件西師大版
- 2023年五年級(jí)數(shù)學(xué)下冊(cè)易錯(cuò)清單六作業(yè)課件北師大版
- 2023年五年級(jí)數(shù)學(xué)下冊(cè)易錯(cuò)清單二作業(yè)課件北師大版
- 2023年五年級(jí)數(shù)學(xué)下冊(cè)四分?jǐn)?shù)的意義和性質(zhì)第10課時(shí)異分母分?jǐn)?shù)的大小比較作業(yè)課件蘇教版
- 2023年五年級(jí)數(shù)學(xué)下冊(cè)周周練四作業(yè)課件北師大版
- 2023年五年級(jí)數(shù)學(xué)下冊(cè)六折線統(tǒng)計(jì)圖單元復(fù)習(xí)卡作業(yè)課件西師大版
- 2023年四年級(jí)數(shù)學(xué)上冊(cè)6除數(shù)是兩位數(shù)的除法單元易錯(cuò)集錦一作業(yè)課件新人教版