《2022屆高考數(shù)學(xué) 專題十三 三視圖與體積、表面積精準培優(yōu)專練 理》由會員分享,可在線閱讀,更多相關(guān)《2022屆高考數(shù)學(xué) 專題十三 三視圖與體積、表面積精準培優(yōu)專練 理(11頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、2022屆高考數(shù)學(xué) 專題十三 三視圖與體積、表面積精準培優(yōu)專練 理
1.由三視圖求面積
例1:一個幾何體的三視圖如圖所示,則該幾何體的表面積為_________.
【答案】
【解析】由三視圖可得該幾何體由一個半球和一個圓錐組成,
其表面積為半球面積和圓錐側(cè)面積的和.球的半徑為3,
∴半球的面積,圓錐的底面半徑為3,母線長為5,
∴圓錐的側(cè)面積為,∴表面積為.
2.由三視圖求體積
例2:某個長方體被一個平面所截,得到的幾何體的三視圖如圖所示,則這個幾何體的體積為( )
A.4 B. C. D.8
【答案】D
【解析】由于長方體被平面所截,
∴很難直接求
2、出幾何體的體積,可以考慮沿著截面再接上一個一模一樣的幾何體,
從而拼成了一個長方體,∵長方體由兩個完全一樣的幾何體拼成,
∴所求體積為長方體體積的一半。從圖上可得長方體的底面為正方形,
且邊長為2,長方體的高為,
∴,∴,故選D.
對點增分集訓(xùn)
一、單選題
1.某幾何體的三視圖如圖所示,若該幾何體的表面積為,則俯視圖中圓的半徑為( )
A.1 B.2 C.3 D.4
【答案】A
【解析】由三視圖可知該幾何體為一個長方體挖去了一個半球,設(shè)圓半徑為,
∴該幾何體的表面積,得,故選A.
2.正方體中,為棱的中點(如圖)用過點的平面截去該正方體的上半部
3、分,則剩余幾何體的左視圖為( )
A. B. C. D.
【答案】D
【解析】由題意可知:過點、、的平面截去該正方體的上半部分,如圖直觀圖,
則幾何體的左視圖為D,故選D.
3.如圖,網(wǎng)格紙上小正方形的邊長為1,粗線畫的是某幾何體的三視圖,則該幾何體的體積為( )
A. B. C. D.4
【答案】A
【解析】由三視圖可得,該幾何體是如圖所示的三棱柱挖去一個三棱錐,故所求幾何體的體積為,故選A.
4.一個幾何體的三視圖如圖所示,其中正視圖是半徑為1的半圓,則該幾何體的表面積為( )
A. B.
C. D.
【答案】C
4、
【解析】由三視圖可知,其對應(yīng)的幾何體是半個圓錐,圓錐的底面半徑為,
圓錐的高,其母線長,則該幾何體的表面積為:,本題選擇C選項.
5.若某三棱柱截去一個三棱錐后所剩幾何體的三視圖如圖所示,則所截去的三棱錐的外接球的表面積等于( )
A. B. C. D.
【答案】A
【解析】由三視圖知幾何體是底面為邊長為3,4,5的三角形,
高為5的三棱柱被平面截得的,如圖所示,
截去的是一個三棱錐,底面是邊長為3,4,5的直角三角形,高為3的棱錐,
如圖藍色線條的圖像是該棱錐,三棱錐上底面外接圓半徑圓心設(shè)為半徑為,
球心到底面距離為,設(shè)球心為,
由勾股定理得到,,故
5、選A.
6.如圖,網(wǎng)格紙上小正方形的邊長為1,粗實線畫出的是某多面體的三視圖,則該多面體的外接球的表面積為( )
A. B. C. D.
【答案】C
【解析】還原幾何體如圖所示三棱錐由(如下左圖),
將此三棱錐補形為直三棱柱(如上右圖),
在直三棱柱中取的中點,取中點,
,,故答案為C.
7.一個四棱錐的三視圖如圖所示,則該幾何體的表面積為( )
A. B. C. D.
【答案】B
【解析】根據(jù)三視圖,畫出原空間結(jié)構(gòu)圖如下圖所示:
∴表面積為
,∴故選B.
8.已知一個三棱錐的三視圖如圖所示,其中三視圖的長、寬、高分別為2,,,且,則
6、此三棱錐外接球表面積的最小值為( )
A. B. C. D.
【答案】B
【解析】由已知條件及三視圖得,此三棱錐的四個頂點位于長方體的四個頂點,
即為三棱錐,且長方體的長、寬、高分別為2,,,
∴此三棱錐的外接球即為長方體的外接球,
且球半徑為,
∴三棱錐外接球表面積為,
∴當(dāng)且僅當(dāng),時,三棱錐外接球的表面積取得最小值為.故選B.
9.在四棱錐中,底面,底面為正方形,,該四棱錐被一平面截去一部分后,剩余部分的三視圖如圖,則截去部分體積與剩余部分體積的比值為( )
A. B. C. D.
【答案】B
【解析】由三視圖知,剩余部分的幾何體是四
7、棱錐被平面截去三棱錐(為中點)后的部分,連接交于,連樓,則,
且,設(shè),則,,
剩余部分的體積為:,則所求的體積比值為:.
本題選擇B選項.
10.如圖,畫出的是某四棱錐的三視圖,網(wǎng)格紙上小正方形的邊長為1,則該幾何體的體積為( )
A.15 B.16 C. D.
【答案】C
【解析】由題得幾何體原圖是下圖中的四棱錐,
底面四邊形的面積為,
∴四棱錐的體積為,故答案為C.
11.某幾何體的三視圖如圖(虛線刻畫的小正方形邊長為1)所示,則這個幾何體的體積為( )
A. B. C.12 D.
【答案】D
【解析】幾何體為如圖多面體,
8、
∴體積為,故選D.
12.如圖為一個多面體的三視圖,則該多面體的體積為( )
A. B.7 C. D.
【答案】B
【解析】如圖所示,該幾何體為正方體去掉兩個倒置的三棱錐,
∴該多面體的體積為;故選B.
二、填空題
13.網(wǎng)格紙上小正方形的邊長為1,粗虛、實線畫出的是某個長方體挖去一個幾何體得到的幾何圖形的三視圖,則該被挖去的幾何體的體積為__________.
【答案】12
【解析】根據(jù)三視圖知長方體挖去部分是一個底面為等腰梯形(上底為2,下底為4,高為2)高為2的直四棱柱,∴.
14.已知某幾何體的三視圖如圖所示,則該幾何體的表面
9、積和體積分別為_______與_______.
【答案】,
【解析】由三視圖可知,其對應(yīng)的幾何體是一個組合體,上半部分是一個直徑為2的球,下半部分是一個直棱柱,棱柱的底面是邊長為2的正方形,高為4,
則該幾何體的表面積,
幾何體的體積:.
15.某四棱錐的三視圖如圖所示,則該四棱錐的體積為_________.
【答案】1
【解析】根據(jù)題中所給的三視圖,還原幾何體,
可知其為有一條側(cè)棱垂直于底面的一個四棱錐,
該四棱錐的底面就是其俯視圖中的直角梯形,
根據(jù)圖中所給的數(shù)據(jù),結(jié)合椎體的體積公式,
可得其體積,故答案是1.
16.已知某幾何體的三視圖如圖所示,三視圖的輪廓均為正方形,則該幾何體的體積為__________.
【答案】
【解析】由三視圖知,該幾何體由正方體沿面與面截去兩個角所得,
其體積為,故答案為.